1
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
2
|
Harrison JR, Brand S, Smith V, Robinson DA, Thompson S, Smith A, Davies K, Mok N, Torrie LS, Collie I, Hallyburton I, Norval S, Simeons FRC, Stojanovski L, Frearson JA, Brenk R, Wyatt PG, Gilbert IH, Read KD. A Molecular Hybridization Approach for the Design of Potent, Highly Selective, and Brain-Penetrant N-Myristoyltransferase Inhibitors. J Med Chem 2018; 61:8374-8389. [PMID: 30207721 PMCID: PMC6167002 DOI: 10.1021/acs.jmedchem.8b00884] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Crystallography has guided the hybridization of two series of Trypanosoma brucei N-myristoyltransferase (NMT) inhibitors, leading to a novel highly selective series. The effect of combining the selectivity enhancing elements from two pharmacophores is shown to be additive and has led to compounds that have greater than 1000-fold selectivity for TbNMT vs HsNMT. Further optimization of the hybrid series has identified compounds with significant trypanocidal activity capable of crossing the blood-brain barrier. By using CF-1 mdr1a deficient mice, we were able to demonstrate full cures in vivo in a mouse model of stage 2 African sleeping sickness. This and previous work provides very strong validation for NMT as a drug target for human African trypanosomiasis in both the peripheral and central nervous system stages of disease.
Collapse
Affiliation(s)
- Justin R Harrison
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Stephen Brand
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Victoria Smith
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - David A Robinson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Stephen Thompson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Alasdair Smith
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Kenneth Davies
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Ngai Mok
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Leah S Torrie
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Iain Collie
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Irene Hallyburton
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Suzanne Norval
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Frederick R C Simeons
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Laste Stojanovski
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Julie A Frearson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Ruth Brenk
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Paul G Wyatt
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| | - Kevin D Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences , University of Dundee , Dundee , DD1 5EH , United Kingdom
| |
Collapse
|
3
|
Wright MH, Paape D, Price HP, Smith DF, Tate EW. Global Profiling and Inhibition of Protein Lipidation in Vector and Host Stages of the Sleeping Sickness Parasite Trypanosoma brucei. ACS Infect Dis 2016; 2:427-441. [PMID: 27331140 PMCID: PMC4906374 DOI: 10.1021/acsinfecdis.6b00034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Indexed: 01/05/2023]
Abstract
The enzyme N-myristoyltransferase (NMT) catalyzes the essential fatty acylation of substrate proteins with myristic acid in eukaryotes and is a validated drug target in the parasite Trypanosoma brucei, the causative agent of African trypanosomiasis (sleeping sickness). N-Myristoylation typically mediates membrane localization of proteins and is essential to the function of many. However, only a handful of proteins are experimentally validated as N-myristoylated in T. brucei. Here, we perform metabolic labeling with an alkyne-tagged myristic acid analogue, enabling the capture of lipidated proteins in insect and host life stages of T. brucei. We further compare this with a longer chain palmitate analogue to explore the chain length-specific incorporation of fatty acids into proteins. Finally, we combine the alkynyl-myristate analogue with NMT inhibitors and quantitative chemical proteomics to globally define N-myristoylated proteins in the clinically relevant bloodstream form parasites. This analysis reveals five ARF family small GTPases, calpain-like proteins, phosphatases, and many uncharacterized proteins as substrates of NMT in the parasite, providing a global view of the scope of this important protein modification and further evidence for the crucial and pleiotropic role of NMT in the cell.
Collapse
Affiliation(s)
- Megan H. Wright
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Daniel Paape
- Centre for Immunology and Infection, Department
of Biology, University of York, York YO10 5DD, United Kingdom
| | - Helen P. Price
- Centre for Immunology and Infection, Department
of Biology, University of York, York YO10 5DD, United Kingdom
| | - Deborah F. Smith
- Centre for Immunology and Infection, Department
of Biology, University of York, York YO10 5DD, United Kingdom
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
5
|
MacLean L, Myburgh E, Rodgers J, Price HP. Imaging African trypanosomes. Parasite Immunol 2014; 35:283-94. [PMID: 23790101 PMCID: PMC3992894 DOI: 10.1111/pim.12046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/18/2013] [Indexed: 12/18/2022]
Abstract
Trypanosoma brucei are extracellular kinetoplastid parasites transmitted by the blood-sucking tsetse fly. They are responsible for the fatal disease human African trypanosomiasis (HAT), also known as sleeping sickness. In late-stage infection, trypanosomes cross the blood–brain barrier (BBB) and invade the central nervous system (CNS) invariably leading to coma and death if untreated. There is no available vaccine and current late-stage HAT chemotherapy consists of either melarsoprol, which is highly toxic causing up to 8% of deaths, or nifurtimox–eflornithine combination therapy (NECT), which is costly and difficult to administer. There is therefore an urgent need to identify new late-stage HAT drug candidates. Here, we review how current imaging tools, ranging from fluorescent confocal microscopy of live immobilized cells in culture to whole-animal imaging, are providing insight into T. brucei biology, parasite-host interplay, trypanosome CNS invasion and disease progression. We also consider how imaging tools can be used for candidate drug screening purposes that could lead to new chemotherapies.
Collapse
Affiliation(s)
- L MacLean
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, Heslington, York, UK.
| | | | | | | |
Collapse
|
6
|
Renna L, Stefano G, Majeran W, Micalella C, Meinnel T, Giglione C, Brandizzi F. Golgi traffic and integrity depend on N-myristoyl transferase-1 in Arabidopsis. THE PLANT CELL 2013; 25:1756-73. [PMID: 23673980 PMCID: PMC3694704 DOI: 10.1105/tpc.113.111393] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
N-myristoylation is a crucial irreversible eukaryotic lipid modification allowing a key subset of proteins to be targeted at the periphery of specific membrane compartments. Eukaryotes have conserved N-myristoylation enzymes, involving one or two N-myristoyltransferases (NMT1 and NMT2), among which NMT1 is the major enzyme. In the postembryonic developmental stages, defects in NMT1 lead to aberrant cell polarity, flower differentiation, fruit maturation, and innate immunity; however, no specific NMT1 target responsible for such deficiencies has hitherto been identified. Using a confocal microscopy forward genetics screen for the identification of Arabidopsis thaliana secretory mutants, we isolated STINGY, a recessive mutant with defective Golgi traffic and integrity. We mapped STINGY to a substitution at position 160 of Arabidopsis NMT1 (NMT1A160T). In vitro kinetic studies with purified NMT1A160T enzyme revealed a significant reduction in its activity due to a remarkable decrease in affinity for both myristoyl-CoA and peptide substrates. We show here that this recessive mutation is responsible for the alteration of Golgi traffic and integrity by predominantly affecting the Golgi membrane/cytosol partitioning of ADP-ribosylation factor proteins. Our results provide important functional insight into N-myristoylation in plants by ascribing postembryonic functions of Arabidopsis NMT1 that involve regulation of the functional and morphological integrity of the plant endomembranes.
Collapse
Affiliation(s)
- Luciana Renna
- Michigan State University–Department of Energy Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Giovanni Stefano
- Michigan State University–Department of Energy Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Wojciech Majeran
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Chiara Micalella
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Federica Brandizzi
- Michigan State University–Department of Energy Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Address correspondence to
| |
Collapse
|
7
|
Brand S, Cleghorn LAT, McElroy SP, Robinson DA, Smith VC, Hallyburton I, Harrison JR, Norcross NR, Spinks D, Bayliss T, Norval S, Stojanovski L, Torrie LS, Frearson JA, Brenk R, Fairlamb AH, Ferguson MAJ, Read KD, Wyatt PG, Gilbert IH. Discovery of a novel class of orally active trypanocidal N-myristoyltransferase inhibitors. J Med Chem 2011; 55:140-52. [PMID: 22148754 PMCID: PMC3256935 DOI: 10.1021/jm201091t] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-Myristoyltransferase (NMT) represents a promising drug target for human African trypanosomiasis (HAT), which is caused by the parasitic protozoa Trypanosoma brucei. We report the optimization of a high throughput screening hit (1) to give a lead molecule DDD85646 (63), which has potent activity against the enzyme (IC(50) = 2 nM) and T. brucei (EC(50) = 2 nM) in culture. The compound has good oral pharmacokinetics and cures rodent models of peripheral HAT infection. This compound provides an excellent tool for validation of T. brucei NMT as a drug target for HAT as well as a valuable lead for further optimization.
Collapse
Affiliation(s)
- Stephen Brand
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fleming JR, Dawson A, Hunter WN. Crystal structure of Leishmania major ADP-ribosylation factor-like 1 and a classification of related GTPase family members in this Kinetoplastid. Mol Biochem Parasitol 2010; 174:141-4. [PMID: 20801163 DOI: 10.1016/j.molbiopara.2010.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 12/24/2022]
Abstract
ADP-ribosylation factor-like (ARL) proteins are small GTPases that undergo conformational changes upon nucleotide binding, and which regulate the affinity of ARLs for binding other proteins, lipids or membranes. There is a paucity of structural data on this family of proteins in the Kinetoplastida, despite studies implicating them in key events related to vesicular transport and regulation of microtubule-dependent processes. The crystal structure of Leishmania major ARL1 in complex with GDP has been determined to 2.1 Å resolution and reveals a high degree of structural conservation with human ADP-ribosylation factor 1 (ARF1). Putative L. major and Trypanosoma brucei ARF/ARL family members have been classified based on structural considerations, amino acid sequence conservation combined with functional data on Kinetoplastid and human orthologues. This classification may guide future studies designed to elucidate the function of specific family members.
Collapse
Affiliation(s)
- Jennifer R Fleming
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | |
Collapse
|
10
|
De Melo LDB, Eisele N, Nepomuceno-Silva JL, Lopes UG. TcRho1, the Trypanosoma cruzi Rho homologue, regulates cell-adhesion properties: Evidence for a conserved function. Biochem Biophys Res Commun 2006; 345:617-22. [PMID: 16690023 DOI: 10.1016/j.bbrc.2006.04.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 04/17/2006] [Indexed: 10/24/2022]
Abstract
Rho proteins are members of the Ras superfamily of small GTPases. In higher eukaryotes these proteins play pivotal role in cell movement, phagocytosis, intracellular transport, cell-adhesion, and maintenance of cell morphology, mainly through the regulation of actin microfilaments. The GTPase TcRho1 is the only member of the Rho family described in human protozoan parasite Trypanosoma cruzi. We previously demonstrated that TcRho1 is actually required for differentiation of epimastigote to trypomastigote forms during the parasite cell cycle. In the present work, we describe cellular phenotypes induced by TcRho1 heterologous expression in NIH 3T3 fibroblasts. The NIH-3T3 lineages expressing the TcRho1-G15V and TcRho1-Q76L mutants displayed decreased levels of migration compared to the control lineage NIH-3T3 pcDNA3.1, a phenotype probably due to distinct cell-substrate adhesion properties expressed by the mutant cell lines. Accordingly, cell-substrate adhesion assays revealed that the mutant cell lines of NIH-3T3 expressing TcRho1-positive dominants constructions present enhanced substrate-adhesion phenotype. Furthermore, similar experiments with T. cruzi expressing TcRho1 mutants also revealed an enhancement of cell attachment. These results suggest that TcRho1 plays a conserved regulatory role in cell-substrate adhesion in both NIH-3T3 fibroblasts and T. cruzi epimastigotes. Taken together, our data corroborate the notion that TcRho1 may regulate the substrate-adhesion in T. cruzi, a critical step for successful progression of the parasite life cycle.
Collapse
Affiliation(s)
- Luiz Dione Barbosa De Melo
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|