1
|
Ulch BA, Clews AC, Jesionowska MW, Kimber MS, Mullen RT, Xu Y. Characterization of Phosphatidylcholine:Diacylglycerol Cholinephosphotransferases from Soybean ( Glycine max). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7645-7657. [PMID: 40117326 DOI: 10.1021/acs.jafc.4c12704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Plant oils in the form of triacylglycerols (TAGs) have important food and industrial applications. The fatty acid composition of TAGs, especially their degree of unsaturation, affects the oil value and applications. Phosphatidylcholine:Diacylglycerol Cholinephosphotransferase (PDCT) facilitates the exchange of fatty acids between phosphatidylcholine and diacylglycerol, influencing the degree of fatty acid unsaturation. In this study, we identified and characterized two PDCT isoforms from soybean (Glycine max). Phylogenetic and structural analyses revealed that PDCTs are widely conserved across Embryophyta and share key sequence and structural features among species. Subcellular localization assays using transient expression of fluorescent protein-tagged GmPDCTs in Nicotiana benthamiana leaves confirmed their localization to the endoplasmic reticulum. Expression of GmPDCTs in yeast altered lipid unsaturation, while in vitro enzyme assays using yeast microsomal fractions confirmed that both GmPDCTs are catalytically active, preferring unsaturated substrates. Further structural analysis and mutagenesis revealed that the N-terminus and several amino acids within/near the predicted catalytic domains are critical to the PDCT function. Lastly, stable overexpression of GmPDCTs in Arabidopsis thaliana rod1 (pdct) mutant plants successfully restored a wildtype lipid phenotype, providing evidence that these genes encode functional PDCTs. Together, these findings provide new insights into PDCT structure-function relationships, offering potential targets for bioengineering strategies aimed at optimizing oil composition.
Collapse
Affiliation(s)
- Brandon A Ulch
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Alyssa C Clews
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Monika W Jesionowska
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Matthew S Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yang Xu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
2
|
Chen B, Li J, Yao S, Wang G, Wang X. Seed-specific expression of phosphatidate phosphohydrolases increases soybean oil content and seed weight. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:23. [PMID: 39994717 PMCID: PMC11849322 DOI: 10.1186/s13068-025-02620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Soybean is a major oil crop and a primary protein source for livestock, and soybean oil is the most common input for biodiesel. Identifying genes that enhance soybean yield and oil content is crucial for breeding programs. Phosphatidic acid (PA) phosphohydrolase (PAH), which dephosphorylates PA to diacylglycerol (DAG), plays a critical role in lipid synthesis, and yet their potential in improving agronomic traits of oil crops remains unexplored. RESULTS This study shows that seed-specific expression of AtPAH1/2 enhances PA turnover into DAG and triacylglycerol (TAG) accumulation in soybean seeds. PAH overexpression upregulated the expression of DAG acyltransferase (DGAT) but suppressed phospholipid: DAG acyltransferase (PDAT). In addition, seed-specific expression of AtPAH1/2 increases soybean seed size and weight. Furthermore, analysis of the variation of the soybean PAHs in 4414 soybean accessions indicated that the advantageous effects of GmPAHs on oil content and seed weight were selected during domestication. CONCLUSION These findings suggest that targeting PAHs represents a promising strategy for enhancing soybean seed oil content and yield in current cultivars and landraces soybeans.
Collapse
Affiliation(s)
- Beibei Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, 450046, China.
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA.
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| | - Jianwu Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Geliang Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA.
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| |
Collapse
|
3
|
Šakić Z, Atić A, Potočki S, Bašić-Jukić N. Sphingolipids and Chronic Kidney Disease. J Clin Med 2024; 13:5050. [PMID: 39274263 PMCID: PMC11396415 DOI: 10.3390/jcm13175050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Sphingolipids (SLs) are bioactive signaling molecules essential for various cellular processes, including cell survival, proliferation, migration, and apoptosis. Key SLs such as ceramides, sphingosine, and their phosphorylated forms play critical roles in cellular integrity. Dysregulation of SL levels is implicated in numerous diseases, notably chronic kidney disease (CKD). This review focuses on the role of SLs in CKD, highlighting their potential as biomarkers for early detection and prognosis. SLs maintain renal function by modulating the glomerular filtration barrier, primarily through the activity of podocytes. An imbalance in SLs can lead to podocyte damage, contributing to CKD progression. SL metabolism involves complex enzyme-catalyzed pathways, with ceramide serving as a central molecule in de novo and salvage pathways. Ceramides induce apoptosis and are implicated in oxidative stress and inflammation, while sphingosine-1-phosphate (S1P) promotes cell survival and vascular health. Studies have shown that SL metabolism disorders are linked to CKD progression, diabetic kidney disease, and glomerular diseases. Targeting SL pathways could offer novel therapeutic approaches for CKD. This review synthesizes recent research on SL signaling regulation in kidney diseases, emphasizing the importance of maintaining SL balance for renal health and the potential therapeutic benefits of modulating SL pathways.
Collapse
Affiliation(s)
- Zrinka Šakić
- Vuk Vrhovac University Clinic, Dugi dol 4a, 10000 Zagreb, Croatia
| | - Armin Atić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Slavica Potočki
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikolina Bašić-Jukić
- Division of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Wang N, Li JY, Zeng B, Chen GL. Sphingosine-1-Phosphate Signaling in Cardiovascular Diseases. Biomolecules 2023; 13:biom13050818. [PMID: 37238688 DOI: 10.3390/biom13050818] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important sphingolipid molecule involved in regulating cardiovascular functions in physiological and pathological conditions by binding and activating the three G protein-coupled receptors (S1PR1, S1PR2, and S1PR3) expressed in endothelial and smooth muscle cells, as well as cardiomyocytes and fibroblasts. It exerts its actions through various downstream signaling pathways mediating cell proliferation, migration, differentiation, and apoptosis. S1P is essential for the development of the cardiovascular system, and abnormal S1P content in the circulation is involved in the pathogenesis of cardiovascular disorders. This article reviews the effects of S1P on cardiovascular function and signaling mechanisms in different cell types in the heart and blood vessels under diseased conditions. Finally, we look forward to more clinical findings with approved S1PR modulators and the development of S1P-based therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
5
|
Yaginuma S, Omi J, Kano K, Aoki J. Lysophospholipids and their producing enzymes: Their pathological roles and potential as pathological biomarkers. Pharmacol Ther 2023; 246:108415. [PMID: 37061204 DOI: 10.1016/j.pharmthera.2023.108415] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Accumulating evidence suggests that lysophospholipids (LPL) serve as lipid mediators that exert their diverse pathophysiological functions via G protein-coupled receptors. These include lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), lysophosphatidylserine (LysoPS) and lysophosphatidylinositol (LPI). Unlike S1P, which is produced intracellularly and secreted from various cell types, some LPLs, such as LPA, LysoPS and LPI, are produced in lesions, especially under pathological conditions, where they positively or negatively regulate disease progression through their autacoid-like actions. Although these LPLs are minor components of the cell membrane, recent developments in mass spectrometry techniques have made it possible to detect and quantify them in a variety of biological fluids, including plasma, serum, urine and cerebrospinal fluid. The synthetic enzymes of LPA and LysoPS are also present in these biological fluids, which also can be detected by antibody-based methods. Importantly, their levels have been found to dramatically increase during various pathological conditions. Thus, LPLs and their synthetic enzymes in these biological fluids are potential biomarkers. This review discusses the potential of these LPLs and LPL-related molecules as pathological biomarkers, including methods and problems in their measurement.
Collapse
Affiliation(s)
- Shun Yaginuma
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
6
|
Wang Z, Qi H, Zhang Y, Sun H, Dong J, Wang H. PLPP2: Potential therapeutic target of breast cancer in PLPP family. Immunobiology 2022; 227:152298. [DOI: 10.1016/j.imbio.2022.152298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
|
7
|
Targeting Ceramides and Adiponectin Receptors in the Islet of Langerhans for Treating Diabetes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186117. [PMID: 36144859 PMCID: PMC9502927 DOI: 10.3390/molecules27186117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Ceramides belong to the sphingolipid family and represent the central hub of the sphingolipid network. In obesity, oversupply of saturated fatty acids including palmitate raises ceramide levels which can be detrimental to cells. Elevated ceramides can cause insulin resistance, endoplasmic reticulum stress, and mitochondrial dysfunction. Studies over the last few decades have highlighted the role played by ceramides in pancreatic islet β-cell apoptosis, especially under glucolipotoxic and inflammatory conditions. This review focuses on ceramides and adiponectin receptor signaling, summarizing recent advancements in our understanding of their roles in islet β-cells and the discovery of zinc-dependent lipid hydrolase (ceramidase) activity of adiponectin receptors. The therapeutic potential of targeting these events to prevent islet β-cell loss for treating diabetes is discussed.
Collapse
|
8
|
Takagi Y, Nishikado S, Omi J, Aoki J. The Many Roles of Lysophospholipid Mediators and Japanese Contributions to This Field. Biol Pharm Bull 2022; 45:1008-1021. [DOI: 10.1248/bpb.b22-00304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yugo Takagi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Shun Nishikado
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
9
|
Wang J, Shan Q, Ran Y, Sun D, Zhang H, Zhang J, Gong S, Zhou A, Qiao K. Molecular Characterization of a Tolerant Saline-Alkali Chlorella Phosphatidate Phosphatase That Confers NaCl and Sorbitol Tolerance. Front Microbiol 2021; 12:738282. [PMID: 34650539 PMCID: PMC8506161 DOI: 10.3389/fmicb.2021.738282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The gene encoding a putative phosphatidate phosphatase (PAP) from tolerant saline-alkali (TSA) Chlorella, ChPAP, was identified from a yeast cDNA library constructed from TSA Chlorella after a NaCl treatment. ChPAP expressed in yeast enhanced its tolerance to NaCl and sorbitol. The ChPAP protein from a GFP-tagged construct localized to the plasma membrane and the lumen of vacuoles. The relative transcript levels of ChPAP in Chlorella cells were strongly induced by NaCl and sorbitol as assessed by northern blot analyses. Thus, ChPAP may play important roles in promoting Na-ion movement into the cell and maintaining the cytoplasmic ion balance. In addition, ChPAP may catalyze diacylglycerol pyrophosphate to phosphatidate in vacuoles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
Lysophospholipids in Lung Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:373-391. [PMID: 33788203 DOI: 10.1007/978-3-030-63046-1_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lysophospholipids (LPLs) belong to a group of bioactive lipids that play pivotal roles in several physiological and pathological processes. LPLs are derivatives of phospholipids and consist of a single hydrophobic fatty acid chain, a hydrophilic head, and a phosphate group with or without a large molecule attached. Among the LPLs, lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are the simplest, and have been shown to be involved in lung inflammatory symptoms and diseases such as acute lung injury, asthma, and chronic obstructive pulmonary diseases. G protein-coupled receptors (GPCRs) mediate LPA and S1P signaling. In this chapter, we will discuss on the role of LPA, S1P, their metabolizing enzymes, inhibitors or agonists of their receptors, and their GPCR-mediated signaling in lung inflammatory symptoms and diseases, focusing specially on acute respiratory distress syndrome, asthma, and chronic obstructive pulmonary disease.
Collapse
|
11
|
Zhang Q, Yang X, Wang Q, Zhang Y, Gao P, Li Z, Liu R, Xu H, Bi K, Li Q. "Modeling-Prediction" Strategy for Deep Profiling of Lysophosphatidic Acids by Liquid Chromatography-Mass Spectrometry: Exploration Biomarkers of Breast Cancer. J Chromatogr A 2020; 1634:461634. [PMID: 33176220 DOI: 10.1016/j.chroma.2020.461634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 01/13/2023]
Abstract
Lysophosphatidic acids (LPAs) are important bioactive phospholipids consisting of various species involved in a wide array of physiological and pathological processes. However, LPAs were rarely identified in untargeted lipidomics studies because of the incompatibility with analytical methods. Moreover, in targeted studies, the coverages of LPAs remained unsatisfactorily low due to the limitation of reference standards. Herein, a "modeling-prediction" workflow for deep profiling of LPAs by liquid chromatography-mass spectrometry was developed. Multiple linear regression models of qualitative and quantitative parameters were established according to features of fatty acyl tails of the commercial standards to predict the corresponding parameters for unknown LPAs. Then 72 multiple reaction monitoring (MRM) transitions were monitored simultaneously and species of LPA 14:0, LPA 16:1, LPA 18:3, LPA 20:3 and LPA 20:5 were firstly characterized and quantified in plasma. Finally, the workflow was applied to explore the changes of LPAs in plasma of breast cancer patients compared with healthy volunteers. Multi-LPAs indexes with strong diagnostic ability for breast cancer were identified successfully using Student's t- test, orthogona partial least-squares discrimination analysis (OPLS-DA) and logistic regression- receiver operating characteristic (ROC) curve analysis. The proposed workflow with high sensitivity, high accuracy, high coverage and reliable identification would be a powerful complement to untargeted lipidomics and shed a light on the analysis of other lipids.
Collapse
Affiliation(s)
- Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiao Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qian Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peng Gao
- Metabolomics Core Facility of RHLCCC, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Zuojing Li
- School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
12
|
Lee SC, Lin KH, Balogh A, Norman DD, Bavaria M, Kuo B, Yue J, Balázs L, Benyó Z, Tigyi G. Dysregulation of lysophospholipid signaling by p53 in malignant cells and the tumor microenvironment. Cell Signal 2020; 78:109850. [PMID: 33253914 DOI: 10.1016/j.cellsig.2020.109850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
The TP53 gene has been widely studied for its roles in cell cycle control, maintaining genome stability, activating repair mechanisms upon DNA damage, and initiating apoptosis should repair mechanisms fail. Thus, it is not surprising that mutations of p53 are the most common genetic alterations found in human cancer. Emerging evidence indicates that dysregulation of lipid metabolism by p53 can have a profound impact not only on cancer cells but also cells of the tumor microenvironment (TME). In particular, intermediates of the sphingolipid and lysophospholipid pathways regulate many cellular responses common to p53 such as cell survival, migration, DNA damage repair and apoptosis. The majority of these cellular events become dysregulated in cancer as well as cell senescence. In this review, we will provide an account on the seminal contributions of Prof. Lina Obeid, who deciphered the crosstalk between p53 and the sphingolipid pathway particularly in modulating DNA damage repair and apoptosis in non-transformed as well as transformed cells. We will also provide insights on the integrative role of p53 with the lysophosphatidic acid (LPA) signaling pathway in cancer progression and TME regulation.
Collapse
Affiliation(s)
- Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Kuan-Hung Lin
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Mitul Bavaria
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Bryan Kuo
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Louisa Balázs
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Gábor Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary.
| |
Collapse
|
13
|
Modulation of DNA Damage Response by Sphingolipid Signaling: An Interplay that Shapes Cell Fate. Int J Mol Sci 2020; 21:ijms21124481. [PMID: 32599736 PMCID: PMC7349968 DOI: 10.3390/ijms21124481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Although once considered as structural components of eukaryotic biological membranes, research in the past few decades hints at a major role of bioactive sphingolipids in mediating an array of physiological processes including cell survival, proliferation, inflammation, senescence, and death. A large body of evidence points to a fundamental role for the sphingolipid metabolic pathway in modulating the DNA damage response (DDR). The interplay between these two elements of cell signaling determines cell fate when cells are exposed to metabolic stress or ionizing radiation among other genotoxic agents. In this review, we aim to dissect the mediators of the DDR and how these interact with the different sphingolipid metabolites to mount various cellular responses.
Collapse
|
14
|
Obinata H, Hla T. Sphingosine 1-phosphate and inflammation. Int Immunol 2020; 31:617-625. [PMID: 31049553 DOI: 10.1093/intimm/dxz037] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 11/13/2022] Open
Abstract
AbstractSphingosine 1-phosphate (S1P), a sphingolipid mediator, regulates various cellular functions via high-affinity G protein-coupled receptors, S1P1-5. The S1P-S1P receptor signaling system plays important roles in lymphocyte trafficking and maintenance of vascular integrity, thus contributing to the regulation of complex inflammatory processes. S1P is enriched in blood and lymph while maintained low in intracellular or interstitial fluids, creating a steep S1P gradient that is utilized to facilitate efficient egress of lymphocytes from lymphoid organs. Blockage of the S1P-S1P receptor signaling system results in a marked decrease in circulating lymphocytes because of a failure of lymphocyte egress from lymphoid organs. This provides a basis of immunomodulatory drugs targeting S1P1 receptor such as FTY720, an immunosuppressive drug approved in 2010 as the first oral treatment for relapsing-remitting multiple sclerosis. The S1P-S1P receptor signaling system also plays important roles in maintenance of vascular integrity since it suppresses sprouting angiogenesis and regulates vascular permeability. Dysfunction of the S1P-S1P receptor signaling system results in various vascular defects, such as exaggerated angiogenesis in developing retina and augmented inflammation due to increased permeability. Endothelial-specific deletion of S1P1 receptor in mice fed high-fat diet leads to increased formation of atherosclerotic lesions. This review highlights the importance of the S1P-S1P receptor signaling system in inflammatory processes. We also describe our recent findings regarding a specific S1P chaperone, apolipoprotein M, that anchors to high-density lipoprotein and contributes to shaping the endothelial-protective and anti-inflammatory properties of high-density lipoprotein.
Collapse
Affiliation(s)
- Hideru Obinata
- Gunma University Initiative for Advanced Research, Showa-machi, Maebashi, Gunma, Japan
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Mandal B, Prabhu A, Pakshirajan K, Veeranki Dasu V. Construction and parameters modulation of a novel variant Rhodococcus opacus BM985 to achieve enhanced triacylglycerol-a biodiesel precursor, using synthetic dairy wastewater. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Intapad S. Sphingosine-1-phosphate signaling in blood pressure regulation. Am J Physiol Renal Physiol 2019; 317:F638-F640. [PMID: 31390266 DOI: 10.1152/ajprenal.00572.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids were originally believed to play a role only as a backbone of mammalian cell membranes. However, sphingolipid metabolites, especially sphingosine-1-phosphate (S1P), are now recognized as new bioactive signaling molecules that are critically involved in numerous cellular functions of multiple systems including the immune system, central nervous system, and cardiovascular system. S1P research has accelerated in the last decade as new therapeutic drugs have emerged that target the S1P signaling axis to treat diseases of the immune and central nervous systems. There is limited knowledge of the specific effects on cardiovascular disease. This review discusses the current state of knowledge regarding the role of S1P on the regulation of blood pressure, vascular tone, and renal functions.
Collapse
Affiliation(s)
- Suttira Intapad
- Department of Pharmacology Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
17
|
Yasuda D, Kobayashi D, Akahoshi N, Ohto-Nakanishi T, Yoshioka K, Takuwa Y, Mizuno S, Takahashi S, Ishii S. Lysophosphatidic acid-induced YAP/TAZ activation promotes developmental angiogenesis by repressing Notch ligand Dll4. J Clin Invest 2019; 129:4332-4349. [PMID: 31335323 DOI: 10.1172/jci121955] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a potent lipid mediator with various biological functions mediated through six G protein-coupled receptors (GPCRs), LPA1-6. Previous studies have demonstrated that LPA-Gα12/Gα13 signaling plays an important role in embryonic vascular development. However, the responsible LPA receptors and underlying mechanisms are poorly understood. Here, we show a critical role of LPA4 and LPA6 in developmental angiogenesis. In mice, Lpa4;Lpa6 double knockout (DKO) embryos were lethal due to global vascular deficiencies, and endothelial cell (EC)-specific Lpa4;Lpa6 DKO retinas had impaired sprouting angiogenesis. Mechanistically, LPA activated the transcriptional regulators YAP and TAZ through LPA4/LPA6-mediated Gα12/Gα13-Rho-ROCK signaling in ECs. YAP/TAZ knockdown increased β-catenin- and Notch intracellular domain (NICD)-mediated endothelial expression of the Notch ligand delta-like 4 (DLL4). Fibrin gel sprouting assay revealed that LPA4/LPA6, Gα12/Gα13, or YAP/TAZ knockdown consistently blocked EC sprouting, which was rescued by a Notch inhibitor. Of note, the inhibition of Notch signaling also ameliorated impaired retinal angiogenesis in EC-specific Lpa4;Lpa6 DKO mice. Overall, these results suggest that the Gα12/Gα13-coupled receptors LPA4 and LPA6 synergistically regulate endothelial Dll4 expression through YAP/TAZ activation. This could in part account for the mechanism of YAP/TAZ-mediated developmental angiogenesis. Our findings provide a novel insight into the biology of GPCR-activated YAP/TAZ.
Collapse
Affiliation(s)
- Daisuke Yasuda
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Daiki Kobayashi
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Noriyuki Akahoshi
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takayo Ohto-Nakanishi
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazuaki Yoshioka
- Department of Vascular Molecular Physiology, Kanazawa University Graduate School of Medicine, Ishikawa, Japan
| | - Yoh Takuwa
- Department of Vascular Molecular Physiology, Kanazawa University Graduate School of Medicine, Ishikawa, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Ishii
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
18
|
Hernández-Araiza I, Morales-Lázaro SL, Canul-Sánchez JA, Islas LD, Rosenbaum T. Role of lysophosphatidic acid in ion channel function and disease. J Neurophysiol 2018; 120:1198-1211. [PMID: 29947596 DOI: 10.1152/jn.00226.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that exhibits a wide array of functions that include regulation of protein synthesis and adequate development of organisms. LPA is present in the membranes of cells and in the serum of several mammals and has also been shown to participate importantly in pathophysiological conditions. For several decades it was known that LPA produces some of its effects in cells through its interaction with specific G protein-coupled receptors, which in turn are responsible for signaling pathways that regulate cellular function. Among the target proteins for LPA receptors are ion channels that modulate diverse aspects of the physiology of cells and organs where they are expressed. However, recent studies have begun to unveil direct effects of LPA on ion channels, highlighting this phospholipid as a direct agonist and adding to the knowledge of the field of lipid-protein interactions. Moreover, the roles of LPA in pathophysiological conditions associated with the function of some ion channels have also begun to be clarified, and molecular mechanisms have been identified. This review focuses on the effects of LPA on ion channel function under normal and pathological conditions and highlights our present knowledge of the mechanisms by which it regulates the function and expression of N- and T-type Ca++ channels; M-type K+ channel and inward rectifier K+ channel subunit 2.1; transient receptor potential (TRP) melastatin 2, TRP vanilloid 1, and TRP ankyrin 1 channels; and TWIK-related K+ channel 1 (TREK-1), TREK-2, TWIK-related spinal cord K+ channel (TRESK), and TWIK-related arachidonic acid-stimulated K+ channel (TRAAK).
Collapse
Affiliation(s)
- Ileana Hernández-Araiza
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Jesús Aldair Canul-Sánchez
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City, Mexico
| |
Collapse
|
19
|
Badawy SMM, Okada T, Kajimoto T, Ijuin T, Nakamura SI. DHHC5-mediated palmitoylation of S1P receptor subtype 1 determines G-protein coupling. Sci Rep 2017; 7:16552. [PMID: 29185452 PMCID: PMC5707436 DOI: 10.1038/s41598-017-16457-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/13/2017] [Indexed: 01/02/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a pleiotropic lipid mediator involved in the regulation of immune cell trafficking and vascular permeability acting mainly through G-protein-coupled S1P receptors (S1PRs). However, mechanism underlying how S1PRs are coupled with G-proteins remains unknown. Here we have uncovered that palmitoylation of a prototypical subtype S1P1R is prerequisite for subsequent inhibitory G-protein (Gi) coupling. We have identified DHHC5 as an enzyme for palmitoylation of S1P1R. Under basal conditions, S1P1R was functionally associated with DHHC5 in the plasma membranes (PM) and was fully palmitoylated, enabling Gi coupling. Upon stimulation, the receptor underwent internalisation leaving DHHC5 in PM, resulting in depalmitoylation of S1P1R. We also revealed that while physiological agonist S1P-induced endocytosed S1P1R readily recycled back to PM, pharmacological FTY720-P-induced endocytosed S1P1R-positive vesicles became associated with DHHC5 in the later phase, persistently transmitting Gi signals there. This indicates that FTY720-P switches off the S1P signal in PM, while switching on its signal continuously inside the cells. We propose that DHHC5-mediated palmitoylation of S1P1R determines Gi coupling and its signalling in a spatio/temporal manner.
Collapse
Affiliation(s)
- Shaymaa Mohamed Mohamed Badawy
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Taro Okada
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Takeshi Ijuin
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
20
|
Kajimoto T, Mohamed NNI, Badawy SMM, Matovelo SA, Hirase M, Nakamura S, Yoshida D, Okada T, Ijuin T, Nakamura SI. Involvement of Gβγ subunits of G i protein coupled with S1P receptor on multivesicular endosomes in F-actin formation and cargo sorting into exosomes. J Biol Chem 2017; 293:245-253. [PMID: 29133526 DOI: 10.1074/jbc.m117.808733] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/11/2017] [Indexed: 12/29/2022] Open
Abstract
Exosomes play a critical role in cell-to-cell communication by delivering cargo molecules to recipient cells. However, the mechanism underlying the generation of the exosomal multivesicular endosome (MVE) is one of the mysteries in the field of endosome research. Although sphingolipid metabolites such as ceramide and sphingosine 1-phosphate (S1P) are known to play important roles in MVE formation and maturation, the detailed molecular mechanisms are still unclear. Here, we show that Rho family GTPases, including Cdc42 and Rac1, are constitutively activated on exosomal MVEs and are regulated by S1P signaling as measured by fluorescence resonance energy transfer (FRET)-based conformational changes. Moreover, we detected S1P signaling-induced filamentous actin (F-actin) formation. A selective inhibitor of Gβγ subunits, M119, strongly inhibited both F-actin formation on MVEs and cargo sorting into exosomal intralumenal vesicles of MVEs, both of which were fully rescued by the simultaneous expression of constitutively active Cdc42 and Rac1. Our results shed light on the mechanism underlying exosomal MVE maturation and inform the understanding of the physiological relevance of continuous activation of the S1P receptor and subsequent downstream G protein signaling to Gβγ subunits/Rho family GTPases-regulated F-actin formation on MVEs for cargo sorting into exosomal intralumenal vesicles.
Collapse
Affiliation(s)
- Taketoshi Kajimoto
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Nesma Nabil Ibrahim Mohamed
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shaymaa Mohamed Mohamed Badawy
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shubi Ambwene Matovelo
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Mitsuhiro Hirase
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shunsuke Nakamura
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Daisuke Yoshida
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Taro Okada
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Takeshi Ijuin
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shun-Ichi Nakamura
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan.
| |
Collapse
|
21
|
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that can exert diverse biological effects in various diseased states of the kidney by activating at least six cognate G protein-coupled receptors and its complex network of heterotrimeric G proteins. In many models of acute and chronic kidney injury, pathological elevations in LPA promotes abnormal changes in renal tubular epithelial cell architecture by activating apoptotic signaling, recruits immune cells to the site of injury, and stimulates profibrotic signaling by increasing gene transcription. In renal cancers, LPA can promote vascular cell proliferation and tumor cell invasion. In this review, a summary will be provided to describe the involvement of LPA, its synthetic enzymes, and its associated receptors in normal and diseased kidneys. Further elucidation of the LPA system may open new doors in developing a lipid-receptor therapeutic platform for kidney diseases.
Collapse
Affiliation(s)
- Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
22
|
Extracellular α-synuclein induces sphingosine 1-phosphate receptor subtype 1 uncoupled from inhibitory G-protein leaving β-arrestin signal intact. Sci Rep 2017; 7:44248. [PMID: 28300069 PMCID: PMC5353548 DOI: 10.1038/srep44248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/06/2017] [Indexed: 01/26/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder. The presence of α-synuclein (α-Syn)-positive intracytoplasmic inclusions, known as Lewy bodies, is the cytopathological hallmark of PD. Increasing bodies of evidence suggest that cell-to-cell transmission of α-Syn plays a role in the progression of PD. Although extracellular α-Syn is known to cause abnormal cell motility, the precise mechanism remains elusive. Here we show that impairment of platelet-derived growth factor-induced cell motility caused by extracellular α-Syn is mainly attributed to selective inhibition of sphingosine 1-phosphate (S1P) signalling. Treatment of human neuroblastoma cells with recombinant α-Syn caused S1P type 1 (S1P1) receptor-selective uncoupling from inhibitory G-protein (Gi) as determined by both functional and fluorescence resonance energy transfer (FRET)-based structural analyses. By contrast, α-Syn caused little or no effect on S1P2 receptor-mediated signalling. Both wild-type and α-Syn(A53T), a mutant found in familiar PD, caused uncoupling of S1P1 receptor, although α-Syn(A53T) showed stronger potency in uncoupling. Moreover, S1P1 receptor-mediated β-arrestin signal was unaltered by α-Syn(A53T). These results suggest that exogenous α-Syn modulates S1P1 receptor-mediated signalling from both Gi and β-arrestin signals into β-arrestin-biased signal. These findings uncovered a novel function of exogenous α-Syn in the cells.
Collapse
|
23
|
Abstract
Vertebrates are endowed with a closed circulatory system, the evolution of which required novel structural and regulatory changes. Furthermore, immune cell trafficking paradigms adapted to the barriers imposed by the closed circulatory system. How did such changes occur mechanistically? We propose that spatial compartmentalization of the lipid mediator sphingosine 1-phosphate (S1P) may be one such mechanism. In vertebrates, S1P is spatially compartmentalized in the blood and lymphatic circulation, thus comprising a sharp S1P gradient across the endothelial barrier. Circulatory S1P has critical roles in maturation and homeostasis of the vascular system as well as in immune cell trafficking. Physiological functions of S1P are tightly linked to shear stress, the key biophysical stimulus from blood flow. Thus, circulatory S1P confinement could be a primordial strategy of vertebrates in the development of a closed circulatory system. This review discusses the cellular and molecular basis of the S1P gradients and aims to interpret its physiological significance as a key feature of the closed circulatory system.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Vascular Biology Program, Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts 02115; ,
| | - Timothy Hla
- Vascular Biology Program, Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts 02115; ,
| |
Collapse
|
24
|
Kreipke RE, Kwon YV, Shcherbata HR, Ruohola-Baker H. Drosophila melanogaster as a Model of Muscle Degeneration Disorders. Curr Top Dev Biol 2016; 121:83-109. [PMID: 28057309 DOI: 10.1016/bs.ctdb.2016.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drosophila melanogaster provides a powerful platform with which researchers can dissect complex genetic questions and biochemical pathways relevant to a vast array of human diseases and disorders. Of particular interest, much work has been done with flies to elucidate the molecular mechanisms underlying muscle degeneration diseases. The fly is particularly useful for modeling muscle degeneration disorders because there are no identified satellite muscle cells to repair adult muscle following injury. This allows for the identification of endogenous processes of muscle degeneration as discrete events, distinguishable from phenotypes due to the lack of stem cell-based regeneration. In this review, we will discuss the ways in which the fruit fly provides a powerful platform with which to study human muscle degeneration disorders.
Collapse
Affiliation(s)
- R E Kreipke
- University of Washington, School of Medicine, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, United States
| | - Y V Kwon
- University of Washington, School of Medicine, Seattle, WA, United States
| | - H R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - H Ruohola-Baker
- University of Washington, School of Medicine, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, United States.
| |
Collapse
|
25
|
Yukiura H, Kano K, Kise R, Inoue A, Aoki J. LPP3 localizes LPA6 signalling to non-contact sites in endothelial cells. J Cell Sci 2015; 128:3871-7. [PMID: 26345369 PMCID: PMC4657331 DOI: 10.1242/jcs.172098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/26/2015] [Indexed: 12/22/2022] Open
Abstract
Lysophosphatidic acid (LPA) is emerging as an angiogenic factor, because knockdown of the enzyme that produces it (autotaxin, also known as ENPP2) and its receptors cause severe developmental vascular defects in both mice and fish. In addition, overexpression of autotaxin in mice causes similar vascular defects, indicating that the extracellular amount of LPA must be tightly regulated. Here, we focused on an LPA-degrading enzyme, lipid phosphate phosphatase 3 (LPP3, also known as PPAP2B), and showed that LPP3 was localized in specific cell–cell contact sites of endothelial cells and suppresses LPA signalling through the LPA6 receptor (also known as LPAR6). In HEK293 cells, overexpression of LPP3 dramatically suppressed activation of LPA6. In human umbilical vein endothelial cells (HUVECs), LPA induced actin stress fibre formation through LPA6, which was substantially upregulated by LPP3 knockdown. LPP3 was localized to cell–cell contact sites and was missing in non-contact sites to which LPA-induced actin stress fibre formation mediated by LPA6 was restricted. Interestingly, the expression of LPP3 in HUVECs was dramatically increased after forskolin treatment in a process involving Notch signalling. These results indicate that LPP3 regulates and localizes LPA signalling in endothelial cells, thereby stabilizing vessels through Notch signalling for proper vasculature. Summary: In endothelial cells, the membrane-bound LPA-degrading enzyme LPP3 is specifically expressed at cell–cell contact sites, thereby localizing the signal evoked by extracellularly produced LPA.
Collapse
Affiliation(s)
- Hiroshi Yukiura
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
26
|
Guo A, Cai J, Luo X, Zhang S, Hou J, Li H, Cai X. Cloning and characterization of three Eimeria tenella lipid phosphate phosphatases. PLoS One 2015; 10:e0122736. [PMID: 25861032 PMCID: PMC4393304 DOI: 10.1371/journal.pone.0122736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022] Open
Abstract
Although lipid phosphate phosphatases (LPPs) play an important role in cellular signaling in addition to lipid biosynthesis, little is thus far known about parasite LPPs. In this study, we characterized three Eimeria tenella cDNA clones encoding LPP named EtLPP1, EtLPP2 and EtLPP3. Key structural features previously described in LPPs, including the three conserved domains proposed as catalytic sites, a single conserved N-glycosylation site, and putative transmembrane domains were discovered in the three resulting EtLPP amino acid sequences. Expression of His6-tagged EtLPP1, -2, and -3 in HEK293 cells produced immunoreactive proteins with variable molecular sizes, suggesting the presence of multiple forms of each of the three EtLPPs. The two faster-migrating protein bands below each of the three EtLPP proteins were found to be very similar to the porcine 35-kDa LPP enzyme in their molecular size and the extent of their N-glycosylation, suggesting that the three EtLPPs are partially N-glycosylated. Kinetic analyses of the activity of the three enzymes against PA, LPA, C1P and S1P showed that Km values for each of the substrates were (in μM) 284, 46, 28, and 22 for EtLPP1; 369, 179, 237, and 52 for EtLPP2; and 355, 83, and 260 for EtLPP3. However, EtLPP3 showed negligible activity on S1P. These results confirmed that the three EtLPPs have broad substrate specificity. The results also indicated that despite structural similarities, the three EtLPPs may play distinct functions through their different models of substrate preference. Furthermore, particularly high expression levels of the three EtLPP genes were detected in the sporozoite stage of the E. tenella life cycle (p<0.001), suggesting that their encoded proteins might play an important biological function in the sporozoite stage.
Collapse
Affiliation(s)
- Aijiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, Jiangsu, China
- * E-mail:
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, Jiangsu, China
| | - Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Junling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hui Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
27
|
Carroll B, Donaldson JC, Obeid L. Sphingolipids in the DNA damage response. Adv Biol Regul 2014; 58:38-52. [PMID: 25434743 DOI: 10.1016/j.jbior.2014.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/16/2022]
Abstract
Recently, sphingolipid metabolizing enzymes have emerged as important targets of many chemotherapeutics and DNA damaging agents and therefore play significant roles in mediating the physiological response of the cell to DNA damage. In this review we will highlight points of connection between the DNA damage response (DDR) and sphingolipid metabolism; specifically how certain sphingolipid enzymes are regulated in response to DNA damage and how the bioactive lipids produced by these enzymes affect cell fate.
Collapse
Affiliation(s)
- Brittany Carroll
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jane Catalina Donaldson
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lina Obeid
- Northport VA Medical Center, Northport, NY 11768, USA; Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
28
|
Morales-Lázaro SL, Rosenbaum T. A painful link between the TRPV1 channel and lysophosphatidic acid. Life Sci 2014; 125:15-24. [PMID: 25445434 DOI: 10.1016/j.lfs.2014.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 10/24/2022]
Abstract
The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed mainly by sensory neurons that detect noxious stimuli from the environment such as high temperatures and pungent compounds (such as allicin and capsaicin) and has been extensively linked to painful and inflammatory processes. This extraordinary protein also responds to endogenous stimuli among which we find molecules of a lipidic nature. We recently described that lysophosphatidic acid (LPA), a bioactive lysophospholipid linked to the generation and maintenance of pain, can directly activate TRPV1 and produce pain by binding to the channels' C-terminal region, specifically to residue K710. In an effort to further understand how activation of TRPV1 is achieved by this negatively-charged lipid, we used several synthetic and naturally-occurring lipids to determine the structural requirements that need to be met by these charged lipids in order to produce the activation of TRPV1. In this review, we detail the findings obtained by other research groups and our own on the field of TRPV1-regulation by negatively-charged lipids and discuss the possible therapeutic relevance of these findings on the basis of the role of TRPV1 in pathophysiological processes.
Collapse
Affiliation(s)
- Sara L Morales-Lázaro
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | - Tamara Rosenbaum
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
29
|
Panchatcharam M, Salous AK, Brandon J, Miriyala S, Wheeler J, Patil P, Sunkara M, Morris AJ, Escalante-Alcalde D, Smyth SS. Mice with targeted inactivation of ppap2b in endothelial and hematopoietic cells display enhanced vascular inflammation and permeability. Arterioscler Thromb Vasc Biol 2014; 34:837-45. [PMID: 24504738 DOI: 10.1161/atvbaha.113.302335] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Lipid phosphate phosphatase 3 (LPP3), encoded by the PPAP2B gene, is an integral membrane enzyme that dephosphorylates, and thereby terminates, the G-protein-coupled receptor-mediated signaling actions of lysophosphatidic acid (LPA) and sphingosine-1-phosphate. LPP3 is essential for normal vascular development in mice, and a common PPAP2B polymorphism is associated with increased risk of coronary artery disease in humans. Herein, we investigate the function of endothelial LPP3 to understand its role in the development and human disease. APPROACH AND RESULTS We developed mouse models with selective LPP3 deficiency in endothelial and hematopoietic cells. Tyrosine kinase Tek promoter-mediated inactivation of Ppap2b resulted in embryonic lethality because of vascular defects. LPP3 deficiency in adult mice, achieved using a tamoxifen-inducible Cre transgene under the control of the Tyrosine kinase Tek promoter, enhanced local and systemic inflammatory responses. Endothelial, but not hematopoietic, cell LPP3 deficiency led to significant increases in vascular permeability at baseline and enhanced sensitivity to inflammation-induced vascular leak. Endothelial barrier function was restored by pharmacological or genetic inhibition of either LPA production by the circulating lysophospholipase D autotaxin or of G-protein-coupled receptor-dependent LPA signaling. CONCLUSIONS Our results identify a role for the autotaxin/LPA-signaling nexus as a mediator of endothelial permeability in inflammation and demonstrate that LPP3 limits these effects. These findings have implications for therapeutic targets to maintain vascular barrier function in inflammatory states.
Collapse
Affiliation(s)
- Manikandan Panchatcharam
- From the Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY (M.P., A.K.S., J.B., S.M., J.W., P.P., M.S., A.J.M., S.S.S.); División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, Mexico (E.-A.); and Medical Service, Lexington VA Medical Center, Lexington, KY (A.J.M., S.S.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Smyth SS, Mueller P, Yang F, Brandon JA, Morris AJ. Arguing the case for the autotaxin-lysophosphatidic acid-lipid phosphate phosphatase 3-signaling nexus in the development and complications of atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 34:479-86. [PMID: 24482375 DOI: 10.1161/atvbaha.113.302737] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The structurally simple glycero- and sphingo-phospholipids, lysophosphatidic acid (LPA) and sphingosine-1-phosphate, serve as important receptor-active mediators that influence blood and vascular cell function and are positioned to influence the events that contribute to the progression and complications of atherosclerosis. Growing evidence from preclinical animal models has implicated LPA, LPA receptors, and key enzymes involved in LPA metabolism in pathophysiologic events that may underlie atherosclerotic vascular disease. These observations are supported by genetic analysis in humans implicating a lipid phosphate phosphatase as a novel risk factor for coronary artery disease. In this review, we summarize current understanding of LPA production, metabolism, and signaling as may be relevant for atherosclerotic and other vascular disease.
Collapse
Affiliation(s)
- Susan S Smyth
- From the Veterans Affairs Medical Center, Cardiovascular Medicine Service, Lexington, KY (S.S.S., A.J.M.); and Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY (S.S.S., P.M., F.Y., J.A.B., A.J.M.)
| | | | | | | | | |
Collapse
|
31
|
Allende ML, Sipe LM, Tuymetova G, Wilson-Henjum KL, Chen W, Proia RL. Sphingosine-1-phosphate phosphatase 1 regulates keratinocyte differentiation and epidermal homeostasis. J Biol Chem 2013; 288:18381-91. [PMID: 23637227 DOI: 10.1074/jbc.m113.478420] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid whose levels are tightly regulated by its synthesis and degradation. Intracellularly, S1P is dephosphorylated by the actions of two S1P-specific phosphatases, sphingosine-1-phosphate phosphatases 1 and 2. To identify the physiological functions of S1P phosphatase 1, we have studied mice with its gene, Sgpp1, deleted. Sgpp1(-/-) mice appeared normal at birth, but during the 1st week of life they exhibited stunted growth and suffered desquamation, with most dying before weaning. Both Sgpp1(-/-) pups and surviving adults exhibited multiple epidermal abnormalities. Interestingly, the epidermal permeability barrier developed normally during embryogenesis in Sgpp1(-/-) mice. Keratinocytes isolated from the skin of Sgpp1(-/-) pups had increased intracellular S1P levels and displayed a gene expression profile that indicated overexpression of genes associated with keratinocyte differentiation. The results reveal S1P metabolism as a regulator of keratinocyte differentiation and epidermal homeostasis.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
32
|
Caceres NE, Aerts M, Marquez B, Mingeot-Leclercq MP, Tulkens PM, Devreese B, Van Bambeke F. Analysis of the membrane proteome of ciprofloxacin-resistant macrophages by stable isotope labeling with amino acids in cell culture (SILAC). PLoS One 2013; 8:e58285. [PMID: 23505477 PMCID: PMC3591400 DOI: 10.1371/journal.pone.0058285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 02/01/2013] [Indexed: 12/21/2022] Open
Abstract
Overexpression of multidrug transporters is a well-established mechanism of resistance to chemotherapy, but other changes may be co-selected upon exposure to drugs that contribute to resistance. Using a model of J774 macrophages made resistant to the fluoroquinolone antibiotic ciprofloxacin and comparing it with the wild-type parent cell line, we performed a quantitative proteomic analysis using the stable isotope labeling with amino acids in cell culture technology coupled with liquid chromatography electrospray ionization Fourier transform tandem mass spectrometry (LC-ESI-FT-MS/MS) on 2 samples enriched in membrane proteins (fractions F1 and F2 collected from discontinuous sucrose gradient). Nine hundred proteins were identified with at least 3 unique peptides in these 2 pooled fractions among which 61 (F1) and 69 (F2) showed a significantly modified abundance among the 2 cell lines. The multidrug resistance associated protein Abcc4, known as the ciprofloxacin efflux transporter in these cells, was the most upregulated, together with Dnajc3, a protein encoded by a gene located downstream of Abcc4. The other modulated proteins are involved in transport functions, cell adhesion and cytoskeleton organization, immune response, signal transduction, and metabolism. This indicates that the antibiotic ciprofloxacin is able to trigger a pleiotropic adaptative response in macrophages that includes the overexpression of its efflux transporter.
Collapse
Affiliation(s)
- Nancy E. Caceres
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Maarten Aerts
- Laboratorium voor Eiwitbiochemie en Biomoleculaire Engineering, Universiteit Gent, Belgium
| | - Béatrice Marquez
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Paul M. Tulkens
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Bart Devreese
- Laboratorium voor Eiwitbiochemie en Biomoleculaire Engineering, Universiteit Gent, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
33
|
Pantoja M, Fischer KA, Ieronimakis N, Reyes M, Ruohola-Baker H. Genetic elevation of sphingosine 1-phosphate suppresses dystrophic muscle phenotypes in Drosophila. Development 2012; 140:136-46. [PMID: 23154413 DOI: 10.1242/dev.087791] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Duchenne muscular dystrophy is a lethal genetic disease characterized by the loss of muscle integrity and function over time. Using Drosophila, we show that dystrophic muscle phenotypes can be significantly suppressed by a reduction of wunen, a homolog of lipid phosphate phosphatase 3, which in higher animals can dephosphorylate a range of phospholipids. Our suppression analyses include assessing the localization of Projectin protein, a titin homolog, in sarcomeres as well as muscle morphology and functional movement assays. We hypothesize that wunen-based suppression is through the elevation of the bioactive lipid Sphingosine 1-phosphate (S1P), which promotes cell proliferation and differentiation in many tissues, including muscle. We confirm the role of S1P in suppression by genetically altering S1P levels via reduction of S1P lyase (Sply) and by upregulating the serine palmitoyl-CoA transferase catalytic subunit gene lace, the first gene in the de novo sphingolipid biosynthetic pathway and find that these manipulations also reduce muscle degeneration. Furthermore, we show that reduction of spinster (which encodes a major facilitator family transporter, homologs of which in higher animals have been shown to transport S1P) can also suppress dystrophic muscle degeneration. Finally, administration to adult flies of pharmacological agents reported to elevate S1P signaling significantly suppresses dystrophic muscle phenotypes. Our data suggest that localized intracellular S1P elevation promotes the suppression of muscle wasting in flies.
Collapse
Affiliation(s)
- Mario Pantoja
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
34
|
Kok BPC, Venkatraman G, Capatos D, Brindley DN. Unlike two peas in a pod: lipid phosphate phosphatases and phosphatidate phosphatases. Chem Rev 2012; 112:5121-46. [PMID: 22742522 DOI: 10.1021/cr200433m] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bernard P C Kok
- Signal Transduction Research Group, Department of Biochemistry, School of Translational Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
35
|
Siow D, Wattenberg B. The compartmentalization and translocation of the sphingosine kinases: mechanisms and functions in cell signaling and sphingolipid metabolism. Crit Rev Biochem Mol Biol 2011; 46:365-75. [PMID: 21864225 DOI: 10.3109/10409238.2011.580097] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Members of the sphingosine kinase (SK) family of lipid signaling enzymes, comprising SK1 and SK2 in humans, are receiving considerable attention for their roles in a number of physiological and pathophysiological processes. The SKs are considered signaling enzymes based on their production of the potent lipid second messenger sphingosine-1-phosphate, which is the ligand for a family of five G-protein-linked receptors. Both SK1 and SK2 are intracellular enzymes and do not possess obvious membrane anchor domains within their primary sequences. The native substrates (sphingosine and dihydrosphingosine) are lipids, as are the corresponding products, and therefore would have a propensity to be membrane associated, suggesting that specific membrane localization of the SKs could affect both access to substrate and localized production of product. Here, we consider the emerging picture of the SKs as enzymes localized to specific intracellular sites, sometimes by agonist-dependent translocation, the mechanism targeting these enzymes to those sites, and the functional consequence of that localization. Not only is the signaling output of the SKs affected by subcellular localization, but the role of these enzymes as metabolic regulators of sphingolipid metabolism may be impacted as well.
Collapse
Affiliation(s)
- Deanna Siow
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | |
Collapse
|
36
|
Usatyuk PV, He D, Bindokas V, Gorshkova IA, Berdyshev EV, Garcia JGN, Natarajan V. Photolysis of caged sphingosine-1-phosphate induces barrier enhancement and intracellular activation of lung endothelial cell signaling pathways. Am J Physiol Lung Cell Mol Physiol 2011; 300:L840-50. [PMID: 21478254 DOI: 10.1152/ajplung.00404.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that mediates cellular functions by ligation via G protein-coupled S1P receptors. In addition to its extracellular action, S1P also has intracellular effects; however, the signaling pathways modulated by intracellular S1P remain poorly defined. We have previously demonstrated a novel pathway of intracellular S1P generation in human lung endothelial cells (ECs). In the present study, we examined the role of intracellular S1P generated by photolysis of caged S1P on EC barrier regulation and signal transduction. Intracellular S1P released from caged S1P caused mobilization of intracellular calcium, induced activation of MAPKs, redistributed cortactin, vascular endothelial cadherin, and β-catenin to cell periphery, and tightened endothelial barrier in human pulmonary artery ECs. Treatment of cells with pertussis toxin (PTx) had no effect on caged S1P-mediated effects on Ca(2+) mobilization, reorganization of cytoskeleton, cell adherens junction proteins, and barrier enhancement; however, extracellular S1P effects were significantly attenuated by PTx. Additionally, intracellular S1P also activated small GTPase Rac1 and its effector Ras GTPase-activating-like protein IQGAP1, suggesting involvement of these proteins in the S1P-mediated changes in cell-to-cell adhesion contacts. Downregulation of sphingosine kinase 1 (SphK1), but not SphK2, with siRNA or inhibition of SphK activity with an inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole (CII) attenuated exogenously administrated S1P-induced EC permeability. Furthermore, S1P1 receptor inhibitor SB649164 abolished exogenous S1P-induced transendothelial resistance changes but had no effect on intracellular S1P generated by photolysis of caged S1P. These results provide evidence that intracellular S1P modulates signal transduction in lung ECs via signaling pathway(s) independent of S1P receptors.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Department of Pharmacology, University of Illinois at Chicago, 60612, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Wattenberg BW. Role of sphingosine kinase localization in sphingolipid signaling. World J Biol Chem 2010; 1:362-8. [PMID: 21537471 PMCID: PMC3083941 DOI: 10.4331/wjbc.v1.i12.362] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/22/2010] [Accepted: 10/29/2010] [Indexed: 02/05/2023] Open
Abstract
The sphingosine kinases, SK1 and SK2, produce the potent signaling lipid sphingosine-1-phosphate (S1P). These enzymes have garnered increasing interest for their roles in tumorigenesis, inflammation, vascular diseases, and immunity, as well as other functions. The sphingosine kinases are considered signaling enzymes by producing S1P, and their activity is acutely regulated by a variety of agonists. However, these enzymes are also key players in the control of sphingolipid metabolism. A variety of sphingolipids, such as sphingosine and the ceramides, are potent signaling molecules in their own right. The role of sphingosine kinases in regulating sphingolipid metabolism is potentially a critical aspect of their signaling function. A central aspect of signaling lipids is that their hydrophobic nature constrains them to membranes. Most enzymes of sphingolipid metabolism, including the enzymes that degrade S1P, are membrane enzymes. Therefore the localization of the sphingosine kinases and S1P is likely to be important in S1P signaling. Sphingosine kinase localization affects sphingolipid signaling in several ways. Translocation of SK1 to the plasma membrane promotes extracellular secretion of S1P. SK1 and SK2 localization to specific sites appears to direct S1P to intracellular protein effectors. SK localization also determines the access of these enzymes to their substrates. This may be an important mechanism for the regulation of ceramide biosynthesis by diverting dihydrosphingosine, a precursor in the ceramide biosynthetic pathway, from the de novo production of ceramide.
Collapse
Affiliation(s)
- Binks W Wattenberg
- Binks W Wattenberg, Clinical and Translational Research Building, Room 419, 505 South Hancock St. Louisville, KY 40202, United States
| |
Collapse
|
38
|
Gault CR, Obeid LM, Hannun YA. An overview of sphingolipid metabolism: from synthesis to breakdown. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:1-23. [PMID: 20919643 PMCID: PMC3069696 DOI: 10.1007/978-1-4419-6741-1_1] [Citation(s) in RCA: 773] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sphingolipids constitute a class of lipids defined by their eighteen carbon amino-alcohol backbones which are synthesized in the ER from nonsphingolipid precursors. Modification of this basic structure is what gives rise to the vast family of sphingolipids that play significant roles in membrane biology and provide many bioactive metabolites that regulate cell function. Despite the diversity of structure and function of sphingolipids, their creation and destruction are governed by common synthetic and catabolic pathways. In this regard, sphingolipid metabolism can be imagined as an array of interconnected networks that diverge from a single common entry point and converge into a single common breakdown pathway. In their simplest forms, sphingosine, phytosphingosine and dihydrosphingosine serve as the backbones upon which further complexity is achieved. For example, phosphorylation of the C1 hydroxyl group yields the final breakdown products and/or the important signaling molecules sphingosine-1-phosphate, phytosphingosine-1-phosphate and dihydrosphingosine-1-phosphate, respectively. On the other hand, acylation of sphingosine, phytosphingosine, or dihydrosphingosine with one of several possible acyl CoA molecules through the action of distinct ceramide synthases produces the molecules defined as ceramide, phytoceramide, or dihydroceramide. Ceramide, due to the differing acyl CoAs that can be used to produce it, is technically a class of molecules rather than a single molecule and therefore may have different biological functions depending on the acyl chain it is composed of. At the apex of complexity is the group of lipids known as glycosphingolipids (GSL) which contain dozens of different sphingolipid species differing by both the order and type of sugar residues attached to their headgroups. Since these molecules are produced from ceramide precursors, they too may have differences in their acyl chain composition, revealing an additional layer of variation. The glycosphingolipids are divided broadly into two categories: glucosphingolipids and galactosphingolipids. The glucosphingolipids depend initially on the enzyme glucosylceramide synthase (GCS) which attaches glucose as the first residue to the C1 hydroxyl position. Galactosphingolipids, on the other hand, are generated from galactosylceramide synthase (GalCerS), an evolutionarily dissimilar enzyme from GCS. Glycosphingolipids are further divided based upon further modification by various glycosyltransferases which increases the potential variation in lipid species by several fold. Far more abundant are the sphingomyelin species which are produced in parallel with glycosphingolipids, however they are defined by a phosphocholine headgroup rather than the addition of sugar residues. Although sphingomyelin species all share a common headgroup, they too are produced from a variety of ceramide species and therefore can have differing acyl chains attached to their C-2 amino groups. Whether or not the differing acyl chain lengths in SMs dictate unique functions or important biophysical distinctions has not yet been established. Understanding the function of all the existing glycosphingolipids and sphingomyelin species will be a major undertaking in the future since the tools to study and measure these species are only beginning to be developed (see Fig 1 for an illustrated depiction of the various sphingolipid structures). The simple sphingolipids serve both as the precursors and the breakdown products of the more complex ones. Importantly, in recent decades, these simple sphingolipids have gained attention for having significant signaling and regulatory roles within cells. In addition, many tools have emerged to measure the levels of simple sphingolipids and therefore have become the focus of even more intense study in recent years. With this thought in mind, this chapter will pay tribute to the complex sphingolipids, but focus on the regulation of simple sphingolipid metabolism.
Collapse
Affiliation(s)
- Christopher R Gault
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
39
|
Giusto NM, Pasquaré SJ, Salvador GA, Ilincheta de Boschero MG. Lipid second messengers and related enzymes in vertebrate rod outer segments. J Lipid Res 2009; 51:685-700. [PMID: 19828910 DOI: 10.1194/jlr.r001891] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Rod outer segments (ROSs) are specialized light-sensitive organelles in vertebrate photoreceptor cells. Lipids in ROS are of considerable importance, not only in providing an adequate environment for efficient phototransduction, but also in originating the second messengers involved in signal transduction. ROSs have the ability to adapt the sensitivity and speed of their responses to ever-changing conditions of ambient illumination. A major contributor to this adaptation is the light-driven translocation of key signaling proteins into and out of ROS. The present review shows how generation of the second lipid messengers from phosphatidylcholine, phosphatidic acid, and diacylglycerol is modulated by the different illumination states in the vertebrate retina. Findings suggest that the light-induced translocation of phototransduction proteins influences the enzymatic activities of phospholipase D, lipid phosphate phosphatase, diacylglyceride lipase, and diacylglyceride kinase, all of which are responsible for the generation of the second messenger molecules.
Collapse
Affiliation(s)
- Norma M Giusto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| | | | | | | |
Collapse
|
40
|
Endo T, Kano K, Motoki R, Hama K, Okudaira S, Ishida M, Ogiso H, Tanaka M, Matsuki N, Taguchi R, Kanai M, Shibasaki M, Arai H, Aoki J. Lysophosphatidylmethanol is a pan lysophosphatidic acid receptor agonist and is produced by autotaxin in blood. ACTA ACUST UNITED AC 2009; 146:283-93. [DOI: 10.1093/jb/mvp068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Tomsig JL, Snyder AH, Berdyshev EV, Skobeleva A, Mataya C, Natarajan V, Brindley DN, Lynch KR. Lipid phosphate phosphohydrolase type 1 (LPP1) degrades extracellular lysophosphatidic acid in vivo. Biochem J 2009; 419:611-8. [PMID: 19215222 PMCID: PMC2677185 DOI: 10.1042/bj20081888] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
LPA (lysophosphatidic acid) is a lipid mediator that stimulates cell proliferation and growth, and is involved in physiological and pathological processes such as wound healing, platelet activation, angiogenesis and the growth of tumours. Therefore defining the mechanisms of LPA production and degradation are of interest in understanding the regulation of these processes. Extracellular LPA synthesis is relatively well understood, whereas the mechanisms of its degradation are not. One route of LPA degradation is dephosphorylation. A candidate enzyme is the integral membrane exophosphatase LPP1 (lipid phosphate phosphohydrolase type 1). In the present paper, we report the development of a mouse wherein the LPP1 gene (Ppap2a) was disrupted. The homozygous mice, which are phenotypically unremarkable, generally lack Ppap2a mRNA, and multiple tissues exhibit a substantial (35-95%) reduction in LPA phosphatase activity. Compared with wild-type littermates, Ppap2a(tr/tr) animals have increased levels of plasma LPA, and LPA injected intravenously is metabolized at a 4-fold lower rate. Our results demonstrate that LPA is rapidly metabolized in the bloodstream and that LPP1 is an important determinant of this turnover. These results indicate that LPP1 is a catabolic enzyme for LPA in vivo.
Collapse
Affiliation(s)
- Jose L. Tomsig
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Ashley H. Snyder
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Evgeny V. Berdyshev
- Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, Illinois 60637
| | - Anastasia Skobeleva
- Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, Illinois 60637
| | - Chifundo Mataya
- Department of Biochemistry, University of Alberta, Edmonton, T6G 2S2, Canada
| | - Viswanathan Natarajan
- Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, Illinois 60637
| | - David N. Brindley
- Department of Biochemistry, University of Alberta, Edmonton, T6G 2S2, Canada
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
42
|
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University, 975 W. Walnut St., IB355A, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
43
|
Abstract
Lipid phosphate phosphatases (LPPs) regulate cell signaling by modifying the concentrations of lipid phosphates versus their dephosphorylated products. The ecto-activity regulates the availability of extracellular lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) and thereby signaling by their respective receptors. LPP products (monoacylglycerol or sphingosine) are taken up by cells and rephosphorylated to produce LPA and S1P, respectively, which activate intracellular signaling cascades. The proposed integrin binding domain on the external surface of LPP3 modifies cell/cell interactions. Expression of LPPs on internal membranes controls signaling depending on the access of lipid phosphates to their active sites. Different LPPs perform distinct functions, probably based on integrin binding, their locations, and their abilities to metabolize different lipid phosphates in vivo.
Collapse
Affiliation(s)
- David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada.
| | | |
Collapse
|
44
|
Theofilopoulos S, Lykidis A, Leondaritis G, Mangoura D. Novel function of the human presqualene diphosphate phosphatase as a type II phosphatidate phosphatase in phosphatidylcholine and triacylglyceride biosynthesis pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:731-42. [DOI: 10.1016/j.bbalip.2008.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 08/29/2008] [Accepted: 09/11/2008] [Indexed: 11/27/2022]
|
45
|
Hosogaya S, Yatomi Y, Nakamura K, Ohkawa R, Okubo S, Yokota H, Ohta M, Yamazaki H, Koike T, Ozaki Y. Measurement of plasma lysophosphatidic acid concentration in healthy subjects: strong correlation with lysophospholipase D activity. Ann Clin Biochem 2008; 45:364-8. [PMID: 18583620 DOI: 10.1258/acb.2008.007242] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Lysophosphatidic acid (LPA) plays important roles in a variety of biological responses, especially in the area of vascular biology, and the determination of its plasma concentration is believed to be important. Several mechanisms are known to be involved in the metabolism of LPA. METHODS To identify factors that may determine the plasma concentrations of this important bioactive lipid, we examined its concentrations using an enzymatic cycling assay and related parameters in 146 healthy subjects. RESULTS The LPA concentration was significantly higher in women (mean +/- SD, 0.103 +/- 0.032 micromol/L; n = 47) than in men (0.077 +/- 0.026 micromol/L; n = 99). A multiple regression analysis showed a strong positive correlation between the plasma LPA concentration and serum lysophospholipase D (lysoPLD) activity, while the LPA concentration was correlated with the plasma lysophosphatidylcholine (LPC) concentration only in men. Other lipid-related parameters were only slightly correlated or were not correlated with the LPA concentration. CONCLUSIONS Our findings suggested that conversion from LPC by lysoPLD might be the major route for LPA production in plasma.
Collapse
Affiliation(s)
- Shigemi Hosogaya
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Undecaprenyl phosphate (C55-P) is an essential 55-carbon long-chain isoprene lipidinvolved in the biogenesis of bacterial cell wall carbohydrate polymers: peptidoglycan, O antigen, teichoic acids, and other cell surface polymers. It functions as a lipid carrier that allows the traffic of sugar intermediates across the plasma membrane, towards the periplasm,where the polymerization of the different cellwall components occurs. At the end of these processes, the lipid is released in a pyrophosphate form (C55-PP). C55-P arises from the dephosphorylation of C55-PP, which itself originates from either a recycling event or a de novo synthesis. In Escherichia coli, the formation of C55-PP is catalyzed by the essential UppS synthase, a soluble cis-prenyltransferase, whichadds eight isoprene units ontofarnesyl pyrophosphate. Severalapo- and halo-UppSthree-dimensional structures have provided a high level of understanding of this enzymatic step. The following dephosphorylationstep is required before the lipid carrier can accept a sugar unit at the cytoplasmic face of the membrane. Four integralmembrane proteins have been shown to catalyzethis reaction in E. coli:BacA and three members of the PAP2 super-family:YbjG, LpxT, and PgpB. None of these enzymes is essential,but the simultaneous inactivation of bacA, ybjG, and pgpB genes gave rise to a lethal phenotype, raising the question of the relevance of such a redundancy of activity. It was alsorecently shown that LpxTcatalyzes the specific transfer of the phosphate group arising from C55-PP to the lipidA moiety of lipopolysaccharides, leading to a lipid-A 1-diphosphate form whichaccounts for one-third of the total lipidA in wild-type E. coli cells. The active sites of LpxT, PgpB,andYbjG were shown to face the periplasm, suggesting that PAP2 enzymes arerather involved in C55-PP recycling. These recent discoveries have opened the way to the elucidation of the functional and structural characterization of these different phosphatases.
Collapse
|
47
|
Yamanaka M, Anada Y, Igarashi Y, Kihara A. A splicing isoform of LPP1, LPP1a, exhibits high phosphatase activity toward FTY720 phosphate. Biochem Biophys Res Commun 2008; 375:675-9. [PMID: 18755152 DOI: 10.1016/j.bbrc.2008.07.165] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 07/29/2008] [Indexed: 12/01/2022]
Abstract
The sphingolipid metabolite sphingosine 1-phosphate (S1P) plays an essential function in the egress of T cells from the thymus and secondary lymphoid organs. The novel immunomodulating agent FTY720 is phosphorylated in vivo to the functional form FTY720 phosphate (FTY720-P), which is structurally similar to S1P. FTY720-P inhibits the S1P-mediated T cell egress as an agonist of S1P receptors. FTY720-P is not stable in plasma and is dephosphorylated to FTY720. In the present study, we investigated activities toward FTY720-P of LPP family members (LPP1, LPP1a, LPP2, and LPP3), which exhibit broad substrate specificity. Of the four, LPP1a, the splicing isoform of LPP1, had the highest activity toward FTY720-P, and the highest affinity. Among blood-facing cells tested, only endothelial cells displayed high phosphatase activity for FTY720-P. Significant levels of LPP1a expression were found in endothelial cells, suggesting that LPP1a is important for the dephosphorylation of FTY720-P in plasma.
Collapse
Affiliation(s)
- Masao Yamanaka
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
48
|
Limaye V. The role of sphingosine kinase and sphingosine-1-phosphate in the regulation of endothelial cell biology. ACTA ACUST UNITED AC 2008; 15:101-12. [PMID: 18568950 DOI: 10.1080/10623320802125342] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sphingolipids, in particular sphingosine kinase (SphK) and its product sphingosine-1-phosphate (S1P), are now recognized to play an important role in regulating many critical processes in endothelial cells. Activation of SphK1 is essential in mediating the endothelial proinflammatory effects of inflammatory cytokines such as tumor necrosis factor (TNF). In addition, S1P regulates the survival and proliferation of endothelial cells, as well as their ability to undergo cell migration, all essential components of angiogenesis. Thus the inflammatory and angiogenic potential of the endothelium is in part regulated by intracellular components including the activity of SphK1 and levels of S1P. Herein a review of the sphingomyelin pathway with a particular focus on its relevance to endothelial cell biology is presented.
Collapse
Affiliation(s)
- Vidya Limaye
- Rheumatology Department, Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
49
|
Pasquaré SJ, Salvador GA, Giusto NM. Involvement of Lysophosphatidic Acid, Sphingosine 1-Phosphate and Ceramide 1-Phosphate in the Metabolization of Phosphatidic Acid by Lipid Phosphate Phosphatases in Bovine Rod Outer Segments. Neurochem Res 2008; 33:1205-15. [DOI: 10.1007/s11064-007-9569-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 12/12/2007] [Indexed: 12/29/2022]
|
50
|
Le Stunff H, Giussani P, Maceyka M, Lépine S, Milstien S, Spiegel S. Recycling of sphingosine is regulated by the concerted actions of sphingosine-1-phosphate phosphohydrolase 1 and sphingosine kinase 2. J Biol Chem 2007; 282:34372-80. [PMID: 17895250 DOI: 10.1074/jbc.m703329200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast, the long-chain sphingoid base phosphate phosphohydrolase Lcb3p is required for efficient ceramide synthesis from exogenous sphingoid bases. Similarly, in this study, we found that incorporation of exogenous sphingosine into ceramide in mammalian cells was regulated by the homologue of Lcb3p, sphingosine-1-phosphate phosphohydrolase 1 (SPP-1), an endoplasmic reticulum resident protein. Sphingosine incorporation into endogenous long-chain ceramides was increased by SPP-1 overexpression, whereas recycling of C(6)-ceramide into long-chain ceramides was not altered. The increase in ceramide was inhibited by fumonisin B(1), an inhibitor of ceramide synthase, but not by ISP-1, an inhibitor of serine palmitoyltransferase, the rate-limiting step in the de novo biosynthesis of ceramide. Mass spectrometry analysis revealed that SPP-1 expression increased the incorporation of sphingosine into all ceramide acyl chain species, particularly enhancing C16:0, C18:0, and C20:0 long-chain ceramides. The increased recycling of sphingosine into ceramide was accompanied by increased hexosylceramides and, to a lesser extent, sphingomyelins. Sphingosine kinase 2, but not sphingosine kinase 1, acted in concert with SPP-1 to regulate recycling of sphingosine into ceramide. Collectively, our results suggest that an evolutionarily conserved cycle of phosphorylation-dephosphorylation regulates recycling and salvage of sphingosine to ceramide and more complex sphingolipids.
Collapse
Affiliation(s)
- Hervé Le Stunff
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|