1
|
Sha Y, Guo X, He Y, Li W, Liu X, Zhao S, Hu J, Wang J, Li S, Zhao Z, Hao Z. Synergistic Responses of Tibetan Sheep Rumen Microbiota, Metabolites, and the Host to the Plateau Environment. Int J Mol Sci 2023; 24:14856. [PMID: 37834304 PMCID: PMC10573510 DOI: 10.3390/ijms241914856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Plateau adaptation in animals involves genetic mechanisms as well as coevolutionary mechanisms of the microbiota and metabolome of the animal. Therefore, the characteristics of the rumen microbiome and metabolome, transcriptome, and serum metabolome of Tibetan sheep at different altitudes (4500 m, 3500 m, and 2500 m) were analyzed. The results showed that the rumen differential metabolites at 3500 m and 4500 m were mainly enriched in amino acid metabolism, lipid metabolism, and carbohydrate metabolism, and there was a significant correlation with microbiota. The differentially expressed genes and metabolites at middle and high altitudes were coenriched in asthma, arachidonic acid metabolism, and butanoate and propanoate metabolism. In addition, the serum differential metabolites at 3500 m and 4500 m were mainly enriched in amino acid metabolism, lipid metabolism, and metabolism of xenobiotics by cytochrome P450, and they were also related to microbiota. Further analysis revealed that rumen metabolites accounted for 7.65% of serum metabolites. These common metabolites were mainly enriched in metabolic pathways and were significantly correlated with host genes (p < 0.05). This study found that microbiota, metabolites, and epithelial genes were coenriched in pathways related to lipid metabolism, energy metabolism, and immune metabolism, which may be involved in the regulation of Tibetan sheep adaptation to plateau environmental changes.
Collapse
Affiliation(s)
- Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Xinyu Guo
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand;
| | - Wenhao Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Shengguo Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Jiang Hu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Shaobin Li
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Zhidong Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| | - Zhiyun Hao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (X.G.); (S.Z.); (J.H.); (J.W.); (S.L.); (Z.Z.); (Z.H.)
| |
Collapse
|
2
|
Larribère L, Utikal J. Update on GNA Alterations in Cancer: Implications for Uveal Melanoma Treatment. Cancers (Basel) 2020; 12:E1524. [PMID: 32532044 PMCID: PMC7352965 DOI: 10.3390/cancers12061524] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is correlated with abnormal expression and activity of G protein-coupled receptors (GPCRs) and associated G proteins. Oncogenic mutations in both GPCRs and G proteins (GNAS, GNAQ or GNA11) encoding genes have been identified in a significant number of tumors. Interestingly, uveal melanoma driver mutations in GNAQ/GNA11 were identified for a decade, but their discovery did not lead to mutation-specific drug development, unlike it the case for BRAF mutations in cutaneous melanoma which saw enormous success. Moreover, new immunotherapies strategies such as immune checkpoint inhibitors have given underwhelming results. In this review, we summarize the current knowledge on cancer-associated alterations of GPCRs and G proteins and we focus on the case of uveal melanoma. Finally, we discuss the possibilities that this signaling might represent in regard to novel drug development for cancer prevention and treatment.
Collapse
Affiliation(s)
- Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
3
|
Guo YS, Tao JZ, Xu LH, Wei FH, He SH. Identification of disordered metabolic networks in postpartum dairy cows with left displacement of the abomasum through integrated metabolomics and pathway analyses. J Vet Med Sci 2019; 82:115-124. [PMID: 31852859 PMCID: PMC7041990 DOI: 10.1292/jvms.19-0378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
High-producing dairy cows are easily affected by left displacement of the abomasum (LDA)
within 4 weeks postpartum. Although LDA is highly associated with metabolic disturbances,
the related information on comprehensive metabolic changes, with the exception of some
blood biochemical parameters, remains limited. In this study, the changes in plasma
metabolites and in the metabolic profile of postpartum dairy cows with LDA were
investigated through liquid chromatography coupled with quadrupole time of flight mass
spectrometry (LC-Q/TOF-MS)-based metabolomics, and the metabolic networks related to LDA
were constructed through metabolomics pathway analysis (MetPA). An obvious change in the
metabolic profile was reflected by significant variations in 68 plasma metabolites in
postpartum dairy cows with LDA, and these variations consequently altered 13 metabolic
pathways (histidine metabolism, tyrosine metabolism, valine, leucine and isoleucine
biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, arginine and proline
metabolism, tryptophan metabolism, synthesis and degradation of ketone bodies, linoleic
acid metabolism, arachidonic acid metabolism, citrate cycle, butanoate metabolism, vitamin
B6 metabolism and pyrimidine metabolism). This study shows that the more
detailed information obtained by LC-Q/TOF-MS-based metabolomics and MetPA might contribute
to a better understanding of the disordered metabolic networks in postpartum dairy cows
with LDA.
Collapse
Affiliation(s)
- Yan Sheng Guo
- Department of Animal Science and Technology, Agricultural College, Ningxia University, 425 West Road of Hen lan shan, Xi Xia District, Yinchuan 750021, China
| | - Jin Zhong Tao
- Department of Animal Science and Technology, Agricultural College, Ningxia University, 425 West Road of Hen lan shan, Xi Xia District, Yinchuan 750021, China
| | - Li Hua Xu
- Department of Animal Science and Technology, Agricultural College, Ningxia University, 425 West Road of Hen lan shan, Xi Xia District, Yinchuan 750021, China
| | - Fan Hua Wei
- Department of Animal Science and Technology, Agricultural College, Ningxia University, 425 West Road of Hen lan shan, Xi Xia District, Yinchuan 750021, China
| | - Sheng Hu He
- Department of Animal Science and Technology, Agricultural College, Ningxia University, 425 West Road of Hen lan shan, Xi Xia District, Yinchuan 750021, China
| |
Collapse
|
4
|
Abstract
Cutaneous melanoma (CM) and uveal melanoma (UM) derive from cutaneous and uveal melanocytes that share the same embryonic origin and display the same cellular function. However, the etiopathogenesis and biological behaviors of these melanomas are very different. CM and UM display distinct landscapes of genetic alterations and show different metastatic routes and tropisms. Hence, therapeutic improvements achieved in the last few years for the treatment of CM have failed to ameliorate the clinical outcomes of patients with UM. The scope of this review is to discuss the differences in tumorigenic processes (etiologic factors and genetic alterations) and tumor biology (gene expression and signaling pathways) between CM and UM. We develop hypotheses to explain these differences, which might provide important clues for research avenues and the identification of actionable vulnerabilities suitable for the development of new therapeutic strategies for metastatic UM.
Collapse
Affiliation(s)
- Charlotte Pandiani
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Guillaume E Béranger
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Justine Leclerc
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Robert Ballotti
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Corine Bertolotto
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| |
Collapse
|
5
|
Burke L, Butler CT, Murphy A, Moran B, Gallagher WM, O'Sullivan J, Kennedy BN. Evaluation of Cysteinyl Leukotriene Signaling as a Therapeutic Target for Colorectal Cancer. Front Cell Dev Biol 2016; 4:103. [PMID: 27709113 PMCID: PMC5030284 DOI: 10.3389/fcell.2016.00103] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/30/2016] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is the third most common cancer worldwide and is associated with significant morbidity and mortality. Current pharmacotherapy options include cytotoxic chemotherapy, anti-VEGF, and anti-EGFR targeting drugs, but these are limited by toxic side effects, limited responses and ultimately resistance. Cysteinyl leukotriene (CysLT) signaling regulates intestinal homeostasis with mounting evidence suggesting that CysLT signaling also plays a role in the pathogenesis of colorectal cancer. Therefore, CysLT signaling represents a novel target for this malignancy. This review evaluates reported links between CysLT signaling and established hallmarks of cancer in addition to its pharmacological potential as a new therapeutic target.
Collapse
Affiliation(s)
- Lorraine Burke
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College DublinDublin, Ireland; Translational Oncology, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's HospitalDublin, Ireland
| | - Clare T Butler
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin Dublin, Ireland
| | - Adrian Murphy
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital Baltimore, MD, USA
| | - Bruce Moran
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin Dublin, Ireland
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin Dublin, Ireland
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital Dublin, Ireland
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin Dublin, Ireland
| |
Collapse
|
6
|
Kim MH, Lee YJ, Kim MO, Kim JS, Han HJ. Effect of leukotriene D4 on mouse embryonic stem cell migration and proliferation: involvement of PI3K/Akt as well as GSK-3β/β-catenin signaling pathways. J Cell Biochem 2011; 111:686-98. [PMID: 20589831 DOI: 10.1002/jcb.22755] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The actual leukotriene D(4) (LTD(4)) signaling pathways that regulate cell proliferation have not been elucidated thoroughly although fatty acid and its metabolites play a key role in regulations of embryonic functions. Thus, this study investigated the response of mouse embryonic stem (ES) cells exposed to LTD(4) and elucidated the signaling pathways as well. LTD(4) increased DNA synthesis in concentration-dependent (≥10(-7) M) and time-dependent (≥12 h) manners, as determined by [(3)H] thymidine incorporation and increased cell number. LTD(4) induced the phosphorylation of signal transducer and activator of transcription-3 (STAT3) and the increase of intracellular Ca(2+) levels via cysteinyl leukotriene (CysLT) 1 and 2 receptors. LTD(4) increased Akt activation and calcineurin expression, which were blocked by STAT3 inhibitor and calcium chelators. LTD(4)-induced glycogen synthase kinase (GSK)-3β phosphorylation was decreased by LY294002, Akt inhibitor, and cyclosporine A. LTD(4) inhibited the phosphorylation of β-catenin. In addition, LTD(4)-stimulated migration through increased activation of focal adhesion kinase (FAK) and paxillin which were blocked by Akt inhibitor and cyclosporine A. LTD(4)-induced increases in protooncogene and cell cycle regulatory proteins were blocked by cyclosporine A, FAK siRNA, and β-catenin siRNA. In conclusion, LTD(4)-stimulated mouse ES cell proliferation and migration via STAT3, phosphoinositide 3-kinases (PI3K)/Akt, Ca(2+)-calcineurin, and GSK-3β/β-catenin pathway.
Collapse
Affiliation(s)
- Min Hee Kim
- Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Daegu, South Korea
| | | | | | | | | |
Collapse
|
7
|
Mezhybovska M, Yudina Y, Abhyankar A, Sjölander A. Beta-catenin is involved in alterations in mitochondrial activity in non-transformed intestinal epithelial and colon cancer cells. Br J Cancer 2009; 101:1596-605. [PMID: 19826421 PMCID: PMC2778528 DOI: 10.1038/sj.bjc.6605342] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Alteration in respiratory activity and mitochondrial DNA (mtDNA) transcription seems to be an important feature of cancer cells. Leukotriene D(4) (LTD(4)) is a proinflammatory mediator implicated in the pathology of chronic inflammation and cancer. We have shown earlier that LTD(4) causes translocation of beta-catenin both to the mitochondria, in which it associates with the survival protein Bcl-2 identifying a novel role for beta-catenin in cell survival, and to the nucleus in which it activates the TCF/LEF transcription machinery. METHODS Here we have used non-transformed intestinal epithelial Int 407 cells and Caco-2 colon cancer cells, transfected or not with wild type and mutated (S33Y) beta-catenin to analyse its effect on mitochondria activity. We have measured the ATP/ADP ratio, and transcription of the mtDNA genes ND2, ND6 and 16 s in these cells stimulated or not with LTD(4). RESULTS We have shown for the first time that LTD(4) triggers a cellular increase in NADPH dehydrogenase activity and ATP/ADP ratio. In addition, LTD(4) significantly increased the transcription of mtDNA genes. Overexpression of wild-type beta-catenin or a constitutively active beta-catenin mutant mimicked the effect of LTD(4) on ATP/ADP ratio and mtDNA transcription. These elevations in mitochondrial activity resulted in increased reactive oxygen species levels and subsequent activations of the p65 subunit of NF-kappaB. CONCLUSIONS The present novel data show that LTD(4), presumably through beta-catenin accumulation in the mitochondria, affects mitochondrial activity, lending further credence to the idea that inflammatory signalling pathways are intrinsically linked with potential oncogenic signals.
Collapse
Affiliation(s)
- M Mezhybovska
- Cell and Experimental Pathology, Department of Laboratory Medicine, Malmö University Hospital, Lund University, Malmö, SE-205 02, Sweden
| | | | | | | |
Collapse
|
8
|
The long-term effect of Helicobacter pylori eradication on COX-1/2, 5-LOX and leukotriene receptors in patients with a risk gastritis phenotype – A link to gastric carcinogenesis. Cancer Lett 2008; 270:218-28. [DOI: 10.1016/j.canlet.2008.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 03/16/2008] [Accepted: 05/06/2008] [Indexed: 12/12/2022]
|
9
|
Maier TJ, Tausch L, Hoernig M, Coste O, Schmidt R, Angioni C, Metzner J, Groesch S, Pergola C, Steinhilber D, Werz O, Geisslinger G. Celecoxib inhibits 5-lipoxygenase. Biochem Pharmacol 2008; 76:862-72. [DOI: 10.1016/j.bcp.2008.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/09/2008] [Accepted: 07/10/2008] [Indexed: 10/21/2022]
|
10
|
Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev 2007; 27:469-527. [PMID: 16894531 DOI: 10.1002/med.20071] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cysteinyl-leukotrienes (cysteinyl-LTs), that is, LTC4, LTD4, and LTE4, trigger contractile and inflammatory responses through the specific interaction with G protein-coupled receptors (GPCRs) belonging to the purine receptor cluster of the rhodopsin family, and identified as CysLT receptors (CysLTRs). Cysteinyl-LTs have a clear role in pathophysiological conditions such as asthma and allergic rhinitis (AR), and have been implicated in other inflammatory conditions including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. Molecular cloning of human CysLT1R and CysLT2R subtypes has confirmed most of the previous pharmacological characterization and identified distinct expression patterns only partially overlapping. Interestingly, recent data provide evidence for the immunomodulation of CysLTR expression, the existence of additional receptor subtypes, and of an intracellular pool of CysLTRs that may have roles different from those of plasma membrane receptors. Furthermore, genetic variants have been identified for the CysLTRs that may interact to confer risk for atopy. Finally, a crosstalk between the cysteinyl-LT and the purine systems is being delineated. This review will summarize and attempt to integrate recent data derived from studies on the molecular pharmacology and pharmacogenetics of CysLTRs, and will consider the therapeutic opportunities arising from the new roles suggested for cysteinyl-LTs and their receptors.
Collapse
MESH Headings
- Adult
- Animals
- Asthma/drug therapy
- Asthma/physiopathology
- Cardiovascular Diseases/physiopathology
- Child
- Child, Preschool
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/etiology
- Female
- Humans
- Hydroxyurea/adverse effects
- Hydroxyurea/analogs & derivatives
- Leukotriene Antagonists/adverse effects
- Leukotriene Antagonists/therapeutic use
- Leukotriene C4/physiology
- Leukotriene D4/physiology
- Leukotriene E4/physiology
- Membrane Proteins/drug effects
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Pharmacogenetics
- Receptors, Leukotriene/drug effects
- Receptors, Leukotriene/genetics
- Receptors, Leukotriene/physiology
- Receptors, Purinergic/physiology
- Recombinant Proteins/pharmacology
- Rhinitis, Allergic, Seasonal/drug therapy
- Rhinitis, Allergic, Seasonal/physiopathology
- SRS-A/biosynthesis
- Tissue Distribution
Collapse
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|