1
|
Ren Y, Chau CV, Chen T, Chen J, Hu Y, Lu Z, Brewster JT, Arambula JF, Gao R, Sedgwick AC, Sessler JL, Liu C. Real-time visualization of epileptic seizures using photoacoustic imaging with a peroxynitrite-responsive manganese(ii) texaphyrin. Chem Sci 2025; 16:6862-6871. [PMID: 40110520 PMCID: PMC11917445 DOI: 10.1039/d5sc00568j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Real-time visualization and tracking of epileptic seizures are important for studying epilepsy pathogenesis and treating epilepsy; however, the requisite sensing is extremely challenging, primarily due to the transient and intricate nature of neural activity associated with epilepsy. The onset of epilepsy is closely correlated with increases in peroxynitrite (ONOO-) levels, a reactive nitrogen species that can serve as a biomarker for epilepsy. However, the fleeting biological half-life and high reactivity of ONOO- has historically impeded its direct visualization within the epileptic brain. This study explores the efficacy of manganese(ii) texaphyrin (MMn), a water-soluble and stable expanded porphyrin, in dynamically sensing ONOO- and providing real-time tracking of epileptic seizures using a custom-built photoacoustic imaging (PAI) setup. UV-vis spectral analyses established the preferential sensitivity of MMn to ONOO- over other reactive oxygen species (ROS), as well as its effectiveness through multiple usage cycles when rejuvenated via reaction with suitable reducing agents. This selectivity was recapitulated in vitro as determined through PAI experiments. In vivo application of this technique revealed that MMn administered intravenously crosses the blood-brain barrier (BBB) in a pentylenetetrazole (PTZ)-induced epilepsy mouse model and provides an observable 14.1 ± 3.7% reduction in photoacoustic (PA) signal intensity within the hippocampal region during epileptic seizures. Multiple decreasing-increasing cycles of PA signal intensity could be detected in the hippocampal region in this model; the observed effect thus mirrors closely the course of epileptic seizures inferred from mouse tail curling. Similar cyclical patterns were also seen in the motor cortex, a finding consistent with the extensive spread of epileptic activity throughout the brain. To the best of our knowledge, the present investigation represents the first real-time visualization and tracking of epileptic seizures using a peroxynitrite-specific sensing probe in combination with photoacoustic imaging (PAI). This approach enables deeper brain imaging while simultaneously capturing dynamic ONOO- fluctuations, offering biochemical insights into epilepsy pathogenesis. By integrating deep-tissue imaging with neurochemical monitoring, this method lays the foundation for potential advances in epilepsy management and treatment.
Collapse
Affiliation(s)
- Yaguang Ren
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Calvin V Chau
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712-1224 USA
| | - Tao Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
- School of Optics and Photonics, Beijing Institute of Technology Beijing 100089 China
| | - Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Yu Hu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science Shenzhen 518055 China
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science Shenzhen 518055 China
| | - James T Brewster
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712-1224 USA
| | | | - Rongkang Gao
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Adam C Sedgwick
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712-1224 USA
| | - Chengbo Liu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
2
|
Tűz B, Correia I, Martinho PN. A critical analysis of the potential of iron heterobimetallic complexes in anticancer research. J Inorg Biochem 2025; 264:112813. [PMID: 39794011 DOI: 10.1016/j.jinorgbio.2024.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
Due to their diverse chemical properties and high ability to interact with biological molecules and cellular processes, transition metal-based compounds have emerged as promising candidates for cancer therapy. Iron complexes are among them, however, there is a gap in the comprehensive analysis of heterometallic iron complexes in the anticancer field. This review aims to fill this gap by summarizing recent progress in the study of Fe(II) and Fe(III) heterobimetallic complexes for anticancer applications and to gather important insights and future perspectives, with special emphasis on their theranostic capabilities. Works published between 2014 and 2024 were considered in this critical survey, that covers a range of complex types, including ferrocene in bimetallic complexes with Pt, Pd, Au, Ag, Ru, Rh, Ir, Cu, Re, Sn and Co; organometallic Fe-complexes with Ru and Ag; photoactive metal complexes with Pt and Co; and magnetic resonance imaging contrast agents with Gd and Mn. Studies conducted to determine the modes of action are highlighted and suggest the involvement of the metal species in reactive oxygen species generation within cells, the impact on apoptosis and cell cycle arrest, and many others. By pursuing interdisciplinary research, innovative theranostic platforms with enhanced efficacy, specificity, and clinical relevance can be developed for cancer management.
Collapse
Affiliation(s)
- Boglárka Tűz
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Paulo N Martinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Cirino ME, Teixeira TR, Silva AMH, Borges ACC, Fukui-Silva L, Wagner LG, Fernandes C, McCann M, Santos ALS, de Moraes J. Anthelmintic activity of 1,10-phenanthroline-5,6-dione-based metallodrugs. Sci Rep 2025; 15:4699. [PMID: 39922838 PMCID: PMC11807182 DOI: 10.1038/s41598-025-88484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025] Open
Abstract
Parasitic worm infections impose a significant public health burden, affecting over 2 billion people, particularly in low-income regions. The limited efficacy of current treatments highlights the urgent need for new anthelmintic agents. This study investigates the potential antiparasitic activity of 1,10-phenanthroline-5,6-dione (phendione) and its metal complexes, [Cu(phendione)3](ClO4)2.8H2O and [Ag(phendione)2](ClO4), against Schistosoma mansoni, the causative agent of intestinal schistosomiasis, and Angiostrongylus cantonensis, responsible for eosinophilic meningitis in humans. Additionally, the compounds were tested on Caenorhabditis elegans, a model organism for drug discovery. All compounds exhibited strong antiparasitic activity, with Cu-phendione showing the greatest potency (EC50 = 2.3 µM for S. mansoni and 6.4 µM for A. cantonensis). Ag-phendione also demonstrated significant activity, achieving EC₅₀ values of 6.5 µM against S. mansoni and 12.7 µM against A. cantonensis. The lethal dose (LD50) values in C. elegans were over 40 times higher, indicating selective antiparasitic effects. Cytotoxicity assays using Vero cells revealed a low toxicity profile and a high selectivity index. Given the promising biological properties of phendione and its metal complexes, these findings contribute to the growing body of research seeking to address the urgent need for new anthelmintic therapies.
Collapse
Affiliation(s)
- Maria E Cirino
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023‑070, Brazil
| | - Thainá R Teixeira
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023‑070, Brazil
| | - Alessandro M H Silva
- Núcleo de Pesquisas em Doenças Negligenciadas, Instituto Científico e Tecnológico, Universidade Brasil, São Paulo, SP, 08230-030, Brazil
| | - Ana C C Borges
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023‑070, Brazil
| | - Lucas Fukui-Silva
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023‑070, Brazil
| | - Luis G Wagner
- Departamento de Química, Universidade Federal de Santa Catarina, Santa Catarina, SC, 88040- 900, Brazil
| | - Christiane Fernandes
- Departamento de Química, Universidade Federal de Santa Catarina, Santa Catarina, SC, 88040- 900, Brazil
| | - Malachy McCann
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, W23 F2H6, Ireland
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023‑070, Brazil.
- Núcleo de Pesquisas em Doenças Negligenciadas, Instituto Científico e Tecnológico, Universidade Brasil, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
4
|
Bednarska-Szczepaniak K, Hałagan K, Szwed M, Przelazły E, Leśnikowski ZJ. Quantum Chemical and Biological Insights into Redox Activity of Metallacarborane Complexes in Cancer Cells. J Chem Inf Model 2024; 64:6521-6541. [PMID: 39140958 DOI: 10.1021/acs.jcim.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A relationship between the electronic properties of metal ions in metallacarboranes and their ability to modulate mitochondrial oxidase activity and membrane hyperpolarization in cancer cells was demonstrated. Quantum chemistry methods, including DFT and molecular dynamics simulations, were used to understand the oxidized and reduced forms of metallacarboranes and their intramolecular rotatory behavior. According to the low-spin assumption for metal ions, the intramolecular oscillations of cluster ligands in metallacarboranes are significantly influenced by the type of metal and correspond to the cellular uptake of these complexes in vitro. In particular, the low-spin iron compound may be a new xenogeneic booster of redox homeostasis in cancer cells resistant to cisplatin, which induces metabolic 'exhaustion' of cancer cells and their death.
Collapse
Affiliation(s)
- Katarzyna Bednarska-Szczepaniak
- Laboratory of Medicinal Chemistry, Polish Academy of Sciences, Institute of Medical Biology, 106 Lodowa, 92-232 Lodz, Poland
| | - Krzysztof Hałagan
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Marzena Szwed
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Institute of Biophysics, Pomorska 141/143, 90-236 Lodz, Poland
| | - Ewelina Przelazły
- Laboratory of Medicinal Chemistry, Polish Academy of Sciences, Institute of Medical Biology, 106 Lodowa, 92-232 Lodz, Poland
| | - Zbigniew J Leśnikowski
- Laboratory of Medicinal Chemistry, Polish Academy of Sciences, Institute of Medical Biology, 106 Lodowa, 92-232 Lodz, Poland
| |
Collapse
|
5
|
Ferrari G, Lopez-Martinez I, Wanek T, Kuntner C, Montagner D. Recent Advances on Pt-Based Compounds for Theranostic Applications. Molecules 2024; 29:3453. [PMID: 39124859 PMCID: PMC11313463 DOI: 10.3390/molecules29153453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Since the discovery of cisplatin's antitumoral activity and its approval as an anticancer drug, significant efforts have been made to enhance its physiological stability and anticancer efficacy and to reduce its side effects. With the rapid development of targeted and personalized therapies, and the promising theranostic approach, platinum drugs have found new opportunities in more sophisticated systems. Theranostic agents combine diagnostic and therapeutic moieties in one scaffold, enabling simultaneous disease monitoring, therapy delivery, response tracking, and treatment efficacy evaluation. In these systems, the platinum core serves as the therapeutic agent, while the functionalized ligand provides diagnostic tools using various imaging techniques. This review aims to highlight the significant role of platinum-based complexes in theranostic applications, and, to the best of our knowledge, this is the first focused contribution on this type of platinum compounds. This review presents a brief introduction to the development of platinum chemotherapeutic drugs, their limitations, and resistance mechanisms. It then describes recent advancements in integrating platinum complexes with diagnostic agents for both tumor treatment and monitoring. The main body is organized into three categories based on imaging techniques: fluorescence, positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). Finally, this review outlines promising strategies and future perspectives in this evolving field.
Collapse
Affiliation(s)
- Giulia Ferrari
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Ines Lopez-Martinez
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (C.K.)
| | - Thomas Wanek
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (C.K.)
| | - Claudia Kuntner
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (C.K.)
- Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria
| | - Diego Montagner
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Ireland
- Kathleen Londsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| |
Collapse
|
6
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
7
|
Shahlaei M, Asl SM, Derakhshani A, Kurek L, Karges J, Macgregor R, Saeidifar M, Kostova I, Saboury AA. Platinum-based drugs in cancer treatment: Expanding horizons and overcoming resistance. J Mol Struct 2024; 1301:137366. [DOI: 10.1016/j.molstruc.2023.137366] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Ragone F, Yañuk JG, Cabrerizo FM, Prieto E, Wolcan E, Ruiz GT. DNA structural changes (photo)induced by tricarbonyl (pterin)rhenium(I) complex. J Inorg Biochem 2024; 252:112471. [PMID: 38181612 DOI: 10.1016/j.jinorgbio.2023.112471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024]
Abstract
We report on interactions of different types of DNA molecules including double-stranded and plasmid DNA as well as polynucleotides (poly[dGdC]2 and poly[dAdT]2) with fac-[ReI(CO)3(pterin)(H2O)] (or Reptr) complex. The interaction was characterized spectroscopically and changes in the plasmid structure were verified by both electrophoresis and AFM microscopy. For comparative reasons, two others related tricarbonyl rhenium(I) complexes, fac-[(4,4'-bpy)ReI(CO)3(dppz)]+ (or Redppz) and fac-[(CF3SO3)ReI(CO)3(2,2'-bpy)] (or Rebpy) were also studied to further explore the influence of the different co-ligands on the interaction and DNA (photo)damage. Data reported herein suggests that DNA molecules can be structurally modified either by direct interaction with Re(I) complexes in their ground states inducing DNA relaxation, and/or through photoinduced cross-linking processes. The chemical nature of the co-ligands modulates the extent of the damage observed.
Collapse
Affiliation(s)
- F Ragone
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diag. 113 y 64, Sucursal 4, C.C. 16, (B1906ZAA) La Plata, Argentina
| | - J G Yañuk
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina
| | - F M Cabrerizo
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina.
| | - E Prieto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diag. 113 y 64, Sucursal 4, C.C. 16, (B1906ZAA) La Plata, Argentina; ICS-UNAJ, Avenida Calchaqui 6200 Florencio Varela, Argentina
| | - E Wolcan
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diag. 113 y 64, Sucursal 4, C.C. 16, (B1906ZAA) La Plata, Argentina
| | - G T Ruiz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diag. 113 y 64, Sucursal 4, C.C. 16, (B1906ZAA) La Plata, Argentina.
| |
Collapse
|
9
|
Palma E, Santos JF, Fernandes C, Paulo A. DNA-Targeted Complexes of Tc and Re for Biomedical Applications. Chemistry 2024; 30:e202303591. [PMID: 38038361 DOI: 10.1002/chem.202303591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
Due to their favorable chemical features, Re and Tc complexes have been widely used for the development of new therapeutic agents and imaging probes to solve problems of biomedical relevance. This review provides an update of the most relevant research efforts towards the development of novel cancer theranostic agents using Re and Tc-based compounds interacting with specific DNA structures. This includes a variety of homometallic complexes, namely those containing M(CO)3 (M=Re, Tc) moieties, that exhibit different modes of interaction with DNA, such as covalent binding, intercalation, groove binding or G-quadruplex DNA binding. Additionally, heterometallic complexes, designed to potentiate synergistic effects of different metal centers to improve DNA-targeting, cytotoxicity and fluorescence properties, are also reviewed. Particular attention is also given to 99m Tc- and 188 Re-labeled oligonucleotides that have been widely explored to develop imaging and therapeutic radiopharmaceuticals through the in vivo hybridization with a specific complementary DNA or RNA target sequence to provide useful molecular tools in precision medicine for cancer diagnosis and treatment. Finally, the need for further improvement of DNA-targeted Re and Tc-based compounds as potential therapeutic and diagnostic agents is highlighted, and future directions are discussed.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Joana F Santos
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Célia Fernandes
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - António Paulo
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
10
|
Bai Y, Aodeng G, Ga L, Hai W, Ai J. Research Progress of Metal Anticancer Drugs. Pharmaceutics 2023; 15:2750. [PMID: 38140091 PMCID: PMC10747151 DOI: 10.3390/pharmaceutics15122750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer treatments, including traditional chemotherapy, have failed to cure human malignancies. The main reasons for the failure of these treatments are the inevitable drug resistance and serious side effects. In clinical treatment, only 5 percent of the 50 percent of cancer patients who are able to receive conventional chemotherapy survive. Because of these factors, being able to develop a drug and treatment that can target only cancer cells without affecting normal cells remains a big challenge. Since the special properties of cisplatin in the treatment of malignant tumors were accidentally discovered in the last century, metal anticancer drugs have become a research hotspot. Metal anticancer drugs have unique pharmaceutical properties, such as ruthenium metal drugs with their high selectivity, low toxicity, easy absorption by tumor tissue, excretion, and so on. In recent years, efficient and low-toxicity metal antitumor complexes have been synthesized. In this paper, the scientific literature on platinum (Pt), ruthenium (Ru), iridium (Ir), gold (Au), and other anticancer complexes was reviewed by referring to a large amount of relevant literature at home and abroad.
Collapse
Affiliation(s)
- Yun Bai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| | - Gerile Aodeng
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, China;
| | - Wenfeng Hai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jun Ai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| |
Collapse
|
11
|
Das S, Joshi P, Patra M. Necrosis-Inducing High-Valent Oxo-Rhenium(V) Complexes with Potent Antitumor Activity: Synthesis, Aquation Chemistry, Cisplatin Cross-Resistance Profile, and Mechanism of Action. Inorg Chem 2023; 62:19720-19733. [PMID: 37974075 DOI: 10.1021/acs.inorgchem.3c03110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Chemotherapy with the cytotoxic platinum (Pt) drugs cisplatin, carboplatin, and oxaliplatin is the mainstay of anticancer therapy in the clinic. The antitumor activity of Pt drugs originates from their ability to induce apoptosis via covalent adduct formation with nuclear DNA. While the phenomenal clinical success is highly encouraging, resistance and adverse toxic side effects limit the wider applicability of Pt drugs. To circumvent these limitations, we embarked on an effort to explore the antitumor potential of a new class of oxo-rhenium(V) complexes of the type [(N∧N)(EG)Re(O)Cl] (where EG = ethylene glycolate and N∧N = bipyridine, Bpy (1); phenanthroline, Phen (2); 3,4,7,8-tetramethyl-phenanthroline, Me4Phen (3)). Investigation of speciation chemistry in aqueous media revealed the formation of [(N∧N)Re(O)(OH)3] as the biologically active species. Complex 3 was found to be the most potent among the three, with IC50 values ranging from 0.1 to 0.4 μM against a panel of cancer cells, which is 5-70-fold lower when compared with cisplatin. The higher potency of 3 is attributed to its higher lipophilicity, which enhanced cellular uptake. Importantly, complex 3 efficiently overcomes cisplatin resistance in ovarian, lung, and prostate cancer cells. In addition to reporting the aquation chemistry and identifying the active species in aqueous media, we performed in-depth in vitro mechanistic studies, which revealed that complex 3 preferentially accumulates in mitochondria, depletes mitochondrial membrane potential, and upregulates intracellular reactive oxygen species (ROS), leading to ER stress-mediated necrosis-mediated cancer cell death.
Collapse
Affiliation(s)
- Shubhangi Das
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005 Mumbai, India
| | - Pulkit Joshi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005 Mumbai, India
| | - Malay Patra
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005 Mumbai, India
| |
Collapse
|
12
|
O’Shaughnessy M, Sheils O, Baird AM. The Lung Microbiome in COPD and Lung Cancer: Exploring the Potential of Metal-Based Drugs. Int J Mol Sci 2023; 24:12296. [PMID: 37569672 PMCID: PMC10419288 DOI: 10.3390/ijms241512296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer 17 are two of the most prevalent and debilitating respiratory diseases worldwide, both associated with high morbidity and mortality rates. As major global health concerns, they impose a substantial burden on patients, healthcare systems, and society at large. Despite their distinct aetiologies, lung cancer and COPD share common risk factors, clinical features, and pathological pathways, which have spurred increasing research interest in their co-occurrence. One area of particular interest is the role of the lung microbiome in the development and progression of these diseases, including the transition from COPD to lung cancer. Exploring novel therapeutic strategies, such as metal-based drugs, offers a potential avenue for targeting the microbiome in these diseases to improve patient outcomes. This review aims to provide an overview of the current understanding of the lung microbiome, with a particular emphasis on COPD and lung cancer, and to discuss the potential of metal-based drugs as a therapeutic strategy for these conditions, specifically concerning targeting the microbiome.
Collapse
Affiliation(s)
- Megan O’Shaughnessy
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, St. James’s Hospital, D08 RX0X Dublin, Ireland
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
| |
Collapse
|
13
|
Mertens RT, Gukathasan S, Arojojoye AS, Olelewe C, Awuah SG. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem Rev 2023; 123:6612-6667. [PMID: 37071737 PMCID: PMC10317554 DOI: 10.1021/acs.chemrev.2c00649] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.
Collapse
Affiliation(s)
- R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Adedamola S Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- University of Kentucky Markey Cancer Center, Lexington, Kentucky 40536, United States
| |
Collapse
|
14
|
Abdolmaleki S, Panjehpour A, Aliabadi A, Khaksar S, Motieiyan E, Marabello D, Faraji MH, Beihaghi M. Cytotoxicity and mechanism of action of metal complexes: An overview. Toxicology 2023; 492:153516. [PMID: 37087063 DOI: 10.1016/j.tox.2023.153516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
After the discovery of cisplatin, many metal compounds were investigated for the therapy of diseases, especially cancer. The high therapeutic potential of metal-based compounds is related to the special properties of these compounds, such as their redox activity and ability to target vital biological sites. The overproduction of ROS and the consequent destruction of the membrane potential of mitochondria and/or the DNA helix is one of the known pathways leading to the induction of apoptosis by metal complexes. The apoptosis process can occur via the death receptor pathway and/or the mitochondrial pathway. The expression of Bcl2 proteins and the caspase family play critical roles in these pathways. In addition to apoptosis, autophagy is another process that regulates the suppression or promotion of various cancers through a dual action. On the other hand, the ability to interact with DNA is an important property found in several metal complexes with potent antiproliferative effects against cancer cells. These interactions were classified into two important categories: covalent/coordinated or subtle, and non-coordinated interactions. The anticancer activity of metal complexes is sometimes achieved by the simultaneous combination of several mechanisms. In this review, the anticancer effect of metal complexes is mechanistically discussed by different pathways, and some effective agents on their antiproliferative properties are explained.
Collapse
Affiliation(s)
- Sara Abdolmaleki
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Akram Panjehpour
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samad Khaksar
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Elham Motieiyan
- Department of Chemistry, Payame Noor University, P. O. BOX 19395-4697, Tehran, Iran
| | - Domenica Marabello
- Dipartimento di Chimica, University of Torino Via P. Giuria 7, 10125 Torino, Italy; Interdepartmental Centre for Crystallography, University of Torino, Italy
| | - Mohammad Hossein Faraji
- Physiology Division, Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Maria Beihaghi
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia; Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| |
Collapse
|
15
|
Arbia Y, Abtouche S, Dahmane M, Brahimi M. New Au(III)- and Fe(III)-based complexes of bio-pharmacological interest: DFT and in silico studies. Theor Chem Acc 2023; 142:4. [DOI: 10.1007/s00214-022-02940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 12/26/2022]
|