1
|
Oborská-Oplová M, Gerhardy S, Panse VG. Orchestrating ribosomal RNA folding during ribosome assembly. Bioessays 2022; 44:e2200066. [PMID: 35751450 DOI: 10.1002/bies.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Construction of the eukaryotic ribosome is a complex process in which a nascent ribosomal RNA (rRNA) emerging from RNA Polymerase I hierarchically folds into a native three-dimensional structure. Modular assembly of individual RNA domains through interactions with ribosomal proteins and a myriad of assembly factors permit efficient disentanglement of the error-prone RNA folding process. Following these dynamic events, long-range tertiary interactions are orchestrated to compact rRNA. A combination of genetic, biochemical, and structural studies is now providing clues into how a nascent rRNA is transformed into a functional ribosome with high precision. With this essay, we aim to draw attention to the poorly understood process of establishing correct RNA tertiary contacts during ribosome formation.
Collapse
Affiliation(s)
| | - Stefan Gerhardy
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Weinberg CE, Olzog VJ, Eckert I, Weinberg Z. Identification of over 200-fold more hairpin ribozymes than previously known in diverse circular RNAs. Nucleic Acids Res 2021; 49:6375-6388. [PMID: 34096583 PMCID: PMC8216279 DOI: 10.1093/nar/gkab454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Self-cleaving ribozymes are catalytic RNAs that cut themselves at a specific inter-nucleotide linkage. They serve as a model of RNA catalysis, and as an important tool in biotechnology. For most of the nine known structural classes of self-cleaving ribozymes, at least hundreds of examples are known, and some are present in multiple domains of life. By contrast, only four unique examples of the hairpin ribozyme class are known, despite its discovery in 1986. We bioinformatically predicted 941 unique hairpin ribozymes of a different permuted form from the four previously known hairpin ribozymes, and experimentally confirmed several diverse predictions. These results profoundly expand the number of natural hairpin ribozymes, enabling biochemical analysis based on natural sequences, and suggest that a distinct permuted form is more biologically relevant. Moreover, all novel hairpins were discovered in metatranscriptomes. They apparently reside in RNA molecules that vary both in size—from 381 to 5170 nucleotides—and in protein content. The RNA molecules likely replicate as circular single-stranded RNAs, and potentially provide a dramatic increase in diversity of such RNAs. Moreover, these organisms have eluded previous attempts to isolate RNA viruses from metatranscriptomes—suggesting a significant untapped universe of viruses or other organisms hidden within metatranscriptome sequences.
Collapse
Affiliation(s)
- Christina E Weinberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - V Janett Olzog
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Iris Eckert
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Zasha Weinberg
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| |
Collapse
|
3
|
Sung HL, Nesbitt DJ. High pressure single-molecule FRET studies of the lysine riboswitch: cationic and osmolytic effects on pressure induced denaturation. Phys Chem Chem Phys 2020; 22:15853-15866. [PMID: 32706360 DOI: 10.1039/d0cp01921f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deep sea biology is known to thrive at pressures up to ≈1 kbar, which motivates fundamental biophysical studies of biomolecules under such extreme environments. In this work, the conformational equilibrium of the lysine riboswitch has been systematically investigated by single molecule FRET (smFRET) microscopy at pressures up to 1500 bar. The lysine riboswitch preferentially unfolds with increasing pressure, which signals an increase in free volume (ΔV0 > 0) upon folding of the biopolymer. Indeed, the effective lysine binding constant increases quasi-exponentially with pressure rise, which implies a significant weakening of the riboswitch-ligand interaction in a high-pressure environment. The effects of monovalent/divalent cations and osmolytes on folding are also explored to acquire additional insights into cellular mechanisms for adapting to high pressures. For example, we find that although Mg2+ greatly stabilizes folding of the lysine riboswitch (ΔΔG0 < 0), there is negligible impact on changes in free volume (ΔΔV0 ≈ 0) and thus any pressure induced denaturation effects. Conversely, osmolytes (commonly at high concentrations in deep sea marine species) such as the trimethylamine N-oxide (TMAO) significantly reduce free volumes (ΔΔV0 < 0) and thereby diminish pressure-induced denaturation. We speculate that, besides stabilizing RNA structure, enhanced levels of TMAO in cells might increase the dynamic range for competent riboswitch folding by suppressing the pressure-induced denaturation response. This in turn could offer biological advantage for vertical migration of deep-sea species, with impacts on food searching in a resource limited environment.
Collapse
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA. and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA. and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA and Department of Physics, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
4
|
Abstract
Hydrogen bonds play a critical role in nucleobase studies as they encode genes, map protein structures, provide stability to the base pairs, and are involved in spontaneous and induced mutations. Proton transfer mechanism is a critical phenomenon that is related to the acid-base characteristics of the nucleobases in Watson-Crick base pairs. The energetic and dynamical behavior of the proton can be depicted from these characteristics and their adjustment to the water molecules or the surrounding ions. Further, new pathways open up in which protonated nucleobases are generated by proton transfer from the ionized water molecules and elimination of a hydroxyl radical in this review, the analysis will be focused on understanding the mechanism of untargeted mutations in canonical, wobble, Hoogsteen pairs, and mutagenic tautomers through the non-covalent interactions. Further, rare tautomer formation through the single proton transfer (SPT) and the double proton transfer (DPT), quantum tunneling in nucleobases, radiation-induced bystander effects, role of water in proton transfer (PT) reactions, PT in anticancer drugs-DNA interaction, displacement and oriental polarization, possible models for mutations in DNA, genome instability, and role of proton transfer using kinetic parameters for RNA will be discussed.
Collapse
|
5
|
Lünse CE, Weinberg Z, Breaker RR. Numerous small hammerhead ribozyme variants associated with Penelope-like retrotransposons cleave RNA as dimers. RNA Biol 2017; 14:1499-1507. [PMID: 27858507 DOI: 10.1080/15476286.2016.1251002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hammerhead ribozymes represent the most common of the 9 natural classes of self-cleaving RNAs. The hammerhead catalytic core includes 11 highly-conserved nucleotides located largely within the unpaired regions of a junction formed by stems I, II and III. The vast majority of previously reported examples carry an additional pseudoknot or other tertiary interactions between nucleotides that precede stem I and nucleotides in the loop of stem II. These extra contacts are critical for high-speed RNA catalysis. Herein, we report the discovery of ∼150,000 additional variant hammerhead representatives that exhibit diminished stem III substructures. These variants are frequently associated with Penelope-like retrotransposons, which are a type of mobile genetic element. Kinetic analyses indicate that these RNAs form dimers to cleave RNA.
Collapse
Affiliation(s)
- Christina E Lünse
- a Department of Molecular , Cellular and Developmental Biology, Yale University , New Haven , CT , USA
| | - Zasha Weinberg
- a Department of Molecular , Cellular and Developmental Biology, Yale University , New Haven , CT , USA.,b Howard Hughes Medical Institute (HHMI), Yale University , New Haven , CT , USA
| | - Ronald R Breaker
- a Department of Molecular , Cellular and Developmental Biology, Yale University , New Haven , CT , USA.,b Howard Hughes Medical Institute (HHMI), Yale University , New Haven , CT , USA.,c Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA
| |
Collapse
|
6
|
White NA, Hoogstraten CG. Thermodynamics and kinetics of RNA tertiary structure formation in the junctionless hairpin ribozyme. Biophys Chem 2017; 228:62-68. [PMID: 28710920 PMCID: PMC5572644 DOI: 10.1016/j.bpc.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/24/2017] [Accepted: 07/02/2017] [Indexed: 11/15/2022]
Abstract
The hairpin ribozyme consists of two RNA internal loops that interact to form the catalytically active structure. This docking transition is a rare example of intermolecular formation of RNA tertiary structure without coupling to helix annealing. We have used temperature-dependent surface plasmon resonance (SPR) to characterize the thermodynamics and kinetics of RNA tertiary structure formation for the junctionless form of the ribozyme, in which loops A and B reside on separate molecules. We find docking to be strongly enthalpy-driven and to be accompanied by substantial activation barriers for association and dissociation, consistent with the structural reorganization of both internal loops upon complex formation. Comparisons with the parallel analysis of a ribozyme variant carrying a 2'-O-methyl modification at the self-cleavage site and with published data in other systems reveal a surprising diversity of thermodynamic signatures, emphasizing the delicate balance of contributions to the free energy of formation of RNA tertiary structure.
Collapse
Affiliation(s)
- Neil A White
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 302D, Michigan State University, East Lansing, MI 48824, USA
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 302D, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
7
|
Ochieng PO, White NA, Feig M, Hoogstraten CG. Intrinsic Base-Pair Rearrangement in the Hairpin Ribozyme Directs RNA Conformational Sampling and Tertiary Interface Formation. J Phys Chem B 2016; 120:10885-10898. [PMID: 27701852 DOI: 10.1021/acs.jpcb.6b05606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dynamic fluctuations in RNA structure enable conformational changes that are required for catalysis and recognition. In the hairpin ribozyme, the catalytically active structure is formed as an intricate tertiary interface between two RNA internal loops. Substantial alterations in the structure of each loop are observed upon interface formation, or docking. The very slow on-rate for this relatively tight interaction has led us to hypothesize a double conformational capture mechanism for RNA-RNA recognition. We used extensive molecular dynamics simulations to assess conformational sampling in the undocked form of the loop domain containing the scissile phosphate (loop A). We observed several major accessible conformations with distinctive patterns of hydrogen bonding and base stacking interactions in the active-site internal loop. Several important conformational features characteristic of the docked state were observed in well-populated substates, consistent with the kinetic sampling of docking-competent states by isolated loop A. Our observations suggest a hybrid or multistage binding mechanism, in which initial conformational selection of a docking-competent state is followed by induced-fit adjustment to an in-line, chemically reactive state only after formation of the initial complex with loop B.
Collapse
Affiliation(s)
- Patrick O Ochieng
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Neil A White
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Perez-Gonzalez DC, Penedo JC. Single-Molecule Strategies for DNA and RNA Diagnostics. RNA TECHNOLOGIES 2015. [DOI: 10.1007/978-3-319-17305-4_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Dotu I, Garcia-Martin JA, Slinger BL, Mechery V, Meyer MM, Clote P. Complete RNA inverse folding: computational design of functional hammerhead ribozymes. Nucleic Acids Res 2014; 42:11752-62. [PMID: 25209235 PMCID: PMC4191386 DOI: 10.1093/nar/gku740] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nanotechnology and synthetic biology currently constitute one of the most innovative, interdisciplinary fields of research, poised to radically transform society in the 21st century. This paper concerns the synthetic design of ribonucleic acid molecules, using our recent algorithm, RNAiFold, which can determine all RNA sequences whose minimum free energy secondary structure is a user-specified target structure. Using RNAiFold, we design ten cis-cleaving hammerhead ribozymes, all of which are shown to be functional by a cleavage assay. We additionally use RNAiFold to design a functional cis-cleaving hammerhead as a modular unit of a synthetic larger RNA. Analysis of kinetics on this small set of hammerheads suggests that cleavage rate of computationally designed ribozymes may be correlated with positional entropy, ensemble defect, structural flexibility/rigidity and related measures. Artificial ribozymes have been designed in the past either manually or by SELEX (Systematic Evolution of Ligands by Exponential Enrichment); however, this appears to be the first purely computational design and experimental validation of novel functional ribozymes. RNAiFold is available at http://bioinformatics.bc.edu/clotelab/RNAiFold/.
Collapse
Affiliation(s)
- Ivan Dotu
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | - Betty L Slinger
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Vinodh Mechery
- Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549, USA
| | - Michelle M Meyer
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Peter Clote
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| |
Collapse
|
10
|
Unraveling the Thermodynamics and Kinetics of RNA Assembly. Methods Enzymol 2014. [DOI: 10.1016/b978-0-12-801122-5.00017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Kraemer-Chant CM, Heckman JE, Lambert D, Burke JM. Cobalt(III)hexaammine-dependent photocrosslinks in the hairpin ribozyme. J Inorg Biochem 2013; 131:87-98. [PMID: 24295878 DOI: 10.1016/j.jinorgbio.2013.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
Abstract
We have utilized the hairpin ribozyme, an RNA enzyme whose structure has been solved by high-resolution methods, to develop a new tool for mapping nucleobase-stacking interactions and potential metal-binding sites in RNA molecules. This tool involves the photoactivation of a specifically bound cobalt(III)hexaammine molecule at wavelengths corresponding to excitation of the metal ion complex only; no base excitation is involved. The photoexcitation initiates a process which strongly promotes the formation of a novel covalent bond or crosslink between one base (termed the "first base"), which is close in space to the excited cobalt(III)hexaammine complex, and another base upon which the first base is closely stacked. These crosslinked species can be isolated and sequenced; their activities can be analyzed to ensure that the crosslinked structures represent an active conformation of the molecule. We have shown that, as in electron transfer in DNA, several criteria must be met to result in the successful formation of these crosslinks. These include the appropriate oxidation potential of the first donor base, the stacking and close interaction of the two donor bases involved in the crosslink, and the binding of a specific cobalt(III)hexaammine molecule to the first donor base. Additionally, we have determined that this crosslinking is pH-sensitive, although the cause of this sensitivity remains unknown. This tool has proven useful in the past for the analysis of the hairpin ribozyme folded structure, and has been applied to identify potential metal-binding sites on the hairpin and extended hammerhead ribozymes.
Collapse
Affiliation(s)
- Christina M Kraemer-Chant
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, University of Vermont, Burlington, VT 05405, USA.
| | - Joyce E Heckman
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, University of Vermont, Burlington, VT 05405, USA
| | - Dominic Lambert
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, University of Vermont, Burlington, VT 05405, USA
| | - John M Burke
- Department of Microbiology and Molecular Genetics, 95 Carrigan Drive, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
12
|
Ma WK, Cloutier SC, Tran EJ. The DEAD-box protein Dbp2 functions with the RNA-binding protein Yra1 to promote mRNP assembly. J Mol Biol 2013; 425:3824-38. [PMID: 23721653 DOI: 10.1016/j.jmb.2013.05.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/01/2013] [Accepted: 05/18/2013] [Indexed: 11/25/2022]
Abstract
Eukaryotic gene expression involves numerous biochemical steps that are dependent on RNA structure and ribonucleoprotein (RNP) complex formation. The DEAD-box class of RNA helicases plays fundamental roles in formation of RNA and RNP structure in every aspect of RNA metabolism. In an effort to explore the diversity of biological roles for DEAD-box proteins, our laboratory recently demonstrated that the DEAD-box protein Dbp2 associates with actively transcribing genes and is required for normal gene expression in Saccharomyces cerevisiae. We now provide evidence that Dbp2 interacts genetically and physically with the mRNA export factor Yra1. In addition, we find that Dbp2 is required for in vivo assembly of mRNA-binding proteins Yra1, Nab2, and Mex67 onto poly(A)+ RNA. Strikingly, we also show that Dbp2 is an efficient RNA helicase in vitro and that Yra1 decreases the efficiency of ATP-dependent duplex unwinding. We provide a model whereby messenger ribonucleoprotein (mRNP) assembly requires Dbp2 unwinding activity and once the mRNP is properly assembled, inhibition by Yra1 prevents further rearrangements. Both Yra1 and Dbp2 are conserved in multicellular eukaryotes, suggesting that this constitutes a broadly conserved mechanism for stepwise assembly of mature mRNPs in the nucleus.
Collapse
Affiliation(s)
- Wai Kit Ma
- Department of Biochemistry, Purdue University, BCHM 305, 175 South University Street, West Lafayette, IN 47907-2063, USA; Purdue University Center for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 South University Street, West Lafayette, IN 47907-2064, USA
| | | | | |
Collapse
|
13
|
Sumita M, White NA, Julien KR, Hoogstraten CG. Intermolecular domain docking in the hairpin ribozyme: metal dependence, binding kinetics and catalysis. RNA Biol 2013; 10:425-35. [PMID: 23324606 PMCID: PMC3672286 DOI: 10.4161/rna.23609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hairpin ribozyme is a prototype small, self-cleaving RNA motif. It exists naturally as a four-way RNA junction containing two internal loops on adjoining arms. These two loops interact in a cation-driven docking step prior to chemical catalysis to form a tightly integrated structure, with dramatic changes occurring in the conformation of each loop upon docking. We investigate the thermodynamics and kinetics of the docking process using constructs in which loop A and loop B reside on separate molecules. Using a novel CD difference assay to isolate the effects of metal ions linked to domain docking, we find the intermolecular docking process to be driven by sub-millimolar concentrations of the exchange-inert Co(NH3)63+. RNA self-cleavage requires binding of lower-affinity ions with greater apparent cooperativity than the docking process itself, implying that, even in the absence of direct coordination to RNA, metal ions play a catalytic role in hairpin ribozyme function beyond simply driving loop-loop docking. Surface plasmon resonance assays reveal remarkably slow molecular association, given the relatively tight loop-loop interaction. This observation is consistent with a “double conformational capture” model in which only collisions between loop A and loop B molecules that are simultaneously in minor, docking-competent conformations are productive for binding.
Collapse
Affiliation(s)
- Minako Sumita
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing, MI USA
| | | | | | | |
Collapse
|
14
|
Abstract
Changes to the conformation of coding and non-coding RNAs form the basis of elements of genetic regulation and provide an important source of complexity, which drives many of the fundamental processes of life. Although the structure of RNA is highly flexible, the underlying dynamics of RNA are robust and are limited to transitions between the few conformations that preserve favourable base-pairing and stacking interactions. The mechanisms by which cellular processes harness the intrinsic dynamic behaviour of RNA and use it within functionally productive pathways are complex. The versatile functions and ease by which it is integrated into a wide variety of genetic circuits and biochemical pathways suggests there is a general and fundamental role for RNA dynamics in cellular processes.
Collapse
|
15
|
KOBITSKI ANDREIYU, NIERTH ALEXANDER, HENGESBACH MARTIN, JÄSCHKE ANDRES, HELM MARK, NIENHAUS GULRICH. EXPLORING THE FOLDING FREE ENERGY LANDSCAPE OF SMALL RNA MOLECULES BY SINGLE-PAIR FÖRSTER RESONANCE ENERGY TRANSFER. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048008000873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteins and RNA are biological macromolecules built from linear polymers. The process by which they fold into compact, well-defined, three-dimensional architectures to perform their functional tasks is still not well understood. It can be visualized by Brownian motion of an ensemble of molecules through a rugged energy landscape in search of an energy minimum corresponding to the native state. To explore the conformational energy landscape of small RNAs, single pair Förster resonance energy transfer (spFRET) experiments on solutions as well as on surface-immobilized samples have provided new insights. In this review, we focus on our recent work on two FRET-labeled small RNAs, the Diels-Alderase (DAse) ribozyme and the human mitochondrial tRNA Lys . For both RNAs, three different conformational states can be distinguished, and the associated mean FRET efficiencies provide clues about their structural properties. The systematic variation of their free energies with the concentration of Mg 2+ counterions was analyzed quantitatively by using a thermodynamic model that separates conformational changes from Mg 2+ binding. Furthermore, time-resolved spFRET studies on immobilized DAse reveal slow interconversions between intermediate and folded states on the time scale of ~ 100 ms. The quantitative data obtained from spFRET experiments may likely assist in the further development of theories and models addressing the folding dynamics and (counterion-dependent) energetics of RNA molecules.
Collapse
Affiliation(s)
- ANDREI YU. KOBITSKI
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - ALEXANDER NIERTH
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 364, Heidelberg, 69120, Germany
| | - MARTIN HENGESBACH
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 364, Heidelberg, 69120, Germany
| | - ANDRES JÄSCHKE
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 364, Heidelberg, 69120, Germany
| | - MARK HELM
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 364, Heidelberg, 69120, Germany
| | - G. ULRICH NIENHAUS
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Rublack N, Nguyen H, Appel B, Springstubbe D, Strohbach D, Müller S. Synthesis of specifically modified oligonucleotides for application in structural and functional analysis of RNA. J Nucleic Acids 2011; 2011:805253. [PMID: 22013508 PMCID: PMC3195551 DOI: 10.4061/2011/805253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/11/2011] [Accepted: 07/21/2011] [Indexed: 01/30/2023] Open
Abstract
Nowadays, RNA synthesis has become an essential tool not only in the field of molecular biology and medicine, but also in areas like molecular diagnostics and material sciences. Beyond synthetic RNAs for antisense, aptamer, ribozyme, and siRNA technologies, oligoribonucleotides carrying site-specific modifications for structure and function studies are needed. This often requires labeling of the RNA with a suitable spectroscopic reporter group. Herein, we describe the synthesis of functionalized monomer building blocks that upon incorporation in RNA allow for selective reaction with a specific reporter or functional entity. In particular, we report on the synthesis of 5′-O-dimethoxytrityl-2′-O-tert-butyldimethylsilyl protected 3′-O-phosphoramidites of nucleosides that carry amino linkers of different lengths and flexibility at the heterocyclic base, their incorporation in a variety of RNAs, and postsynthetic conjugation with fluorescent dyes and nitroxide spin labels. Further, we show the synthesis of a flavine mononucleotide-N-hydroxy-succinimidyl ester and its conjugation to amino functionalized RNA.
Collapse
Affiliation(s)
- Nico Rublack
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Biochemie, Felix-Hausdorff-Stra β e 4, 17487 Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Piekielska K, Gębala M, Gwiazda S, Müller S, Schuhmann W. Impedimetric Detection of Hairpin Ribozyme Activity. ELECTROANAL 2010. [DOI: 10.1002/elan.201000640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Luo X, McKeague M, Pitre S, Dumontier M, Green J, Golshani A, Derosa MC, Dehne F. Computational approaches toward the design of pools for the in vitro selection of complex aptamers. RNA (NEW YORK, N.Y.) 2010; 16:2252-62. [PMID: 20870801 PMCID: PMC2957063 DOI: 10.1261/rna.2102210] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is well known that using random RNA/DNA sequences for SELEX experiments will generally yield low-complexity structures. Early experimental results suggest that having a structurally diverse library, which, for instance, includes high-order junctions, may prove useful in finding new functional motifs. Here, we develop two computational methods to generate sequences that exhibit higher structural complexity and can be used to increase the overall structural diversity of initial pools for in vitro selection experiments. Random Filtering selectively increases the number of five-way junctions in RNA/DNA pools, and Genetic Filtering designs RNA/DNA pools to a specified structure distribution, whether uniform or otherwise. We show that using our computationally designed DNA pool greatly improves access to highly complex sequence structures for SELEX experiments (without losing our ability to select for common one-way and two-way junction sequences).
Collapse
Affiliation(s)
- Xuemei Luo
- School of Computer Science, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Shepotinovskaya I, Uhlenbeck OC. Enhanced product stability in the hammerhead ribozyme. Biochemistry 2010; 49:4494-500. [PMID: 20423112 DOI: 10.1021/bi902025m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rate of dissociation of P1, the 5' product of hammerhead cleavage, is 100-300-fold slower in full-length hammerheads than in hammerheads that either lack or have disrupting mutations in the loop-loop tertiary interaction. The added stability requires the presence of residue 17 at the 3' terminus of P1 but not the 2', 3' terminal phosphate. Since residue 17 is buried within the catalytic core of the hammerhead in the X-ray structure, we propose that the enhanced P1 stability is a result of the cooperative folding of the hammerhead around this residue. However, since P1 is fully stabilized at >2.5 mM MgCl(2) while hammerhead activity continues to increase with an increase in MgCl(2) concentration, it is clear that the hammerhead structure in the transition state must differ from that of the product complex. The product stabilization assay is used to test our earlier proposal that different tertiary interactions modulate the cleavage rate by differentially stabilizing the core.
Collapse
Affiliation(s)
- Irina Shepotinovskaya
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
20
|
Abstract
Much of the dynamics information is lost in bulk measurements because of the population averaging. Single-molecule methods measure one molecule at a time; they provide knowledge not obtainable by other means. In this article, we review the application of the two most widely used single-molecule methods--fluorescence resonance energy transfer (FRET) and force versus extension measurements--to several RNA reactions. First, we discuss folding/unfolding studies on a hairpin ribozyme that revealed multiple conformations of the RNA with distinct kinetics, and on a series of RNA pseudoknots, whose mechanical stabilities were found to show a strong correlation with their frameshifting efficiency during translation. We also discuss several RNA-related molecular motors. Single-molecule experiments revealed detailed mechanisms for the interaction of HIV reverse transcriptase and nucleic acid helicases (NS3 and RIG-1) with their substrates. Optical tweezers studies showed that translation of a single messenger RNA by a ribosome occurs by successive translocation-and-pause cycles. Single-molecule FRET experiments yielded important information on ribosome conformational changes and tRNA dynamics during translation. Overall, single-molecule experiments have been very valuable for understanding RNA reactions.
Collapse
Affiliation(s)
- Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
| | | | | |
Collapse
|
21
|
Laing C, Jung S, Iqbal A, Schlick T. Tertiary motifs revealed in analyses of higher-order RNA junctions. J Mol Biol 2009; 393:67-82. [PMID: 19660472 DOI: 10.1016/j.jmb.2009.07.089] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/29/2009] [Accepted: 07/29/2009] [Indexed: 12/22/2022]
Abstract
RNA junctions are secondary-structure elements formed when three or more helices come together. They are present in diverse RNA molecules with various fundamental functions in the cell. To better understand the intricate architecture of three-dimensional (3D) RNAs, we analyze currently solved 3D RNA junctions in terms of base-pair interactions and 3D configurations. First, we study base-pair interaction diagrams for solved RNA junctions with 5 to 10 helices and discuss common features. Second, we compare these higher-order junctions to those containing 3 or 4 helices and identify global motif patterns such as coaxial stacking and parallel and perpendicular helical configurations. These analyses show that higher-order junctions organize their helical components in parallel and helical configurations similar to lower-order junctions. Their sub-junctions also resemble local helical configurations found in three- and four-way junctions and are stabilized by similar long-range interaction preferences such as A-minor interactions. Furthermore, loop regions within junctions are high in adenine but low in cytosine, and in agreement with previous studies, we suggest that coaxial stacking between helices likely forms when the common single-stranded loop is small in size; however, other factors such as stacking interactions involving noncanonical base pairs and proteins can greatly determine or disrupt coaxial stacking. Finally, we introduce the ribo-base interactions: when combined with the along-groove packing motif, these ribo-base interactions form novel motifs involved in perpendicular helix-helix interactions. Overall, these analyses suggest recurrent tertiary motifs that stabilize junction architecture, pack helices, and help form helical configurations that occur as sub-elements of larger junction networks. The frequent occurrence of similar helical motifs suggest nature's finite and perhaps limited repertoire of RNA helical conformation preferences. More generally, studies of RNA junctions and tertiary building blocks can ultimately help in the difficult task of RNA 3D structure prediction.
Collapse
Affiliation(s)
- Christian Laing
- Department of Chemistry, New York University, 251 Mercer Street, New York, NY 10012, USA
| | | | | | | |
Collapse
|
22
|
Hsieh J, Fierke CA. Conformational change in the Bacillus subtilis RNase P holoenzyme--pre-tRNA complex enhances substrate affinity and limits cleavage rate. RNA (NEW YORK, N.Y.) 2009; 15:1565-77. [PMID: 19549719 PMCID: PMC2714742 DOI: 10.1261/rna.1639409] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex that catalyzes the 5' maturation of precursor tRNAs. To investigate the mechanism of substrate recognition in this enzyme, we characterize the thermodynamics and kinetics of Bacillus subtilis pre-tRNA(Asp) binding to B. subtilis RNase P holoenzyme using fluorescence techniques. Time courses for fluorescein-labeled pre-tRNA binding to RNase P are biphasic in the presence of both Ca(II) and Mg(II), requiring a minimal two-step association mechanism. In the first step, the apparent bimolecular rate constant for pre-tRNA associating with RNase P has a value that is near the diffusion limit and is independent of the length of the pre-tRNA leader. Following formation of the initial enzyme-substrate complex, a unimolecular step enhances the overall affinity of pre-tRNA by eight- to 300-fold as the length of the leader sequence increases from 2 to 5 nucleotides. This increase in affinity is due to a decrease in the reverse rate constant for the conformational change that correlates with the formation of an optimal leader-protein interaction in the RNase P holoenzyme-pre-tRNA complex. Furthermore, the forward rate constant for the conformational change becomes rate limiting for cleavage under single-turnover conditions at high pH, explaining the origin of the observed apparent pK(a) in the RNase P-catalyzed cleavage reaction. These data suggest that a conformational change in the RNase P*pre-tRNA complex is coupled to the interactions between the 5' leader and P protein and aligns essential functional groups at the cleavage active site to enhance efficient cleavage of pre-tRNA.
Collapse
Affiliation(s)
- John Hsieh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
23
|
Abstract
Over the past decade, single-molecule fluorescence studies have elucidated the structure-function relationship of RNA molecules. The real-time observation of individual RNAs by single-molecule fluorescence has unveiled the dynamic behavior of complex RNA systems in unprecedented detail, revealing the presence of transient intermediate states and their kinetic pathways. This review provides an overview of how single-molecule fluorescence has been used to explore the dynamics of RNA folding and catalysis.
Collapse
Affiliation(s)
| | - David Rueda
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| |
Collapse
|
24
|
Dallas A, Balatskaya SV, Kuo TC, Ilves H, Vlassov AV, Kaspar RL, Kisich KO, Kazakov SA, Johnston BH. Hairpin ribozyme-antisense RNA constructs can act as molecular Lassos. Nucleic Acids Res 2008; 36:6752-66. [PMID: 18953032 PMCID: PMC2588507 DOI: 10.1093/nar/gkn637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have developed a novel class of antisense agents, RNA Lassos, which are capable of binding to and circularizing around complementary target RNAs. The RNA Lasso consists of a fixed sequence derived from the hairpin ribozyme and an antisense segment whose size and sequence can be varied to base pair with accessible sites in the target RNA. The ribozyme catalyzes self-processing of the 5′- and 3′-ends of a transcribed Lasso precursor and ligates the processed ends to produce a circular RNA. The circular and linear forms of the self-processed Lasso coexist in an equilibrium that is dependent on both the Lasso sequence and the solution conditions. Lassos form strong, noncovalent complexes with linear target RNAs and form true topological linkages with circular targets. Lasso complexes with linear RNA targets were detected by denaturing gel electrophoresis and were found to be more stable than ordinary RNA duplexes. We show that expression of a fusion mRNA consisting of a sequence from the murine tumor necrosis factor-α (TNF-α) gene linked to luciferase reporter can be specifically and efficiently blocked by an anti-TNF Lasso. We also show in cell culture experiments that Lassos directed against Fas pre-mRNA were able to induce a change in alternative splicing patterns.
Collapse
|
25
|
Nelson JA, Uhlenbeck OC. Minimal and extended hammerheads utilize a similar dynamic reaction mechanism for catalysis. RNA (NEW YORK, N.Y.) 2008; 14:43-54. [PMID: 17998291 PMCID: PMC2151028 DOI: 10.1261/rna.717908] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 09/21/2007] [Indexed: 05/25/2023]
Abstract
Analysis of the catalytic activity of identical mutations in the catalytic cores of nHH8, a very active "extended" hammerhead, and HH16, a less active "minimal" hammerhead, reveal that the tertiary Watson-Crick base pair between C3 and G8 seen in the recent structure of the Schistosoma mansoni extended hammerhead can be replaced by other base pairs in both backgrounds. This supports the model that both hammerheads utilize a similar catalytic mechanism but HH16 is slower because it infrequently samples the active conformation. The relative effect of different mutations at positions 3 and 8 also depends on the identity of residue 17 in both nHH8 and HH16. This synergistic effect can best be explained by transient pairing between residues 3 and 17 and 8 and 13, which stabilize an inactive conformation. Thus, mutants of nHH8 and possibly nHH8 itself are also in dynamic equilibrium with an inactive conformation that may resemble the X-ray structure of a minimal hammerhead. Therefore, both minimal and extended hammerhead structures must be considered to fully understand hammerhead catalysis.
Collapse
Affiliation(s)
- Jennifer A Nelson
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
26
|
Gaur S, Heckman JE, Burke JM. Mutational inhibition of ligation in the hairpin ribozyme: substitutions of conserved nucleobases A9 and A10 destabilize tertiary structure and selectively promote cleavage. RNA (NEW YORK, N.Y.) 2008; 14:55-65. [PMID: 17998292 PMCID: PMC2151026 DOI: 10.1261/rna.716108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The hairpin ribozyme acts as a reversible, site-specific endoribonuclease that ligates much more rapidly than it cleaves cognate substrate. While the reaction pathway for ligation is the reversal of cleavage, little is known about the atomic and electrostatic details of the two processes. Here, we report the functional consequences of molecular substitutions of A9 and A10, two highly conserved nucleobases located adjacent to the hairpin ribozyme active site, using G, C, U, 2-aminopurine, 2,6-diaminopurine, purine, and inosine. Cleavage and ligation kinetics were analyzed, tertiary folding was monitored by hydroxyl radical footprinting, and interdomain docking was studied by native gel electrophoresis. We determined that nucleobase substitutions that exhibit significant levels of interference with tertiary folding and interdomain docking have relatively large inhibitory effects on ligation rates while showing little inhibition of cleavage. Indeed, one variant, A10G, showed a fivefold enhancement of cleavage rate and no detectable ligation, and we suggest that this property may be uniquely well suited to intracellular targeted RNA cleavage applications. Results support a model in which formation of a kinetically stable tertiary structure is essential for ligation of the hairpin ribozyme, but is not necessary for cleavage.
Collapse
Affiliation(s)
- Snigdha Gaur
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
27
|
Najafi-Shoushtari SH, Famulok M. Modular reporter hairpin ribozymes for analyzing molecular interactions. Methods Mol Biol 2008; 429:237-250. [PMID: 18695971 DOI: 10.1007/978-1-60327-040-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Methods for the detection of biologically relevant interactions by highly precise catalytic control elements based on hairpin ribozymes, and their subsequent analysis are described. These include ribozyme design, catalytic performance in real time as a function of fluorescence signal amplification, and applications for sensing protein and nucleic acid interactions in high-throughput formats. Detailed instructions for two of our main reporter ribozyme formats that either follow repressible or inducible regulatory mechanisms are provided. We have shown that these techniques can be applied for detecting diverse target molecules including microRNAs, or protein-protein interactions. These reporter systems thus represent a general way to obtain signal-amplifying sensors for diverse applications in molecular profiling.
Collapse
|
28
|
Bindewald E, Hayes R, Yingling YG, Kasprzak W, Shapiro BA. RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. Nucleic Acids Res 2007; 36:D392-7. [PMID: 17947325 PMCID: PMC2238914 DOI: 10.1093/nar/gkm842] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We developed a database called RNAJunction that contains structure and sequence information for RNA structural elements such as helical junctions, internal loops, bulges and loop-loop interactions. Our database provides a user-friendly way of searching structural elements by PDB code, structural classification, sequence, keyword or inter-helix angles. In addition, the structural data was subjected to energy minimization. This database is useful for analyzing RNA structures as well as for designing novel RNA structures on a nanoscale. The database can be accessed at: http://rnajunction.abcc.ncifcrf.gov/
Collapse
Affiliation(s)
- Eckart Bindewald
- Basic Research Program, SAIC-Frederick and Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
29
|
Lévesque D, Brière FP, Perreault JP. A modern mode of activation for nucleic acid enzymes. PLoS One 2007; 2:e673. [PMID: 17653287 PMCID: PMC1919428 DOI: 10.1371/journal.pone.0000673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 06/17/2007] [Indexed: 11/19/2022] Open
Abstract
Through evolution, enzymes have developed subtle modes of activation in order to ensure the sufficiently high substrate specificity required by modern cellular metabolism. One of these modes is the use of a target-dependent module (i.e. a docking domain) such as those found in signalling kinases. Upon the binding of the target to a docking domain, the substrate is positioned within the catalytic site. The prodomain acts as a target-dependent module switching the kinase from an off state to an on state. As compared to the allosteric mode of activation, there is no need for the presence of a third partner. None of the ribozymes discovered to date have such a mode of activation, nor does any other known RNA. Starting from a specific on/off adaptor for the hepatitis delta virus ribozyme, that differs but has a mechanism reminiscent of this signalling kinase, we have adapted this mode of activation, using the techniques of molecular engineering, to both catalytic RNAs and DNAs exhibiting various activities. Specifically, we adapted three cleaving ribozymes (hepatitis delta virus, hammerhead and hairpin ribozymes), a cleaving 10-23 deoxyribozyme, a ligating hairpin ribozyme and an artificially selected capping ribozyme. In each case, there was a significant gain in terms of substrate specificity. Even if this mode of control is unreported for natural catalytic nucleic acids, its use needs not be limited to proteinous enzymes. We suggest that the complexity of the modern cellular metabolism might have been an important selective pressure in this evolutionary process.
Collapse
Affiliation(s)
- Dominique Lévesque
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Francis P. Brière
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|