1
|
Kwas K, Szubert M, Wilczyński JR. Latest Update on lncRNA in Epithelial Ovarian Cancer-A Scoping Review. Cells 2025; 14:555. [PMID: 40214508 PMCID: PMC11988607 DOI: 10.3390/cells14070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules exceeding 200 nucleotides that do not encode proteins yet play critical roles in regulating gene expression at multiple levels, such as chromatin modification and transcription. These molecules are significantly engaged in cancer progression, development, metastasis, and chemoresistance. However, the function of lncRNAs in epithelial ovarian cancer (EOC) has not yet been thoroughly studied. EOC remains challenging due to its complex molecular pathogenesis, characterized by genetic and epigenetic alterations. Emerging evidence suggests that lncRNAs, such as XIST, H19, NEAT1, and MALAT1, are involved in EOC by modulating gene expression and signaling pathways, influencing processes like cell proliferation, invasion, migration, and chemoresistance. Despite extensive research, the precise mechanism of acting of lncRNAs in EOC pathogenesis and treatment resistance still needs to be fully understood, highlighting the need for further studies. This review aims to provide an updated overview of the current understanding of lncRNAs in EOC, emphasizing their potential as biomarkers and therapeutic targets. We point out the gaps in the knowledge regarding lncRNAs' influence on epithelial ovarian cancer (EOC), deliberating on new possible research areas.
Collapse
Affiliation(s)
- Katarzyna Kwas
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, Medical University of Lodz, 90-136 Łódź, Poland; (M.S.); (J.R.W.)
| | | | | |
Collapse
|
2
|
Basu S, Nadhan R, Dhanasekaran DN. Long Non-Coding RNAs in Ovarian Cancer: Mechanistic Insights and Clinical Applications. Cancers (Basel) 2025; 17:472. [PMID: 39941838 PMCID: PMC11815776 DOI: 10.3390/cancers17030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Ovarian cancer is a leading cause of gynecological cancer mortality worldwide, often diagnosed at advanced stages due to vague symptoms and the lack of effective early detection methods. Long non-coding RNAs (lncRNAs) have emerged as key regulators in cancer biology, influencing cellular processes such as proliferation, apoptosis, and chemoresistance. This review explores the multifaceted roles of lncRNAs in ovarian cancer pathogenesis and their potential as biomarkers and therapeutic targets. Methods: A comprehensive literature review was conducted to analyze the structural and functional characteristics of lncRNAs and their contributions to ovarian cancer biology. This includes their regulatory mechanisms, interactions with signaling pathways, and implications for therapeutic resistance. Advanced bioinformatics and omics approaches were also evaluated for their potential in lncRNA research. Results: The review highlights the dual role of lncRNAs as oncogenes and tumor suppressors, modulating processes such as cell proliferation, invasion, and angiogenesis. Specific lncRNAs, such as HOTAIR and GAS5, demonstrate significant potential as diagnostic biomarkers and therapeutic targets. Emerging technologies, such as single-cell sequencing, provide valuable insights into the tumor microenvironment and the heterogeneity of lncRNA expression. Conclusions: LncRNAs hold transformative potential in advancing ovarian cancer diagnosis, prognosis, and treatment. Targeting lncRNAs or their associated pathways offers promising strategies to overcome therapy resistance and enhance personalized medicine. Continued research integrating omics and bioinformatics will be essential to unlock the full clinical potential of lncRNAs in ovarian cancer management.
Collapse
Affiliation(s)
- Sneha Basu
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Soltani Khaboushan A, Salimian SN, Mehraban S, Bahramy A, Zafari N, Kajbafzadeh AM, Johnson J, Majidi Zolbin M. Prognostic significance of non-coding RNAs related to the tumorigenic epithelial-mesenchymal transition (EMT) process among ovarian cancer patients: A systematic review and meta-analysis. Heliyon 2024; 10:e35202. [PMID: 39253159 PMCID: PMC11382180 DOI: 10.1016/j.heliyon.2024.e35202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Ovarian cancer is the seventh most prevalent cancer among women. It has high mortality and morbidity and imposes a great burden on healthcare systems worldwide. Unraveling the mechanisms behind the Epithelial-Mesenchymal Transition and finding a panel for predicting the prognosis of the disease may help find the appropriate treatment approaches for the management of the disease. The overarching aim of this systematic review was to define a panel of different types of EMT-associated non-coding RNAs (ncRNAs) with significant prognostic value in all types of ovarian cancers. Methods We searched PubMed, Web of Science, Scopus, and Embase till Jun 2024 to retrieve relevant papers. Two independent reviewers screened papers, and discrepancies were resolved by consensus. Publications related to the dysregulation of different types of ncRNAs, including microRNAs, lncRNAs, and circRNAs, only in patients with ovarian cancer were included. The participation of ncRNAs in epithelial-mesenchymal transformation should be assessed via methods evaluating different EMT-related proteins. To assess the quality and risk of bias for the included case-control and cohort studies, refined Newcastle-Ottawa Scale (NOS) and Quadas-2 were recruited. A bivariate meta-analysis was performed to analyze extracted data. Results A total of 37 studies with overall 42 non-coding RNAs (15 microRNA, 24 long non-coding RNAs, and 3 circular RNAs) were entered into the analysis. Overall diagnostic odds ratio for ncRNAs in lymph node metastasis, distant metastasis, TNM stage, and clinical stage were 4.19, 3.80, 6.52, and 3.97, respectively. Also, a hazard ratio of 1.39 (P = 0.32) for overall survival was observed. Bioinformatic analyses on the Pan-cancer database demonstrated a significant correlation between low expression of miRNA and high expression of lncRNAs with poor prognosis of ovarian cancer. Conclusion Based on the results, the defined panel of ncRNAs can properly predict prognostic factors related to EMT in ovarian cancer without involving potentially invasive methods.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Nazanin Salimian
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saghar Mehraban
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Bahramy
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Zafari
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Joshua Johnson
- Division of Reproductive Sciences, Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Thi HV, Ngo AD, Chu DT. Epigenetic regulation in ovarian cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:77-98. [PMID: 39179349 DOI: 10.1016/bs.ircmb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Ovarian cancer is one of the diseases that have the highest mortality rate for women, especially women over 50 years old. In the future, incidence and mortality rates are predicted to extend in countries with low HDI. Instability in the structure and function of genetic factors has long been known as a cause of cancer, including ovarian cancer. Besides understanding gene mutations, epigenetic alterations have emerged as another aspect leading to the pathogenesis of ovarian neoplasm. The development and progression of this fatal disease have been found to be associated with abnormalities of epigenetic regulation. DNA methylation, histone modification, and non-coding RNAs-based gene silencing are processes of interest in developing ovarian carcinoma and are also new targets for cancer detection or treatment.
Collapse
Affiliation(s)
- Hue Vu Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Anh-Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
5
|
Siddique R, Gupta G, Mgm J, Kumar A, Kaur H, Ariffin IA, Pramanik A, Almalki WH, Ali H, Shahwan M, Patel N, Murari K, Mishra R, Thapa R, Bhat AA. Targeting notch-related lncRNAs in cancer: Insights into molecular regulation and therapeutic potential. Pathol Res Pract 2024; 257:155282. [PMID: 38608371 DOI: 10.1016/j.prp.2024.155282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
Cancer is a group of diseases marked by unchecked cell proliferation and the ability for the disease to metastasize to different body areas. Enhancements in treatment and early detection are crucial for improved outcomes. LncRNAs are RNA molecules that encode proteins and have a length of more than 200 nucleotides. LncRNAs are crucial for chromatin architecture, gene regulation, and other cellular activities that impact both normal growth & pathological processes, even though they are unable to code for proteins. LncRNAs have emerged as significant regulators in the study of cancer biology, with a focus on their intricate function in the Notch signaling pathway. The imbalance of this pathway is often linked to a variety of malignancies. Notch signaling is essential for cellular functions like proliferation, differentiation, and death. The cellular response is shaped by these lncRNAs through their modulation of essential Notch pathway constituents such as receptors, ligands, and downstream effectors around it. Furthermore, a variety of cancer types exhibit irregular expression of Notch-related lncRNAs, underscoring their potential use as therapeutic targets and diagnostic markers. Gaining an understanding of the molecular processes behind the interaction between the Notch pathway and lncRNAs will help you better understand the intricate regulatory networks that control the development of cancer. This can open up new possibilities for individualized treatment plans and focused therapeutic interventions. The intricate relationships between lncRNAs & the Notch pathway in cancer are examined in this review.
Collapse
Affiliation(s)
- Raihan Siddique
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Johar Mgm
- Management and Science University (MSU), Shah Alam, Selangor 40100 MSU, Malaysia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand- 831001, India
| | - I A Ariffin
- Management and Science University (MSU), Shah Alam, Selangor 40100 MSU, Malaysia
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Krishna Murari
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Riya Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
6
|
Moradi Z, Kazemi M, Jamshidi-Khalifelou R, Bahramnia V, Esfandmaz F, Rahnavard R, Moradgholi B, Piri-Gharaghie T. CRISPR du-HITI an attractive approach to targeting Long Noncoding RNA HCP5 as inhibitory factor for proliferation of ovarian cancer cell. Funct Integr Genomics 2024; 24:61. [PMID: 38507114 DOI: 10.1007/s10142-024-01324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024]
Abstract
This research provides a glimmer of hope that the knockout of HCP5 leads to a therapy response to considerably prolong the life of patients with OC. RT-PCR evaluated the expression of lncRNA HCP5 in the ovarian cancer OVCAR-3 cell line. CRISPR knockout cell lines validated by western blot. Small genomic deletions at the targeted locus were induced. CCK-8 colony formation assays were used to analyze the effect of HCP5 knockout on the proliferation capacity of OVCAR-3 cells. Transwell migration and invasion assayed. Furthermore, the Sphere-formation assay isolated the most aggressive population of cancer stem cells. Bioinformatic analysis showed a significant correlation between lncRNA HCP5 up-regulation and OVCAR-3 cell proliferation. The ChIP technique assesses specific sites of interaction between transcription factors and DNA. Real-time PCR assays explored the relationship between HCP5, Hsa-miR-9-5p, CXCR4, CDH1, caspase-3, p53, bcl2 and survivin. PCR carried out amplification of the 448-bp band for sgRNA1 and sgRNA2 after the use of particular primers for HCP5. the number of breast cancer cells that moved to the bottom chamber reduced considerably after transfection with PX461-sgRNA1/2 vectors compared to the Blank control groups (P < 0.05). MTT assay designated growth curves that showed the rate of OVCAR-3 growth was significantly repressed (***P < 0.001) when compared with control OVCAR-3 cells after HCP5 knockdown. Also, the survival results of W.T cells in 24, 48 and 72 h showed 92%, 87% and 85%, respectively. This is while the cells of the CRISPR/Cas9 group in which LncRNA HCP5 was knocked out had 42% (*P < 0.05), 23%(**P < 0.01) and 14% (**P < 0.01) survival, respectively. The expression levels of caspase-3, Hsa-miR-9-5p, P53 genes in the HCP5 deletion of CRISPR/Cas9 group significantly increased than the W.T. control group; the deletion group showed a considerable reduction in HCP5 expression compared to the blank control group (3.6-fold, p < 0.01). Whereas BCL2, SURVIVIN, CXCR4, CDH1 genes expression markedly increased than in HCP5 knockout cells (5.8-fold, p < 0.05). These results indicate that CRISPR/Cas9-mediated HCP5 disruption on OVCAR-3 cell lines promotes anti-tumor biomarkers, suppressing ovarian cancer progression. Consistent with these results, HCP5 is one of the most critical lnc for the efficient proliferation and migration of OVCAR-3 cell lines.
Collapse
Affiliation(s)
- Zeinab Moradi
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mandana Kazemi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Roya Jamshidi-Khalifelou
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Vahid Bahramnia
- Department of Genetics, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Fatemeh Esfandmaz
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Reza Rahnavard
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behnoush Moradgholi
- Department of Medical Physiology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Tohid Piri-Gharaghie
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
7
|
Wang J, Zheng Q, Zhao Y, Chen S, Chen L. HMGB1 enhances the migratory and invasive abilities of A2780/DDP cells by facilitating epithelial to mesenchymal transition via GSK‑3β. Exp Ther Med 2024; 27:102. [PMID: 38356665 PMCID: PMC10865443 DOI: 10.3892/etm.2024.12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/25/2023] [Indexed: 02/16/2024] Open
Abstract
The aim of the present study was to investigate the impact and mechanism of high mobility group box 1 (HMGB1) on the regulation of cell migration and invasion in A2780/DDP cisplatin-resistant ovarian cancer cells. After transfecting small interfering (si)RNA-HMGB1 into A2780/DDP cells, Transwell migration and invasion assays were conducted to assess alterations in the cell migratory and invasive abilities. Additionally, western blotting analyses were performed to examine changes in HMGB1, phosphorylated (p)-GSK-3β, GSK-3β, E-cadherin and vimentin expression levels. The results of the present study demonstrated that the migratory and invasive abilities of A2780/DDP cells were significantly higher compared with those of A2780 cells. Additionally, the expression levels of HMGB1, p-GSK-3β and the mesenchymal phenotype marker, vimentin, in A2780/DDP cells were significantly elevated relative to the levels in A2780 cells. Conversely, the expression level of the epithelial phenotype marker, E-cadherin, was markedly decreased compared with that in A2780 cells. Following transfection of A2780/DDP cells with siRNA-HMGB1, there was a significant reduction in the rate of cell migration and invasion. Simultaneously, the expression levels of HMGB1, p-GSK-3β and vimentin were downregulated while the level of E-cadherin was upregulated. It was therefore concluded that the high expression of HMGB1 in A2780/DDP cells enhanced the cell migration and invasion abilities by facilitating epithelial to mesenchymal transition via GSK-3β.
Collapse
Affiliation(s)
- Jinhua Wang
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Qiaomei Zheng
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yanjing Zhao
- Department of Surgery, 92403 Military Hospital, Fuzhou, Fujian 350015, P.R. China
| | - Shaozhan Chen
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Lihong Chen
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
8
|
Sadeghi ES, Nematpour FS, Mohtasham N, Mohajertehran F. The oncogenic role of NOTCH1 as biomarker in oral squamous cell carcinoma and oral lichen planus. Dent Res J (Isfahan) 2023; 20:102. [PMID: 38020255 PMCID: PMC10630544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/19/2023] [Accepted: 07/03/2023] [Indexed: 12/01/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer with heterogeneous molecular pathogenesis. Oral lichen planus (OLP) is demonstrated potentially can transfer to OSCC malignant lesions. Unfortunately, there are no definitive prognostic and predictive biomarkers for the clinical management of OSCC patients. The present research is the first study that compared an oral premalignant lesion such as OLP to malignant lesions like OSCC for NOTCH1 expression levels to better understand its oncogenic or tumor suppressive role. Materials and Methods In this cross-sectional study, mRNA expression of NOTCH1 was evaluated by quantitative polymerase chain reaction in 65 tissue-embedded Paraffin-Block samples, including 32 OSCC and 33 OLP. Furthermore, we collected demographic information and pathological data, including tumor stage and grade. The association between NOTCH1 and GAPDH gene expressions was determined by Chi-squared, Spearman, and Mann-Whitney tests. A P < 0.05 was considered statistically significant for all statistical analyses. Results Comparison of OSCC and OLP groups showed a statistically significant difference between the quantitative expression of the NOTCH1 gene (P < 0.001). Qualitative gene expression was divided into low expression and high expression. Both study groups demonstrated a statistically significant gene expression difference (P < 0.001). There was a statistically significant difference between age and NOTCH1 expression in the OLP group (P = 0.036). There was no correlation between NOTCH1 expression and age, gender, tumor grade, and stage. Conclusion Since the OSCC is a malignant lesion and the OLP showed the possible nature of malignancy transformation, we can consider the NOTCH1 as a biomarker for the assessment of the tumorigenesis process with a definition of a standard threshold for potentially malignant lesions and malignant OSCC tumors.
Collapse
Affiliation(s)
| | | | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Mohajertehran
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Lampropoulou DI, Papadimitriou M, Papadimitriou C, Filippou D, Kourlaba G, Aravantinos G, Gazouli M. The Role of EMT-Related lncRNAs in Ovarian Cancer. Int J Mol Sci 2023; 24:10079. [PMID: 37373222 DOI: 10.3390/ijms241210079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest cancers worldwide; late diagnosis and drug resistance are two major factors often responsible for high morbidity and treatment failure. Epithelial-to-mesenchymal transition (EMT) is a dynamic process that has been closely linked with cancer. Long non-coding RNAs (lncRNAs) have been also associated with several cancer-related mechanisms, including EMT. We conducted a literature search in the PubMed database in order to sum up and discuss the role of lncRNAs in regulating OC-related EMT and their underlying mechanisms. Seventy (70) original research articles were identified, as of 23 April 2023. Our review concluded that the dysregulation of lncRNAs is highly associated with EMT-mediated OC progression. A comprehensive understanding of lncRNAs' mechanisms in OC will help in identifying novel and sensitive biomarkers and therapeutic targets for this malignancy.
Collapse
Affiliation(s)
| | - Marios Papadimitriou
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Papadimitriou
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Filippou
- Department of Anatomy and Surgical Anatomy, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- National Organization for Medicines (EOF), 15562 Athens, Greece
| | - Georgia Kourlaba
- Department of Nursing, University of Peloponnese, 22100 Tripoli, Greece
| | | | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
10
|
Bhal S, Kundu CN. Targeting crosstalk of signaling pathways in cancer stem cells: a promising approach for development of novel anti-cancer therapeutics. Med Oncol 2023; 40:82. [PMID: 36662310 DOI: 10.1007/s12032-022-01905-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/21/2022] [Indexed: 01/21/2023]
Abstract
Wnt, Hedgehog (Hh), and Notch signaling pathways are the evolutionarily conserved signaling pathways that regulate the embryonic development and also play crucial role in maintaining stemness properties of cancer stem cells (CSCs) and inducing epithelial-to-mesenchymal transition (EMT), metastasis, and angiogenesis. It has been highly challenging to inhibit the CSCs growth and proliferation as these are capable of evading chemotherapeutic drugs and cause cancer recurrence through multiple signaling pathways. Therefore, novel therapeutic strategies to target the key players involved in the crosstalk of these signaling pathways need to be developed. In this review, we have identified the interacting molecules of Wnt, Hh, and Notch pathways responsible for enhancing the malignant properties of CSCs. Analyzing the functions of these crosstalk molecules will help us to find an approach toward the development of new anti-cancer drugs for inhibition of CSCs growth and progression. Long non-coding RNAs (LncRNAs) play a significant role in various cellular processes, like chromatin remodeling, epigenetic modifications, transcriptional, and post-transcriptional regulations. Here, we have highlighted the research findings suggesting the involvement of LncRNAs in maintenance of the stemness properties of CSCs through modulation of the above-mentioned signaling pathways. We have also discussed about the different therapeutic approaches targeting those key players responsible for mediating the crosstalk between the pathways. Overall, this review article will surely help the cancer biologists to design novel anti-CSCs agents that will open up a new horizon in the field of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Subhasmita Bhal
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
11
|
Corral A, Alcala M, Carmen Duran-Ruiz M, Arroba AI, Ponce-Gonzalez JG, Todorčević M, Serra D, Calderon-Dominguez M, Herrero L. Role of long non-coding RNAs in adipose tissue metabolism and associated pathologies. Biochem Pharmacol 2022; 206:115305. [DOI: 10.1016/j.bcp.2022.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
12
|
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res 2022; 186:106535. [DOI: 10.1016/j.phrs.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|
13
|
Hashemi M, Hasani S, Hajimazdarany S, Mirmazloomi SR, Makvandy S, Zabihi A, Goldoost Y, Gholinia N, Kakavand A, Tavakolpournegari A, Salimimoghadam S, Nabavi N, Zarrabi A, Taheriazam A, Entezari M, Hushmandi K. Non-coding RNAs targeting notch signaling pathway in cancer: From proliferation to cancer therapy resistance. Int J Biol Macromol 2022; 222:1151-1167. [DOI: 10.1016/j.ijbiomac.2022.09.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
|
14
|
Xiao L, Huang Y, Li Q, Wang S, Ma L, Fan Z, Tang Z, Yuan X, Liu B. Identification of a prognostic classifier based on EMT-related lncRNAs and the function of LINC01138 in tumor progression for lung adenocarcinoma. Front Mol Biosci 2022; 9:976878. [PMID: 36060239 PMCID: PMC9428519 DOI: 10.3389/fmolb.2022.976878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose: This study aimed to develop a prognostic indicator based on epithelial-mesenchymal transition (EMT)-related long noncoding RNAs (lncRNAs) and explore the function of EMT-related lncRNAs in malignant progression in lung adenocarcinoma (LUAD). Materials and methods: A LUAD dataset was acquired from The Cancer Genome Atlas (TCGA) to identify prognostic EMT-related lncRNAs via differential expression analysis and univariate Cox regression analysis. Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis was utilized for variable selection and model construction. The EMT-related prognostic index (ERPI) was calculated according to the model and served as a classifier to divide LUAD individuals into high-ERPI and low-ERPI groups. A nomogram incorporating ERPI and clinicopathological variables was constructed. TCGA-LUAD, GSE50081, and GSE31210 were used to test the predictive capacity of the ERPI and nomogram. The characteristics of the tumor microenvironment (TME) were evaluated via the ESTIMATE, TIMER, and ssGSEA algorithms. Gene set variation analysis (GSVA) and ssGSEA were used to annotate the functions of the high-ERPI and low-ERPI groups. CCK8, transwell assay, wound-healing assay, and clone formation assay were conducted to clarify the biological functions of prognostic EMT-related lncRNAs. Results: Ninety-seven differentially expressed EMT-related lncRNAs were identified, 15 of which were related to overall survival (OS). A prognostic signature was constructed based on 14 prognostic EMT-related lncRNAs to calculate the ERPI of each patient, and the predictive ability of ERPI was verified in TCGA, GSE50081, and GSE31210. The low-ERPI group survived longer and had a lower percentage of patients in advanced stage than the high-ERPI group. The nomogram had the highest predictive accuracy, followed by ERPI and stage. Patients with low ERPI had higher infiltration degree of immune cells and stronger immune responses than those with high ERPI. A series of in vitro experiments demonstrated that knockdown of LINC01138 dampened variability, proliferation, and motility of A549 and H460 cells. Conclusion: Our study developed a prognostic classifier with robust prognostic performance and clarified the biological functions of LINC01138 in LUAD, aiding in making individual treatments for patients with LUAD and dissecting the mechanism of oncogenesis.
Collapse
Affiliation(s)
- Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijie Fan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Tang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Tang, ; Xianglin Yuan, ; Bo Liu,
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Tang, ; Xianglin Yuan, ; Bo Liu,
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Tang, ; Xianglin Yuan, ; Bo Liu,
| |
Collapse
|
15
|
Non-coding RNAs in EMT regulation: Association with tumor progression and therapy response. Eur J Pharmacol 2022; 932:175212. [DOI: 10.1016/j.ejphar.2022.175212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022]
|
16
|
LncRNA MNX1-AS1: A novel oncogenic propellant in cancers. Biomed Pharmacother 2022; 149:112801. [PMID: 35290890 DOI: 10.1016/j.biopha.2022.112801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
To date, recent studies have shown that long non-coding RNAs (lncRNAs) are key players in gene regulation processes involved in cancer pathogenesis. In general, Motor neuron and pancreas homeobox 1-antisense RNA1 (MNX1-AS1) is highly expressed in all cancers as reported so far and exerts oncogenic effects through different mechanisms. In this review, we comprehensively summarize the detailed mechanisms of potential functions of MNX1-AS1 in different cancer types as well as the latest knowledge highlighting the potential of MNX1-AS1 as a therapeutic target for cancer. Aberrant expression of MNX1-AS1 closely correlates with clinicopathological parameters. such as lymphatic metastasis, tumor size, tumor stage, OS and DFS. Thus, MNX1-AS1 can be used as a diagnostic and prognostic biomarker or even a therapeutic prognostic target. This article reviews its function, molecular mechanism and clinical prognosis in various malignancies.
Collapse
|