1
|
Identification of strong candidate genes for backfat and intramuscular fatty acid composition in three crosses based on the Iberian pig. Sci Rep 2020; 10:13962. [PMID: 32811870 PMCID: PMC7435270 DOI: 10.1038/s41598-020-70894-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Meat quality has an important genetic component and can be modified by the fatty acid (FA) composition and the amount of fat contained in adipose tissue and muscle. The present study aimed to find genomic regions associated with the FA composition in backfat and muscle (longissimus dorsi) in 439 pigs with three different genetic backgrounds but having the Iberian breed in common. Genome-wide association studies (GWAS) were performed between 38,424 single-nucleotide polymorphisms (SNPs) covering the pig genome and 60 phenotypic traits related to backfat and muscle FA composition. Nine significant associated regions were found in backfat on the Sus scrofa chromosomes (SSC): SSC1, SSC2, SSC4, SSC6, SSC8, SSC10, SSC12, and SSC16. For the intramuscular fat, six significant associated regions were identified on SSC4, SSC13, SSC14, and SSC17. A total of 52 candidate genes were proposed to explain the variation in backfat and muscle FA composition traits. GWAS were also reanalysed including SNPs on five candidate genes (ELOVL6, ELOVL7, FADS2, FASN, and SCD). Regions and molecular markers described in our study may be useful for meat quality selection of commercial pig breeds, although several polymorphisms were breed-specific, and further analysis would be needed to evaluate possible causal mutations.
Collapse
|
2
|
Shahid MS, Wu Y, Xiao Z, Raza T, Dong X, Yuan J. Duration of the flaxseed diet promotes deposition of n-3 fatty acids in the meat and skin of Peking ducks. Food Nutr Res 2019; 63:3590. [PMID: 31839790 PMCID: PMC6901031 DOI: 10.29219/fnr.v63.3590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFA), particularly n-3, have beneficial effects on human health, and for this reason foodstuffs with increased content of n-3 PUFA are now very common and widely available. DESIGN This study was conducted to investigate the effect of the duration of a flaxseed diet on Peking duck's growth performance, antioxidant status, gene expression, and fatty acid profile of the meat. A total of 792 12-day-old white Peking ducks were divided into four groups. In the control group, animals were provided with a basal diet. In the three experimental groups, animals were fed a 10% flax seed diet with vitamin E at 13, 23, and 33 days of age for 30, 20, and 10 days, respectively. RESULTS The growth performance of the ducks decreased with flaxseed diet's duration. Both body weight and body weight gain decreased linearly while Feed conversion ratios (FCR) increased in the group of ducks fed flaxseed compared to control ducks. Serum triglycerides (TG), very low density lipoprotein (VLDL), low density lipoprotein cholesterol (LDL-C), and aspartate aminotransferase (AST) linearly decreased while high density lipoprotein cholesterol (HDL-C) and lipopolysaccharide (LPS) levels increased by feeding flaxseed up to 30 days. The expression of lipin-1 gene (LPIN-1) and fatty acid desaturase 2 (FADS2) linearly increased in ducks fed flaxseed for 30 days. Linolenic acid (n-3) and its long-chain metabolites like eicosatetraenoic acid (ETA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and total n-3 fatty acids (FA) linearly increased while the ratio of n-6 to n-3 was reduced with increased duration of flaxseed supplementation. CONCLUSION Overall, we found that increasing the duration of flaxseed diet with vitamin E for more than 10 days had a mild adverse effect on duck's growth performance but enrichedits meat with long-chain PUFA and decreased the n-6 to n-3 ratio, providing quality meat for health-conscious consumers. A period of 20 days is good for producing n-3 enriched Peking duck meat and skin.
Collapse
Affiliation(s)
- Muhammad Suhaib Shahid
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuqin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhibin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tausif Raza
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoyu Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Effect ofα-linolenic acid and DHA intake on lipogenesis and gene expression involved in fatty acid metabolism in growing-finishing pigs. Br J Nutr 2016; 116:7-18. [DOI: 10.1017/s0007114516001392] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractThe regulation of lipogenesis mechanisms related to consumption ofn-3 PUFA is poorly understood. The aim of the present study was to find out whetherα-linolenic acid (ALA) or DHA uptake can have an effect on activities and gene expressions of enzymes involved in lipid metabolism in the liver, subcutaneous adipose tissue andlongissimus dorsi(LD) muscle of growing–finishing pigs. Six groups of ten pigs received one of six experimental diets supplemented with rapeseed oil in the control diet, extruded linseed, microalgae or a mixture of both to implement different levels of ALA and DHA with the same content in totaln-3. Results were analysed for linear and quadratic effects of DHA intake. The results showed that activities of malic enzyme (ME) and fatty acid synthase (FAS) decreased linearly in the liver with dietary DHA. Although the expression of the genes of these enzymes and their activities were poorly correlated,MEandFASexpressions also decreased linearly with DHA intake. The intake of DHA down-regulates the expressions of other genes involved in fatty acid (FA) metabolism in some tissues of pigs, such asfatty acid desaturase 2andsterol-regulatory element binding transcription factor 1in the liver and2,4-dienoyl CoA reductase 2in the LD muscle. FA oxidation in the LD muscle and FA synthesis decreased in the liver with increasing amount of dietary DHA, whereas a retroconversion of DHA into EPA seems to be set up in this last tissue.
Collapse
|
4
|
Cheng Z, Abayasekara DRE, Elmes M, Kirkup S, Wathes DC. Effect of oleic acid supplementation on prostaglandin production in maternal endometrial and fetal allantochorion cells isolated from late gestation ewes. Placenta 2015; 36:1011-7. [PMID: 26242710 DOI: 10.1016/j.placenta.2015.07.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Elevated circulating non-esterified fatty acids including oleic acid (OA) are associated with many pregnancy related complications. Prostaglandins (PGs) play crucial roles during parturition. We investigated the effect of OA supplementation on PG production using an in vitro model of ovine placenta. METHODS Maternal endometrium (ME) and fetal allantochorion (FC) were collected in late pregnancy (day 135). Confluent cells were cultured in serum-free medium supplemented with 0, 20 or 100 μM OA and challenged with control medium, oxytocin (OT, 250 nM), lipopolysaccharide (LPS, 0.1 μg/ml) or dexamethasone (DEX, 5 μM). Spent medium was harvested at 2 and 24 h after challenge for quantifying PGs. RESULTS In ME cells OA increased PGE2 production moderately but attenuated PGF2α production leading to a doubling of the PGE2:PGF2α ratio (E:F) (P < 0.01). Without OA, both OT and LPS stimulated PG production for about 3-fold (P < 0.01) without changing the E:F ratio. In the ME cells challenged with OT, OA decreased both PGE2 and PGF2α production by up to 70% (P < 0.01) whereas in LPS treated cells OA increased the E:F ratio. In FC cells PGE2 production at 2 h was stimulated by 100 μM OA (P < 0.05). In these cells LPS caused a 3-fold increase in PGE2 (P < 0.01), an effect which was completely inhibited by DEX. DISCUSSION OA supplementation favours basal PGE2 production in both ME and FC. In ME OA increased E:F ratios and antagonized the stimulatory effect of OT on PG production. This suggests that raised circulating OA may affect both the initiation and progression of parturition.
Collapse
Affiliation(s)
- Z Cheng
- Department of Production and Population Health, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK.
| | - D R E Abayasekara
- Department of Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - M Elmes
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - S Kirkup
- Department of Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - D C Wathes
- Department of Production and Population Health, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK
| |
Collapse
|
5
|
Rioux V, Choque B, Ezanno H, Duby C, Catheline D, Legrand P. Influence of the cis-9, cis-12 and cis-15 double bond position in octadecenoic acid (18:1) isomers on the rat FADS2-catalyzed Δ6-desaturation. Chem Phys Lipids 2015; 187:10-9. [DOI: 10.1016/j.chemphyslip.2015.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/15/2015] [Indexed: 11/30/2022]
|
6
|
Cooking with soyabean oil increases whole-blood α-linolenic acid in school-aged children: results from a randomized trial. Public Health Nutr 2015; 18:3420-8. [PMID: 25805397 DOI: 10.1017/s1368980015000762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Supply of essential n-3 PUFA is limited worldwide. While fish-oil supplementation effectively improves n-3 PUFA status, it may not be a sustainable intervention. The use of α-linolenic acid (ALA)-rich cooking oils in the household may be a suitable alternative but its effect on PUFA status is unclear. We aimed to compare the effect of providing families with soyabean oil, an ALA-rich cooking oil, v. sunflower oil on whole-blood PUFA levels of children aged 11-18 years. DESIGN In a randomized, masked, parallel trial, we assigned families to receive a one-month supply of either soyabean or sunflower oil. Fatty acid concentrations were quantified in whole-blood samples obtained from the children before and at the end of the intervention. Changes in fatty acids were compared between treatment arms with use of linear regression for repeated measures. SUBJECTS Sixty low- and middle-income families. SETTING Bogotá, Colombia. RESULTS Soyabean oil significantly increased ALA concentrations by 0.05 percentage points of total serum fatty acids whereas sunflower oil decreased them by 0.12 percentage points (soyabean v. sunflower oil effect=0.17; 95% CI 0.11, 0.24). Concentrations of both n-3 and n-6 very-long-chain PUFA, including docosapentaenoic acid, DHA, dihomo-γ-linolenic acid and arachidonic acid, increased significantly in both intervention arms. Levels of oleic acid and palmitic acid decreased, irrespective of oil assignment. Total energy or energy intake from saturated fat did not change. CONCLUSIONS Replacing cooking oils at the household level is an effective intervention to improve essential PUFA status of children.
Collapse
|
7
|
Mihály J, Marosvölgyi T, Szegedi A, Köröskényi K, Lucas R, Törőcsik D, Garcia AL, Decsi T, Rühl R. Increased FADS2-Derived n-6 PUFAs and Reduced n-3 PUFAs in Plasma of Atopic Dermatitis Patients. Skin Pharmacol Physiol 2014; 27:242-8. [DOI: 10.1159/000358290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 01/02/2014] [Indexed: 11/19/2022]
Abstract
Fatty acid concentrations, in particular n-3 and n-6 polyunsaturated fatty acids (PUFAs), have been described to be dysregulated in atopic dermatitis (AD) patients. The role of genetic polymorphisms of fatty acid enzymes in AD is controversial. We determined in a Hungarian cohort of healthy volunteers (n = 20) and AD patients (n = 20) triglyceride-, sterol- and phospholipid-bound fatty acids in the plasma, mRNA expression of fatty acid desaturase 2 (FADS2) and stearoyl-coenzyme A desaturase 1 in peripheral blood mononuclear cells (PBMCs) and FADS2 concentrations in plasma. We observed higher levels of monounsaturated fatty acids, 16:1 versus 16:0 ratios in phospholipids, triglycerides and sterol esters in patients compared to healthy subjects. In addition higher levels of the FADS2-derived n-6 PUFAs γ-linolenic acid and dihomo-γ-linolenic acid were observed in PBMCs of patients as well as lower levels of n-3 PUFAs. We conclude that the increased expression of FADS2 in PBMCs, as a representative tissue accessible from human blood of AD patients, might be responsible for higher levels of FADS2-derived n-6 PUFAs and lower n-3 PUFA levels in patients.
Collapse
|
8
|
Sansone A, Melchiorre M, Chatgilialoglu C, Ferreri C. Hexadecenoic fatty acid isomers: a chemical biology approach for human plasma biomarker development. Chem Res Toxicol 2013; 26:1703-9. [PMID: 24083821 DOI: 10.1021/tx400287u] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hexadecenoic fatty acids are monounsaturated lipid components, which are interesting targets of plasma lipidomic studies and biomarker development. The main positional isomers, palmitoleic (9-cis-16:1) and sapienic acids (6-cis-16:1), have an endogenous origin from palmitic acid, the former being recognized as a component of adipose tissue with signaling activity, whereas the latter is mainly reported as a component of sebum. The trans 16:1 isomers are attributed so far to dietary sources of industrial and dairy fats, whereas the endogenous formation due to the free radical-mediated isomerization can represent an emerging, yet unexplored, pathway connected to cellular stress. Herein, we report a chemical biology approach for the development of hexadecenoic fatty acids as plasma biomarkers, with the first synthesis of 6-trans-16:1 and the efficient analytical setup with unambiguous assignment of 16:1 double bond position and geometry, which was applied to human commercial LDL and plasma cholesteryl esters. Sapienic acid was identified together with its geometrical trans isomer for the first time. The quantitation of hexadecenoic fatty acid isomers evidenced their different levels in the two lipid classes and LDL fractions, making us foresee interesting applications to the metabolic evaluation of fatty acid pathways. These findings open new perspectives for plasma lipidomics involving monounsaturated fatty acids, highlighting future developments for their evaluation in different health conditions including free radical stress.
Collapse
Affiliation(s)
- Anna Sansone
- ISOF, Consiglio Nazionale delle Ricerche , Via P. Gobetti 101, 40129 Bologna, Italy
| | | | | | | |
Collapse
|
9
|
Rioux V, Pédrono F, Blanchard H, Duby C, Boulier-Monthéan N, Bernard L, Beauchamp E, Catheline D, Legrand P. Trans-vaccenate is Δ13-desaturated by FADS3 in rodents. J Lipid Res 2013; 54:3438-52. [PMID: 24070791 DOI: 10.1194/jlr.m042572] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fatty acid desaturases play critical roles in regulating the biosynthesis of unsaturated fatty acids in all biological kingdoms. As opposed to plants, mammals are so far characterized by the absence of desaturases introducing additional double bonds at the methyl-end site of fatty acids. However, the function of the mammalian fatty acid desaturase 3 (FADS3) gene remains unknown. This gene is located within the FADS cluster and presents a high nucleotide sequence homology with FADS1 (Δ5-desaturase) and FADS2 (Δ6-desaturase). Here, we show that rat FADS3 displays no common Δ5-, Δ6- or Δ9-desaturase activity but is able to catalyze the unexpected Δ13-desaturation of trans-vaccenate. Although there is no standard for complete conclusive identification, structural characterization strongly suggests that the Δ11,13-conjugated linoleic acid (CLA) produced by FADS3 from trans-vaccenate is the trans11,cis13-CLA isomer. In rat hepatocytes, knockdown of FADS3 expression specifically reduces trans-vaccenate Δ13-desaturation. Evidence is presented that FADS3 is the first "methyl-end" fatty acid desaturase functionally characterized in mammals.
Collapse
Affiliation(s)
- Vincent Rioux
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus Ouest-Institut National de la Recherche Agronomique (INRA) USC2012, Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Do FADS genotypes enhance our knowledge about fatty acid related phenotypes? Clin Nutr 2009; 29:277-87. [PMID: 19948371 DOI: 10.1016/j.clnu.2009.11.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/22/2009] [Accepted: 11/15/2009] [Indexed: 11/22/2022]
Abstract
Several physiological processes, such as visual and cognitive development in early life, are dependent on the availability of long-chain polyunsaturated fatty acids (LC-PUFAs). Furthermore, the concentration of LC-PUFAs in phospholipids has been associated with numerous complex diseases like cardiovascular disease, atopic disease and metabolic syndrome. The level and composition of LC-PUFAs in the human body is mainly dependent on their dietary intake or on the intake of fatty acid precursors, which are endogenously elongated and desaturated to physiologically active LC-PUFAs. The delta-5 and delta-6 desaturase are the most important enzymes in this reaction cascade. In the last few years, several studies have reported an association between single nucleotide polymorphisms (SNPs) in the two desaturase encoding genes (FADS1 and FADS2) and the concentration of omega-6 and omega-3 fatty acids. This shows that beside nutrition, genetic factors play an important role in the regulation of LC-PUFAs as well. This review focuses on current knowledge of the impact of FADS genotypes on LC-PUFA and lipid metabolism and discusses their influence on infant intellectual development, neurological conditions, metabolic disease as well as cardiovascular disease.
Collapse
|
11
|
Park WJ, Reardon HT, Tyburczy C, Kothapalli KSD, Brenna JT. Alternative splicing generates a novel FADS2 alternative transcript in baboons. Mol Biol Rep 2009; 37:2403-6. [PMID: 19693691 DOI: 10.1007/s11033-009-9750-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
The mammalian fatty acid desaturase 2 (FADS2) gene codes for catalytic activity considered to be the rate limited step in long chain polyunsaturated fatty acid (LCPUFA) synthesis. FADS2 catalyzes 6-desaturation in at least five substrates and 8-desaturation in at least two substrates. However, the molecular mechanisms that regulate FADS2-mediated desaturation remain ill-defined. We report here characterization of an alternative transcript (AT1) of primate FADS2 and compare its expression to that of the classical transcript in 12 tissues of a 12 week old neonate baboon, and in human SK-N-SH neuroblastoma (NB) cells. RT-PCR analysis indicates relatively greater abundance of classical transcript than AT1 in all tissues. However, AT1 expression is highly variable, showing greater expression in liver, retina, occipital lobe, hippocampus, spleen, and ovary, than in other tissues, whereas classical transcript displayed little variability. These data suggest that FADS2 AT1 is a candidate for regulation of LCPUFA synthesis.
Collapse
Affiliation(s)
- Woo Jung Park
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
12
|
Nandakumar M, Tan MW. Gamma-linolenic and stearidonic acids are required for basal immunity in Caenorhabditis elegans through their effects on p38 MAP kinase activity. PLoS Genet 2008; 4:e1000273. [PMID: 19023415 PMCID: PMC2581601 DOI: 10.1371/journal.pgen.1000273] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/20/2008] [Indexed: 12/31/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) form a class of essential micronutrients that play a vital role in development, cardiovascular health, and immunity. The influence of lipids on the immune response is both complex and diverse, with multiple studies pointing to the beneficial effects of long-chain fatty acids in immunity. However, the mechanisms through which PUFAs modulate innate immunity and the effects of PUFA deficiencies on innate immune functions remain to be clarified. Using the Caenorhabditis elegans-Pseudomonas aeruginosa host-pathogen system, we present genetic evidence that a Delta6-desaturase FAT-3, through its two 18-carbon products--gamma-linolenic acid (GLA, 18:3n6) and stearidonic acid (SDA, 18:4n3), but not the 20-carbon PUFAs arachidonic acid (AA, 20:4n6) and eicosapentaenoic acid (EPA, 20:5n3)--is required for basal innate immunity in vivo. Deficiencies in GLA and SDA result in increased susceptibility to bacterial infection, which is associated with reduced basal expression of a number of immune-specific genes--including spp-1, lys-7, and lys-2--that encode antimicrobial peptides. GLA and SDA are required to maintain basal activity of the p38 MAP kinase pathway, which plays important roles in protecting metazoan animals from infections and oxidative stress. Transcriptional and functional analyses of fat-3-regulated genes revealed that fat-3 is required in the intestine to regulate the expression of infection- and stress-response genes, and that distinct sets of genes are specifically required for immune function and oxidative stress response. Our study thus uncovers a mechanism by which these 18-carbon PUFAs affect basal innate immune function and, consequently, the ability of an organism to defend itself against bacterial infections. The conservation of p38 MAP kinase signaling in both stress and immune responses further encourages exploring the function of GLA and SDA in humans.
Collapse
Affiliation(s)
- Madhumitha Nandakumar
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Department Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Man-Wah Tan
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Department Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Sayanova O, Haslam R, Venegas-Calerón M, Napier JA. Identification of Primula "front-end" desaturases with distinct n-6 or n-3 substrate preferences. PLANTA 2006; 224:1269-77. [PMID: 16773377 DOI: 10.1007/s00425-006-0306-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 04/26/2006] [Indexed: 05/10/2023]
Abstract
cDNA clones encoding cytochrome b(5) fusion desaturases were isolated from Primula cortusoides L. and Primula luteola Ruprecht, species previously shown to preferentially accumulate either n-6 or n-3 Delta6-desaturated fatty acids, respectively. Functional characterisation of these desaturases in yeast revealed that the recombinant Primula enzymes displayed substrate preferences, resulting in the predominant synthesis of either gamma-linolenic acid (n-6) or stearidonic acid (n-3). Independent expression of the two Primula desaturases in transgenic Arabidopsis thaliana confirmed these results, with gamma-linolenic acid and stearidonic acid accumulating in both leaf and seed tissues to different levels, depending on the substrate specificity of the desaturase. Targeted lipid analysis of transgenic Arabidopsis lines revealed the presence of Delta6-desaturated fatty acids in the acyl-CoA pools of leaf but not seed tissue. The implications for the transgenic synthesis of C(20) polyunsaturated fatty acids via the elongation of Delta6-desaturated fatty acids are discussed, as is the potential of using Primula desaturases in the synthesis of C(18) n-3 polyunsaturated fatty acids such as stearidonic acid.
Collapse
|
14
|
Na-Ranong S, Laoteng K, Kittakoop P, Tantichareon M, Cheevadhanarak S. Substrate specificity and preference of Δ6-desaturase ofMucor rouxii. FEBS Lett 2005; 579:2744-8. [PMID: 15862319 DOI: 10.1016/j.febslet.2005.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 04/05/2005] [Indexed: 11/25/2022]
Abstract
The Delta(6)-fatty acid desaturase is a key enzyme in the synthesis of an important fatty acid, gamma-linolenic acid. We have characterized, by heterologous expression in Saccharomyces cerevisiae, substrate specificity and preference of Delta(6)-desaturase of Mucor rouxii. Fatty acid supplementation was carried out based on the predicted enzyme topology, fatty acid phenotype and the corresponding metabolic pathway in M. rouxii. The enzyme has a broad substrate specificity as based on C15-C18. The result also supported classification of the M. rouxii Delta(6)-desaturase into a front-end desaturase. Interestingly, a relatively rare activity based on odd acyl chains and not described previously in other eukaryotic Delta(6)-desaturases was also observed.
Collapse
Affiliation(s)
- Sutthicha Na-Ranong
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok, Thailand
| | | | | | | | | |
Collapse
|