1
|
Dorey TW, Liu Y, Jansen HJ, Bohne LJ, Mackasey M, Atkinson L, Prasai S, Belke DD, Fatehi-Hassanabad A, Fedak PWM, Rose RA. Natriuretic Peptide Receptor B Protects Against Atrial Fibrillation by Controlling Atrial cAMP Via Phosphodiesterase 2. Circ Arrhythm Electrophysiol 2023; 16:e012199. [PMID: 37933567 DOI: 10.1161/circep.123.012199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND β-AR (β-adrenergic receptor) stimulation regulates atrial electrophysiology and Ca2+ homeostasis via cAMP-dependent mechanisms; however, enhanced β-AR signaling can promote atrial fibrillation (AF). CNP (C-type natriuretic peptide) can also regulate atrial electrophysiology through the activation of NPR-B (natriuretic peptide receptor B) and cGMP-dependent signaling. Nevertheless, the role of NPR-B in regulating atrial electrophysiology, Ca2+ homeostasis, and atrial arrhythmogenesis is incompletely understood. METHODS Studies were performed using atrial samples from human patients with AF or sinus rhythm and in wild-type and NPR-B-deficient (NPR-B+/-) mice. Studies were conducted in anesthetized mice by intracardiac electrophysiology, in isolated mouse atrial preparations using high-resolution optical mapping, in isolated mouse and human atrial myocytes using patch-clamping and Ca2+ imaging, and in mouse and human atrial tissues using molecular biology. RESULTS Atrial NPR-B protein levels were reduced in patients with AF, and NPR-B+/- mice were more susceptible to AF. Atrial cGMP levels and PDE2 (phosphodiesterase 2) activity were reduced in NPR-B+/- mice leading to larger increases in atrial cAMP in the presence of the β-AR agonist isoproterenol. NPR-B+/- mice displayed larger increases in action potential duration and L-type Ca2+ current in the presence of isoproterenol. This resulted in the occurrence of spontaneous sarcoplasmic reticulum Ca2+ release events and delayed afterdepolarizations in NPR-B+/- atrial myocytes. Phosphorylation of the RyR2 (ryanodine receptor) and phospholamban was increased in NPR-B+/- atria in the presence of isoproterenol compared with the wildtypes. C-type natriuretic peptide inhibited isoproterenol-stimulated L-type Ca2+ current through PDE2 in mouse and human atrial myocytes. CONCLUSIONS NPR-B protects against AF by preventing enhanced atrial responses to β-adrenergic receptor agonists.
Collapse
Affiliation(s)
- Tristan W Dorey
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Yingjie Liu
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Hailey J Jansen
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Loryn J Bohne
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Martin Mackasey
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Logan Atkinson
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada (L.A.)
| | - Shuvam Prasai
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Darrell D Belke
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Ali Fatehi-Hassanabad
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| | - Robert A Rose
- Department of Cardiac Sciences (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., D.D.B, A.F.-H., P.W.M.F., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
- Department of Physiology and Pharmacology (T.W.D., Y.L., H.J.J., L.J.B., M.M., S.P., R.A.R.), Libin Cardiovascular Institute, Cumming School of Medicine University of Calgary, Alberta, Canada
| |
Collapse
|
2
|
Vielmuth F, Radeva MY, Yeruva S, Sigmund AM, Waschke J. cAMP: A master regulator of cadherin-mediated binding in endothelium, epithelium and myocardium. Acta Physiol (Oxf) 2023; 238:e14006. [PMID: 37243909 DOI: 10.1111/apha.14006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Regulation of cadherin-mediated cell adhesion is crucial not only for maintaining tissue integrity and barrier function in the endothelium and epithelium but also for electromechanical coupling within the myocardium. Therefore, loss of cadherin-mediated adhesion causes various disorders, including vascular inflammation and desmosome-related diseases such as the autoimmune blistering skin dermatosis pemphigus and arrhythmogenic cardiomyopathy. Mechanisms regulating cadherin-mediated binding contribute to the pathogenesis of diseases and may also be used as therapeutic targets. Over the last 30 years, cyclic adenosine 3',5'-monophosphate (cAMP) has emerged as one of the master regulators of cell adhesion in endothelium and, more recently, also in epithelial cells as well as in cardiomyocytes. A broad spectrum of experimental models from vascular physiology and cell biology applied by different generations of researchers provided evidence that not only cadherins of endothelial adherens junctions (AJ) but also desmosomal contacts in keratinocytes and the cardiomyocyte intercalated discs are central targets in this scenario. The molecular mechanisms involve protein kinase A- and exchange protein directly activated by cAMP-mediated regulation of Rho family GTPases and S665 phosphorylation of the AJ and desmosome adaptor protein plakoglobin. In line with this, phosphodiesterase 4 inhibitors such as apremilast have been proposed as a therapeutic strategy to stabilize cadherin-mediated adhesion in pemphigus and may also be effective to treat other disorders where cadherin-mediated binding is compromised.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna M Sigmund
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Franzoso M, Dokshokova L, Vitiello L, Zaglia T, Mongillo M. Tuning the Consonance of Microscopic Neuro-Cardiac Interactions Allows the Heart Beats to Play Countless Genres. Front Physiol 2022; 13:841740. [PMID: 35273522 PMCID: PMC8902305 DOI: 10.3389/fphys.2022.841740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Different from skeletal muscle, the heart autonomously generates rhythmic contraction independently from neuronal inputs. However, speed and strength of the heartbeats are continuously modulated by environmental, physical or emotional inputs, delivered by cardiac innervating sympathetic neurons, which tune cardiomyocyte (CM) function, through activation of β-adrenoceptors (β-ARs). Given the centrality of such mechanism in heart regulation, β-AR signaling has been subject of intense research, which has reconciled the molecular details of the transduction pathway and the fine architecture of cAMP signaling in subcellular nanodomains, with its final effects on CM function. The importance of mechanisms keeping the elements of β-AR/cAMP signaling in good order emerges in pathology, when the loss of proper organization of the transduction pathway leads to detuned β-AR/cAMP signaling, with detrimental consequences on CM function. Despite the compelling advancements in decoding cardiac β-AR/cAMP signaling, most discoveries on the subject were obtained in isolated cells, somehow neglecting that complexity may encompass the means in which receptors are activated in the intact heart. Here, we outline a set of data indicating that, in the context of the whole myocardium, the heart orchestra (CMs) is directed by a closely interacting and continuously attentive conductor, represented by SNs. After a roundup of literature on CM cAMP regulation, we focus on the unexpected complexity and roles of cardiac sympathetic innervation, and present the recently discovered Neuro-Cardiac Junction, as the election site of "SN-CM" interaction. We further discuss how neuro-cardiac communication is based on the combination of extra- and intra-cellular signaling micro/nano-domains, implicating neuronal neurotransmitter exocytosis, β-ARs and elements of cAMP homeostasis in CMs, and speculate on how their dysregulation may reflect on dysfunctional neurogenic control of the heart in pathology.
Collapse
Affiliation(s)
- Mauro Franzoso
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lolita Dokshokova
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Wang YW, Gao QW, Xiao YJ, Zhu XJ, Gao L, Zhang WH, Wang RR, Chen KS, Liu FM, Huang HL, Chen L. Bay 60-7550, a PDE2 inhibitor, exerts positive inotropic effect of rat heart by increasing PKA-mediated phosphorylation of phospholamban. Eur J Pharmacol 2021; 901:174077. [PMID: 33798601 DOI: 10.1016/j.ejphar.2021.174077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
This study investigated the hemodynamic effect of Bay 60-7550, a phosphodiesterase type 2 (PDE2) inhibitor, in healthy rat hearts both in vivo and ex vivo and its underlying mechanisms. In vivo rat left ventricular pressure-volume loop, Langendorff isolated rat heart, Ca2+ transient of left ventricular myocyte and Western blot experiments were used in this study. The results demonstrated that Bay 60-7550 (1.5 mg/kg, i. p.) increased the in vivo rat heart contractility by enhancing stroke work, cardiac output, stroke volume, end-diastolic volume, heart rate, and ejection fraction. The simultaneous aortic pressure recording indicated that the systolic blood pressure was increased and diastolic blood pressure was decreased by Bay 60-7550. Also, the arterial elastance which is proportional to the peripheral vessel resistance was significantly decreased. Bay 60-7550 (0.001, 0.01, 0.1, 1 μmol/l) also enhanced the left ventricular development pressure in non-paced and paced modes with a decrease of heart rate in non-paced model. Bay 60-7550 (1 μmol/l) increased SERCA2a activity and SR Ca2+ content and reduced SR Ca2+ leak rate. Furthermore, Bay 60-7550 (0.1 μmol/l) increased the phosphorylation of phospholamban at 16-serine without significantly changing the phosphorylation levels of phospholamban at 17-threonine and RyR2. Bay 60-7550 increased the rat heart contractility and reduced peripheral arterial resistance may be mediated by increasing the phosphorylation of phospholamban and dilating peripheral vessels. PDE2 inhibitors which result in a positive inotropic effect and a decrease in peripheral resistance might serve as a target for developing agents for the treatment of heart failure in clinical settings.
Collapse
Affiliation(s)
- Yu-Wei Wang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qian-Wen Gao
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Jie Xiao
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Jia Zhu
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Gao
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen-Hui Zhang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rong-Rong Wang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ke-Su Chen
- School of Medicine, Nanjing University, Nanjing 210093, China
| | - Fu-Ming Liu
- First Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Hui-Li Huang
- Department of Clinical Pharmacy, No. 900 Hospital of the Chinese PLA Joint Support Forces, Fuzhou 350000, China
| | - Long Chen
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Institute of Chinese Medicine of Taizhou China Medical City, Double Tower, China Medical City, Taizhou 225300, China.
| |
Collapse
|
5
|
Pavlaki N, Nikolaev VO. Imaging of PDE2- and PDE3-Mediated cGMP-to-cAMP Cross-Talk in Cardiomyocytes. J Cardiovasc Dev Dis 2018; 5:jcdd5010004. [PMID: 29367582 PMCID: PMC5872352 DOI: 10.3390/jcdd5010004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclic nucleotides 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are important second messengers that regulate cardiovascular function and disease by acting in discrete subcellular microdomains. Signaling compartmentation at these locations is often regulated by phosphodiesterases (PDEs). Some PDEs are also involved in the cross-talk between the two second messengers. The purpose of this review is to summarize and highlight recent findings about the role of PDE2 and PDE3 in cardiomyocyte cyclic nucleotide compartmentation and visualization of this process using live cell imaging techniques.
Collapse
Affiliation(s)
- Nikoleta Pavlaki
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
6
|
Hosseini A, Shafiee-Nick R, Sadeghian H, Parsaee H. Novel cilostamide analogs, phosphodiesterase 3 inhibitors, produce positive inotropic but differential lusitropic and chronotropic effects on isolated rat atria. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:639-647. [PMID: 28868120 PMCID: PMC5569452 DOI: 10.22038/ijbms.2017.8831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective(s): Recently, we showed that some new synthetic compounds structurally related to cilostamide (4-(1,2-dihydro-2-oxoquinolin-6-hydroxy)- N-cyclohexyl-N-methylbutanamide), a selective phosphodiesterase 3 (PDE3) inhibitor, produce inotropic effect comparable to that of IBMX (3-isobutyl-1-methylxanthine), a non-selective PDE inhibitor, but with differential chronotropic effect. In this investigation, we compared the pharmacological effects of these compounds as potential cardiotonic agents using the spontaneously beating atria model. Materials and Methods: In each experiment, rats were treated with reserpine. The atrium was isolated and mounted in an organ bath. We assessed chronotropic and inotropic effects using cumulative log concentration-response curves of isoprenaline alone or in combination of each test-compound. Results: Majority of test compounds augment atria contraction force (ACF) significantly but with different potencies on atrium contraction rate. Cilostamide, MCPIP ([4-(4-methyl piperazin-1-yl)-4-oxobutoxy)-4-methylquinolin-2(1H)-one]), methyl carbostyril compounds- (mc1), mc2 and mc5 increased the isoprenaline effect on ACF synergistically. But, mc6 failed to potentiate the effect of isoprenalin; mc3 and mc4 did not increase ACF, which may be because of their higher hydrophilic nature. It was interesting that mc2, alone or in combination with isoprenaline, produced the highest inotropic effect while it did not affect the basal contraction rate and almost blocked the isoprenaline chronotropic effect. Conclusion: Combination of mc2 with isoprenaline had synergistic effect on inotropic effect, but this combination reduced isoprenaline chronotropic effect; therefore, these effects cannot be related to reducing B-adrenergic receptors activity. These compounds showed different effects; probably all of them were not mediated via PDE3 inhibition and other mechanisms are involving.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Shafiee-Nick
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Sadeghian
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Heydar Parsaee
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Weber S, Zeller M, Guan K, Wunder F, Wagner M, El-Armouche A. PDE2 at the crossway between cAMP and cGMP signalling in the heart. Cell Signal 2017; 38:76-84. [PMID: 28668721 DOI: 10.1016/j.cellsig.2017.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 11/26/2022]
Abstract
The cyclic nucleotides cAMP and cGMP are central second messengers in cardiac cells and critical regulators of cardiac physiology as well as pathophysiology. Consequently, subcellular compartmentalization allows for spatiotemporal control of cAMP/cGMP metabolism and subsequent regulation of their respective effector kinases PKA or PKG is most important for cardiac function in health and disease. While acute cAMP-mediated signalling is a mandatory prerequisite for the physiological fight-or-flight response, sustained activation of this pathway may lead to the progression of heart failure. In contrast, acute as well as sustained cGMP-mediated signalling can foster beneficial features, e.g. anti-hypertrophic and vasodilatory effects. These two signalling pathways seem to be intuitively counteracting and there is increasing evidence for a functionally relevant crosstalk between cAMP and cGMP signalling pathways on the level of cyclic nucleotide hydrolysing phosphodiesterases (PDEs). Among this diverse group of enzymes, PDE2 may fulfill a unique integrator role. Equipped with dual substrate specificity for cAMP as well as for cGMP, it is the only cAMP hydrolysing PDE, which is allosterically activated by cGMP. Recent studies have revealed strongly remodelled cAMP/cGMP microdomains and subcellular concentration profiles in different cardiac pathologies, leading to a putatively enhanced involvement of PDE2 in cAMP/cGMP breakdown and crosstalk compared to the other cardiac PDEs. This review sums up the current knowledge about molecular properties and regulation of PDE2 and explains the complex signalling network encompassing PDE2 in order to better understand the functional role of PDE2 in distinct cell types in cardiac health and disease. Moreover, this review gives an outlook in which way PDE2 may serve as a therapeutic target to treat cardiac disease.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| | - Miriam Zeller
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Kaomei Guan
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Frank Wunder
- Drug Discovery, Bayer AG, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| |
Collapse
|
8
|
Vogt S, Rhiel A, Weber P, Ramzan R. Revisiting Kadenbach: Electron flux rate through cytochrome c-oxidase determines the ATP-inhibitory effect and subsequent production of ROS. Bioessays 2016; 38:556-67. [PMID: 27171124 PMCID: PMC5084804 DOI: 10.1002/bies.201600043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial respiration is the predominant source of ATP. Excessive rates of electron transport cause a higher production of harmful reactive oxygen species (ROS). There are two regulatory mechanisms known. The first, according to Mitchel, is dependent on the mitochondrial membrane potential that drives ATP synthase for ATP production, and the second, the Kadenbach mechanism, is focussed on the binding of ATP to Cytochrome c Oxidase (CytOx) at high ATP/ADP ratios, which results in an allosteric conformational change to CytOx, causing inhibition. In times of stress, ATP-dependent inhibition is switched off and the activity of CytOx is exclusively determined by the membrane potential, leading to an increase in ROS production. The second mechanism for respiratory control depends on the quantity of electron transfer to the Heme aa3 of CytOx. When ATP is bound to CytOx the enzyme is inhibited, and ROS formation is decreased, although the mitochondrial membrane potential is increased.
Collapse
Affiliation(s)
- Sebastian Vogt
- Cardiovascular Research Lab, Biochemical Pharmacological Research CenterPhilipps‐University MarburgMarburgGermany
| | - Annika Rhiel
- Cardiovascular Research Lab, Biochemical Pharmacological Research CenterPhilipps‐University MarburgMarburgGermany
| | - Petra Weber
- Cardiovascular Research Lab, Biochemical Pharmacological Research CenterPhilipps‐University MarburgMarburgGermany
| | - Rabia Ramzan
- Cardiovascular Research Lab, Biochemical Pharmacological Research CenterPhilipps‐University MarburgMarburgGermany
| |
Collapse
|
9
|
Nánási P, Váczi K, Papp Z. The myosin activator omecamtiv mecarbil: a promising new inotropic agent. Can J Physiol Pharmacol 2016; 94:1033-1039. [PMID: 27322915 DOI: 10.1139/cjpp-2015-0573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heart failure became a leading cause of mortality in the past few decades with a progressively increasing prevalence. Its current therapy is restricted largely to the suppression of the sympathetic activity and the renin-angiotensin system in combination with diuretics. This restrictive strategy is due to the potential long-term adverse effects of inotropic agents despite their effective influence on cardiac function when employed for short durations. Positive inotropes include inhibitors of the Na+/K+ pump, β-receptor agonists, and phosphodiesterase inhibitors. Theoretically, Ca2+ sensitizers may also increase cardiac contractility without resulting in Ca2+ overload; nevertheless, their mechanism of action is frequently complicated by other pleiotropic effects. Recently, a new positive inotropic agent, the myosin activator omecamtiv mecarbil, has been developed. Omecamtiv mecarbil binds directly to β-myosin heavy chain and enhances cardiac contractility by increasing the number of the active force-generating cross-bridges, presumably without major off-target effects. This review focuses on recent in vivo and in vitro results obtained with omecamtiv mecarbil, and discusses its mechanism of action at a molecular level. Based on clinical data, omecamtiv mecarbil is a promising new tool in the treatment of systolic heart failure.
Collapse
Affiliation(s)
- Péter Nánási
- a Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Váczi
- b Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- c Division of Clinical Physiology, Department of Cardiology, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Epac2 Mediates cAMP-Dependent Potentiation of Neurotransmission in the Hippocampus. J Neurosci 2015; 35:6544-53. [PMID: 25904804 DOI: 10.1523/jneurosci.0314-14.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Presynaptic terminal cAMP elevation plays a central role in plasticity at the mossy fiber-CA3 synapse of the hippocampus. Prior studies have identified protein kinase A as a downstream effector of cAMP that contributes to mossy fiber LTP (MF-LTP), but the potential contribution of Epac2, another cAMP effector expressed in the MF synapse, has not been considered. We investigated the role of Epac2 in MF-CA3 neurotransmission using Epac2(-/-) mice. The deletion of Epac2 did not cause gross alterations in hippocampal neuroanatomy or basal synaptic transmission. Synaptic facilitation during short trains was not affected by loss of Epac2 activity; however, both long-term plasticity and forskolin-mediated potentiation of MFs were impaired, demonstrating that Epac2 contributes to cAMP-dependent potentiation of transmitter release. Examination of synaptic transmission during long sustained trains of activity suggested that the readily releasable pool of vesicles is reduced in Epac2(-/-) mice. These data suggest that cAMP elevation uses an Epac2-dependent pathway to promote transmitter release, and that Epac2 is required to maintain the readily releasable pool at MF synapses in the hippocampus.
Collapse
|
11
|
Soler F, Fernández-Belda F, Pérez-Schindler J, Handschin C, Fuente T, Hernandez-Cascales J. PDE2 activity differs in right and left rat ventricular myocardium and differentially regulates β2 adrenoceptor-mediated effects. Exp Biol Med (Maywood) 2014; 240:1205-13. [PMID: 25432985 DOI: 10.1177/1535370214560969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/30/2014] [Indexed: 11/16/2022] Open
Abstract
The important regulator of cardiac function, cAMP, is hydrolyzed by different cyclic nucleotide phosphodiesterases (PDEs), whose expression and activity are not uniform throughout the heart. Of these enzymes, PDE2 shapes β1 adrenoceptor-dependent cardiac cAMP signaling, both in the right and left ventricular myocardium, but its role in regulating β2 adrenoceptor-mediated responses is less well known. Our aim was to investigate possible differences in PDE2 transcription and activity between right (RV) and left (LV) rat ventricular myocardium, as well as its role in regulating β2 adrenoceptor effects. The free walls of the RV and the LV were obtained from Sprague-Dawley rat hearts. Relative mRNA for PDE2 (quantified by qPCR) and PDE2 activity (evaluated by a colorimetric procedure and using the PDE2 inhibitor EHNA) were determined in RV and LV. Also, β2 adrenoceptor-mediated effects (β2-adrenoceptor agonist salbutamol + β1 adrenoceptor antagonist CGP-20712A) on contractility and cAMP concentrations, in the absence or presence of EHNA, were studied in the RV and LV. PDE2 transcript levels were less abundant in RV than in LV and the contribution of PDE2 to the total PDE activity was around 25% lower in the microsomal fraction of the RV compared with the LV. β2 adrenoceptor activation increased inotropy and cAMP levels in the LV when measured in the presence of EHNA, but no such effects were observed in the RV, either in the presence or absence of EHNA. These results indicate interventricular differences in PDE2 transcript and activity levels, which may distinctly regulate β2 adrenoceptor-mediated contractility and cAMP concentrations in the RV and in the LV of the rat heart.
Collapse
Affiliation(s)
- Fernando Soler
- Department of Biochemistry and Molecular Biology A, University of Murcia, 30100 Murcia, Spain
| | | | | | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Teodomiro Fuente
- Unit of Radiopharmacy, University Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | | |
Collapse
|
12
|
Ruzsnavszky F, Hegyi B, Kistamás K, Váczi K, Horváth B, Szentandrássy N, Bányász T, Nánási PP, Magyar J. Asynchronous activation of calcium and potassium currents by isoproterenol in canine ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:457-67. [PMID: 24566722 DOI: 10.1007/s00210-014-0964-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022]
Abstract
Adrenergic activation of L-type Ca(2+) and various K(+) currents is a crucial mechanism of cardiac adaptation; however, it may carry a substantial proarrhythmic risk as well. The aim of the present work was to study the timing of activation of Ca(2+) and K(+) currents in isolated canine ventricular cells in response to exposure to isoproterenol (ISO). Whole cell configuration of the patch-clamp technique in either conventional voltage clamp or action potential voltage clamp modes were used to monitor I(Ca), I(Ks), and I(Kr), while action potentials were recorded using sharp microelectrodes. ISO (10 nM) elevated the plateau potential and shortened action potential duration (APD) in subepicardial and mid-myocardial cells, which effects were associated with multifold enhancement of I(Ca) and I(Ks) and moderate stimulation of I(Kr). The ISO-induced plateau shift and I(Ca) increase developed faster than the shortening of APD and stimulation of I(Ks) and I(Kr). Blockade of β1-adrenoceptors (using 300 nM CGP-20712A) converted the ISO-induced shortening of APD to lengthening, decreased its latency, and reduced the plateau shift. In contrast, blockade of β2-adrenoceptors (by 50 nM ICI 118,551) augmented the APD-shortening effect and increased the latency of plateau shift without altering its magnitude. All effects of ISO were prevented by simultaneous blockade of both receptor types. Inhibition of phosphodiesterases decreased the differences observed in the turn on of the ISO-induced plateau shift and APD shortening. ISO-induced activation of I(Ca) is turned on faster than the stimulation of I(Ks) and I(Kr) in canine ventricular cells due to the involvement of different adrenergic pathways and compartmentalization.
Collapse
Affiliation(s)
- Ferenc Ruzsnavszky
- Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen, Nagyerdei krt 98, 4012, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hu W, Hirakawa B, Jessen B, Lee M, Aguirre S. A tyrosine kinase inhibitor-induced myocardial degeneration in rats through off-target phosphodiesterase inhibition. J Appl Toxicol 2012; 32:1008-20. [PMID: 22936366 DOI: 10.1002/jat.2801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 11/08/2022]
Abstract
PF-04254644 is a selective kinase inhibitor of mesenchymal epithelial transition factor/hepatocyte growth factor receptor with known off-target inhibitory activity against the phosphodiesterase (PDE) family. Rats given repeated oral doses of PF-04254644 developed a mild to moderate myocardial degeneration accompanied by sustained increase in heart rate and contractility. Investigative studies were conducted to delineate the mechanisms of toxicity. Microarray analysis of Sprague-Dawley rat hearts in a 6 day repeat dose study with PF-04254644 or milrinone, a selective PDE3 inhibitor, revealed similar perturbation of the cyclic adenosine monophosphate (c-AMP) pathway. PDE inhibition and activation of c-AMP were further substantiated using PDE3B immunofluorescence staining and through a c-AMP response element reporter gene assay. The intracellular calcium and oxidative stress signaling pathways were more perturbed by treatment with PF-04254644 than milrinone. The rat cardiomyocytes calcium assay found a dose-dependent increase in intracellular calcium with PF-04254644 treatment. These data suggest that cardiotoxicity of PF-04254644 was probably due to activation of c-AMP signaling, and possibly subsequent disruption of intracellular calcium and oxidative stress signaling pathways. The greater response with PF-04254644 as compared with milrinone in gene expression and micro- and ultrastructural changes is probably due to the broader panel of PDEs inhibition.
Collapse
Affiliation(s)
- Wenyue Hu
- Pfizer Inc, Drug Safety Research and Development, La Jolla Laboratories, 10646 Science Center Drive, San Diego, CA 92121, USA.
| | | | | | | | | |
Collapse
|
14
|
Seino S. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia 2012; 55:2096-108. [PMID: 22555472 DOI: 10.1007/s00125-012-2562-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/09/2012] [Indexed: 12/25/2022]
Abstract
Clarification of the molecular mechanisms of insulin secretion is crucial for understanding the pathogenesis and pathophysiology of diabetes and for development of novel therapeutic strategies for the disease. Insulin secretion is regulated by various intracellular signals generated by nutrients and hormonal and neural inputs. In addition, a variety of glucose-lowering drugs including sulfonylureas, glinide-derivatives, and incretin-related drugs such as dipeptidyl peptidase IV (DPP-4) inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists are used for glycaemic control by targeting beta cell signalling for improved insulin secretion. There has been a remarkable increase in our understanding of the basis of beta cell signalling over the past two decades following the application of molecular biology, gene technology, electrophysiology and bioimaging to beta cell research. This review discusses cell signalling in insulin secretion, focusing on the molecular targets of ATP, cAMP and sulfonylurea, an essential metabolic signal in glucose-induced insulin secretion (GIIS), a critical signal in the potentiation of GIIS, and the commonly used glucose-lowering drug, respectively.
Collapse
Affiliation(s)
- S Seino
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
15
|
Harvey RD. How uniform is cAMP signaling? Focus on “Systems analysis of GLP-1 receptor signaling in pancreatic β-cells”. Am J Physiol Cell Physiol 2011; 301:C775-6. [DOI: 10.1152/ajpcell.00245.2011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Francis SH, Blount MA, Corbin JD. Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions. Physiol Rev 2011; 91:651-90. [DOI: 10.1152/physrev.00030.2010] [Citation(s) in RCA: 451] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN binding to allosteric GAF domains, changes in expression levels, interaction with regulatory or anchoring proteins, and reversible translocation among subcellular compartments. Selective PDE inhibitors are currently in clinical use for treatment of erectile dysfunction, pulmonary hypertension, intermittent claudication, and chronic pulmonary obstructive disease; many new inhibitors are being developed for treatment of these and other maladies. Recently reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors. In addition, major advances have been made in understanding the physiological impact and the biochemical basis for selective localization and/or recruitment of specific PDE isoenzymes to particular subcellular compartments. The many recent advances in understanding PDE structures, functions, and physiological actions are discussed in this review.
Collapse
Affiliation(s)
- Sharron H. Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Mitsi A. Blount
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Jackie D. Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
17
|
Local control of β-adrenergic stimulation: Effects on ventricular myocyte electrophysiology and Ca(2+)-transient. J Mol Cell Cardiol 2011; 50:863-71. [PMID: 21345340 DOI: 10.1016/j.yjmcc.2011.02.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/03/2011] [Accepted: 02/09/2011] [Indexed: 11/21/2022]
Abstract
Local signaling domains and numerous interacting molecular pathways and substrates contribute to the whole-cell response of myocytes during β-adrenergic stimulation (βARS). We aimed to elucidate the quantitative contribution of substrates and their local signaling environments during βARS to the canine epicardial ventricular myocyte electrophysiology and calcium transient (CaT). We present a computational compartmental model of βARS and its electrophysiological effects. Novel aspects of the model include localized signaling domains, incorporation of β1 and β2 receptor isoforms, a detailed population-based approach to integrate the βAR and Ca(2+)/Calmodulin kinase (CaMKII) signaling pathways and their effects on a wide range of substrates that affect whole-cell electrophysiology and CaT. The model identifies major roles for phosphodiesterases, adenylyl cyclases, PKA and restricted diffusion in the control of local cAMP levels and shows that activation of specific cAMP domains by different receptor isoforms allows for specific control of action potential and CaT properties. In addition, the model predicts increased CaMKII activity during βARS due to rate-dependent accumulation and increased Ca(2+) cycling. CaMKII inhibition, reduced compartmentation, and selective blockade of β1AR is predicted to reduce the occurrence of delayed afterdepolarizations during βARS. Finally, the relative contribution of each PKA substrate to whole-cell electrophysiology is quantified by comparing simulations with and without phosphorylation of each target. In conclusion, this model enhances our understanding of localized βAR signaling and its whole-cell effects in ventricular myocytes by incorporating receptor isoforms, multiple pathways and a detailed representation of multiple-target phosphorylation; it provides a basis for further studies of βARS under pathological conditions.
Collapse
|
18
|
Völkers M, Weidenhammer C, Herzog N, Qiu G, Spaich K, Wegner FV, Peppel K, Müller OJ, Schinkel S, Rabinowitz JE, Hippe HJ, Brinks H, Katus HA, Koch WJ, Eckhart AD, Friedrich O, Most P. The inotropic peptide βARKct improves βAR responsiveness in normal and failing cardiomyocytes through G(βγ)-mediated L-type calcium current disinhibition. Circ Res 2011; 108:27-39. [PMID: 21106943 PMCID: PMC4013502 DOI: 10.1161/circresaha.110.225201] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/15/2010] [Indexed: 12/20/2022]
Abstract
RATIONALE The G(βγ)-sequestering peptide β-adrenergic receptor kinase (βARK)ct derived from the G-protein-coupled receptor kinase (GRK)2 carboxyl terminus has emerged as a promising target for gene-based heart failure therapy. Enhanced downstream cAMP signaling has been proposed as the underlying mechanism for increased β-adrenergic receptor (βAR) responsiveness. However, molecular targets mediating improved cardiac contractile performance by βARKct and its impact on G(βγ)-mediated signaling have yet to be fully elucidated. OBJECTIVE We sought to identify G(βγ)-regulated targets and signaling mechanisms conveying βARKct-mediated enhanced βAR responsiveness in normal (NC) and failing (FC) adult rat ventricular cardiomyocytes. METHODS AND RESULTS Assessing viral-based βARKct gene delivery with electrophysiological techniques, analysis of contractile performance, subcellular Ca²(+) handling, and site-specific protein phosphorylation, we demonstrate that βARKct enhances the cardiac L-type Ca²(+) channel (LCC) current (I(Ca)) both in NCs and FCs on βAR stimulation. Mechanistically, βARKct augments I(Ca) by preventing enhanced inhibitory interaction between the α1-LCC subunit (Cav1.2α) and liberated G(βγ) subunits downstream of activated βARs. Despite improved βAR contractile responsiveness, βARKct neither increased nor restored cAMP-dependent protein kinase (PKA) and calmodulin-dependent kinase II signaling including unchanged protein kinase (PK)Cε, extracellular signal-regulated kinase (ERK)1/2, Akt, ERK5, and p38 activation both in NCs and FCs. Accordingly, although βARKct significantly increases I(Ca) and Ca²(+) transients, being susceptible to suppression by recombinant G(βγ) protein and use-dependent LCC blocker, βARKct-expressing cardiomyocytes exhibit equal basal and βAR-stimulated sarcoplasmic reticulum Ca²(+) load, spontaneous diastolic Ca²(+) leakage, and survival rates and were less susceptible to field-stimulated Ca²(+) waves compared with controls. CONCLUSION Our study identifies a G(βγ)-dependent signaling pathway attenuating cardiomyocyte I(Ca) on βAR as molecular target for the G(βγ)-sequestering peptide βARKct. Targeted interruption of this inhibitory signaling pathway by βARKct confers improved βAR contractile responsiveness through increased I(Ca) without enhancing regular or restoring abnormal cAMP-signaling. βARKct-mediated improvement of I(Ca) rendered cardiomyocytes neither susceptible to βAR-induced damage nor arrhythmogenic sarcoplasmic reticulum Ca²(+) leakage.
Collapse
Affiliation(s)
- Mirko Völkers
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Christian Weidenhammer
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Nicole Herzog
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Gang Qiu
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Kristin Spaich
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Frederic V Wegner
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Karsten Peppel
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Oliver J Müller
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Stefanie Schinkel
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Joseph E Rabinowitz
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Hans-Jorg Hippe
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Henriette Brinks
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Hugo A Katus
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Walter J Koch
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Andrea D Eckhart
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Oliver Friedrich
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| | - Patrick Most
- Center for Molecular and Translational Cardiology (M.V, C.W., N.H., K.S., P.M.), Department of Internal Medicine III (O.J.M, S.S., H.J.H., H.A.K.), Division of Cardiology, INF 350, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Physiology and Pathophysiology (F.W., O.F.) Medical Biophysics, INF 326, University of Heidelberg, 69120 Heidelberg, Germany; George Zallie & Family Laboratory for Cardiovascular Gene Therapy (J.E.R., H.B., W.J.K.), Eugene Feiner Laboratory for Vascular Biology and Thrombosis (A.D.E.), Laboratory for Cardiac Stem Cell and Gene Therapy (G.Q., K.P., P.M.), Center for Translational Medicine, Thomas Jefferson University, 19107 Philadelphia, PA, USA
| |
Collapse
|
19
|
Adderley SP, Sprague RS, Stephenson AH, Hanson MS. Regulation of cAMP by phosphodiesterases in erythrocytes. Pharmacol Rep 2010; 62:475-82. [PMID: 20631411 DOI: 10.1016/s1734-1140(10)70303-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 05/01/2010] [Indexed: 11/24/2022]
Abstract
The erythrocyte, a cell responsible for carrying and delivering oxygen in the body, has often been regarded as simply a vehicle for the circulation of hemoglobin. However, it has become evident that this cell also participates in the regulation of vascular caliber in the microcirculation via release of the potent vasodilator, adenosine triphosphate (ATP). The regulated release of ATP from erythrocytes occurs via a defined signaling pathway and requires increases in cyclic 3',5'- adenosine monophosphate (cAMP). It is well recognized that cAMP is a critical second messenger in diverse signaling pathways. In all cells increases in cAMP are localized and regulated by the activity of phosphodiesterases (PDEs). In erythrocytes activation of either beta adrenergic receptors (beta(2)AR) or the prostacyclin receptor (IPR) results in increases in cAMP and ATP release. Receptor-mediated increases in cAMP are tightly regulated by distinct PDEs associated with each signaling pathway as shown by the finding that selective inhibitors of the PDEs localized to each pathway potentiate both increases in cAMP and ATP release. Here we review the profile of PDEs identified in erythrocytes, their association with specific signaling pathways and their role in the regulation of ATP release from these cells. Understanding the contribution of PDEs to the control of ATP release from erythrocytes identifies this cell as a potential target for the development of drugs for the treatment of vascular disease.
Collapse
Affiliation(s)
- Shaquria P Adderley
- Department of Pharmacological and Physiological Science, Saint Louis University, School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA.
| | | | | | | |
Collapse
|
20
|
Haworth RS, Cuello F, Avkiran M. Regulation by phosphodiesterase isoforms of protein kinase A-mediated attenuation of myocardial protein kinase D activation. Basic Res Cardiol 2010; 106:51-63. [PMID: 20725733 PMCID: PMC3012212 DOI: 10.1007/s00395-010-0116-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 08/02/2010] [Accepted: 08/12/2010] [Indexed: 11/29/2022]
Abstract
Protein kinase D (PKD) targets several proteins in the heart, including cardiac troponin I (cTnI) and class II histone deacetylases, and regulates cardiac contraction and hypertrophy. In adult rat ventricular myocytes (ARVM), PKD activation by endothelin-1 (ET1) occurs via protein kinase Cε and is attenuated by cAMP-dependent protein kinase (PKA). Intracellular compartmentalisation of cAMP, arising from localised activity of distinct cyclic nucleotide phosphodiesterase (PDE) isoforms, may result in spatially constrained regulation of the PKA activity that inhibits PKD activation. We have investigated the roles of the predominant cardiac PDE isoforms, PDE2, PDE3 and PDE4, in PKA-mediated inhibition of PKD activation. Pretreatment of ARVM with the non-selective PDE inhibitor isobutylmethylxanthine (IBMX) attenuated subsequent PKD activation by ET1. However, selective inhibition of PDE2 [by erythro-9-(2-hydroxy-3-nonyl) adenine, EHNA], PDE3 (by cilostamide) or PDE4 (by rolipram) individually had no effect on ET1-induced PKD activation. Selective inhibition of individual PDE isoforms also had no effect on the phosphorylation status of the established cardiac PKA substrates phospholamban (PLB; at Ser16) and cTnI (at Ser22/23), which increased markedly with IBMX. Combined administration of cilostamide and rolipram, like IBMX alone, attenuated ET1-induced PKD activation and increased PLB and cTnI phosphorylation, while combined administration of EHNA and cilostamide or EHNA and rolipram was ineffective. Thus, cAMP pools controlled by PDE3 and PDE4, but not PDE2, regulate the PKA activity that inhibits ET1-induced PKD activation. Furthermore, PDE3 and PDE4 play redundant roles in this process, such that inhibition of both isoforms is required to achieve PKA-mediated attenuation of PKD activation.
Collapse
Affiliation(s)
- Robert S Haworth
- King's College London British Heart Foundation Centre, Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, UK.
| | | | | |
Collapse
|
21
|
Calebiro D, Nikolaev VO, Gagliani MC, de Filippis T, Dees C, Tacchetti C, Persani L, Lohse MJ. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol 2009; 7:e1000172. [PMID: 19688034 PMCID: PMC2718703 DOI: 10.1371/journal.pbio.1000172] [Citation(s) in RCA: 449] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/07/2009] [Indexed: 01/19/2023] Open
Abstract
Real-time monitoring of G-protein-coupled receptor (GPCR) signaling in native cells suggests that the receptor for thyroid stimulating hormone remains active after internalization, challenging the current model for GPCR signaling. G-protein–coupled receptors (GPCRs) are generally thought to signal to second messengers like cyclic AMP (cAMP) from the cell surface and to become internalized upon repeated or prolonged stimulation. Once internalized, they are supposed to stop signaling to second messengers but may trigger nonclassical signals such as mitogen-activated protein kinase (MAPK) activation. Here, we show that a GPCR continues to stimulate cAMP production in a sustained manner after internalization. We generated transgenic mice with ubiquitous expression of a fluorescent sensor for cAMP and studied cAMP responses to thyroid-stimulating hormone (TSH) in native, 3-D thyroid follicles isolated from these mice. TSH stimulation caused internalization of the TSH receptors into a pre-Golgi compartment in close association with G-protein αs-subunits and adenylyl cyclase III. Receptors internalized together with TSH and produced downstream cellular responses that were distinct from those triggered by cell surface receptors. These data suggest that classical paradigms of GPCR signaling may need revision, as they indicate that cAMP signaling by GPCRs may occur both at the cell surface and from intracellular sites, but with different consequences for the cell. Cells respond to many environmental cues through the activity of cell surface receptor proteins, which sense these cues and convey that information to signaling molecules inside the cell. G-protein–coupled receptors (GPCRs) form the largest eukaryotic family of plasma membrane receptors. They convert the information provided by extracellular stimuli into intracellular second messengers, like cyclic AMP (cAMP). After prolonged stimulation, they are internalized inside cells, an event that to date has been thought to terminate the production of second messengers. Though many of the key steps of GPCR signaling are known in detail, precisely how signaling and termination actually occur in time and space (i.e., in subcellular compartments or microdomains) is still largely unexplored. To observe GPCR signaling in living cells, we generated mice expressing a fluorescent sensor that allows monitoring the intracellular levels of cAMP with a microscope. We utilized this system to study, directly in native thyroid follicles, the signal sent by the receptor for thyroid-stimulating hormone (TSH). Our findings indicate that TSH receptors are internalized rapidly after activation but continue to stimulate cAMP production inside cells and that this sustained, cAMP production is apparently required for localized activation of downstream components. These data challenge the current model of the GPCR-cAMP pathway by suggesting the existence of previously unrecognized intracellular site(s) for cAMP generation and of differential signaling outcomes as a result of intracellular GPCR signaling. Such intracellular site(s) may provide specialized signaling platforms, thus contributing to the spatiotemporal regulation of cAMP production and to signaling specificity within the GPCR family.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Dipartimento di Scienze Mediche, Università degli Studi di Milano, Milan, Italy
- Laboratory of Experimental Endocrinology, Fondazione IRCSS Istituto Auxologico Italiano, Cusano Milanino, Italy
- * E-mail: (DC); (MJL)
| | - Viacheslav O. Nikolaev
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | | | - Tiziana de Filippis
- Laboratory of Experimental Endocrinology, Fondazione IRCSS Istituto Auxologico Italiano, Cusano Milanino, Italy
| | - Christian Dees
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Carlo Tacchetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Luca Persani
- Dipartimento di Scienze Mediche, Università degli Studi di Milano, Milan, Italy
- Laboratory of Experimental Endocrinology, Fondazione IRCSS Istituto Auxologico Italiano, Cusano Milanino, Italy
| | - Martin J. Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- * E-mail: (DC); (MJL)
| |
Collapse
|
22
|
PDE4 associates with different scaffolding proteins: modulating interactions as treatment for certain diseases. Handb Exp Pharmacol 2008:125-66. [PMID: 18491051 DOI: 10.1007/978-3-540-72843-6_6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
cAMP is an ubiquitous second messenger that is crucial to many cellular processes. The sole means of terminating the cAMP signal is degradation by cAMP phosphodiesterases (PDEs). The PDE4 family is of particular interest because PDE4 inhibitors have therapeutic potential for the treatment of various inflammatory and auto-immune diseases and also have anti-depressant and memory-enhancing effects. The subcellular targeting of PDE4 isoforms is fundamental to the compartmentalization of cAMP signaling pathways and is largely achieved via proteinprotein interactions. Increased knowledge of these protein-protein interactions and their regulatory properties could aid in the design of novel isoform-specific inhibitors with improved efficacy and fewer prohibitive side effects.
Collapse
|
23
|
Cheng X, Ji Z, Tsalkova T, Mei F. Epac and PKA: a tale of two intracellular cAMP receptors. Acta Biochim Biophys Sin (Shanghai) 2008; 40:651-62. [PMID: 18604457 PMCID: PMC2630796 DOI: 10.1111/j.1745-7270.2008.00438.x] [Citation(s) in RCA: 290] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
cAMP-mediated signaling pathways regulate a multitude of important biological processes under both physiological and pathological conditions, including diabetes, heart failure and cancer. In eukaryotic cells, the effects of cAMP are mediated by two ubiquitously expressed intracellular cAMP receptors, the classic protein kinase A (PKA)/cAMP-dependent protein kinase and the recently discovered exchange protein directly activated by camp (Epac)/cAMP-regulated guanine nucleotide exchange factors. Like PKA, Epac contains an evolutionally conserved cAMP binding domain that acts as a molecular switch for sensing intracellular second messenger cAMP levels to control diverse biological functions. The existence of two families of cAMP effectors provides a mechanism for a more precise and integrated control of the cAMP signaling pathways in a spatial and temporal manner. Depending upon the specific cellular environments as well as their relative abundance, distribution and localization, Epac and PKA may act independently, converge synergistically or oppose each other in regulating a specific cellular function.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA.
| | | | | | | |
Collapse
|
24
|
Iancu RV, Ramamurthy G, Warrier S, Nikolaev VO, Lohse MJ, Jones SW, Harvey RD. Cytoplasmic cAMP concentrations in intact cardiac myocytes. Am J Physiol Cell Physiol 2008; 295:C414-22. [PMID: 18550706 DOI: 10.1152/ajpcell.00038.2008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In cardiac myocytes there is evidence that activation of some receptors can regulate protein kinase A (PKA)-dependent responses by stimulating cAMP production that is limited to discrete intracellular domains. We previously developed a computational model of compartmentalized cAMP signaling to investigate the feasibility of this idea. The model was able to reproduce experimental results demonstrating that both beta(1)-adrenergic and M(2) muscarinic receptor-mediated cAMP changes occur in microdomains associated with PKA signaling. However, the model also suggested that the cAMP concentration throughout most of the cell could be significantly higher than that found in PKA-signaling domains. In the present study we tested this counterintuitive hypothesis using a freely diffusible fluorescence resonance energy transfer-based biosensor constructed from the type 2 exchange protein activated by cAMP (Epac2-camps). It was determined that in adult ventricular myocytes the basal cAMP concentration detected by the probe is approximately 1.2 muM, which is high enough to maximally activate PKA. Furthermore, the probe detected responses produced by both beta(1) and M(2) receptor activation. Modeling suggests that responses detected by Epac2-camps mainly reflect what is happening in a bulk cytosolic compartment with little contribution from microdomains where PKA signaling occurs. These results support the conclusion that even though beta(1) and M(2) receptor activation can produce global changes in cAMP, compartmentation plays an important role by maintaining microdomains where cAMP levels are significantly below that found throughout most of the cell. This allows receptor stimulation to regulate cAMP activity over concentration ranges appropriate for modulating both higher (e.g., PKA) and lower affinity (e.g., Epac) effectors.
Collapse
Affiliation(s)
- Radu V Iancu
- Dept. of Physiology and Biophysics, Case Western Reserve Univ., 10900 Euclid Ave., Cleveland, OH 44106-4970, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci U S A 2007; 104:19333-8. [PMID: 18040047 DOI: 10.1073/pnas.0707054104] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
cAMP is well known to regulate exocytosis in various secretory cells, but the precise mechanism of its action remains unknown. Here, we examine the role of cAMP signaling in the exocytotic process of insulin granules in pancreatic beta cells. Although activation of cAMP signaling alone does not cause fusion of the granules to the plasma membrane, it clearly potentiates both the first phase (a prompt, marked, and transient increase) and the second phase (a moderate and sustained increase) of glucose-induced fusion events. Interestingly, all granules responsible for this potentiation are newly recruited and immediately fused to the plasma membrane without docking (restless newcomer). Importantly, cAMP-potentiated fusion events in the first phase of glucose-induced exocytosis are markedly reduced in mice lacking the cAMP-binding protein Epac2 (Epac2(ko/ko)). In addition, the small GTPase Rap1, which is activated by cAMP specifically through Epac2 in pancreatic beta cells, mediates cAMP-induced insulin secretion in a protein kinase A-independent manner. We also have developed a simulation model of insulin granule movement in which potentiation of the first phase is associated with an increase in the insulin granule density near the plasma membrane. Taken together, these data indicate that Epac2/Rap1 signaling is essential in regulation of insulin granule dynamics by cAMP, most likely by controlling granule density near the plasma membrane.
Collapse
|
26
|
Behar M, Dohlman HG, Elston TC. Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks. Proc Natl Acad Sci U S A 2007; 104:16146-51. [PMID: 17913886 PMCID: PMC2042176 DOI: 10.1073/pnas.0703894104] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular signaling pathways that share common components often elicit distinct physiological responses. In most cases, the biochemical mechanisms responsible for this signal specificity remain poorly understood. Protein scaffolds and cross-inhibition have been proposed as strategies to prevent unwanted cross-talk. Here, we report a mechanism for signal specificity termed "kinetic insulation." In this approach signals are selectively transmitted through the appropriate pathway based on their temporal profile. In particular, we demonstrate how pathway architectures downstream of a common component can be designed to efficiently separate transient signals from signals that increase slowly over time. Furthermore, we demonstrate that upstream signaling proteins can generate the appropriate input to the common pathway component regardless of the temporal profile of the external stimulus. Our results suggest that multilevel signaling cascades may have evolved to modulate the temporal profile of pathway activity so that stimulus information can be efficiently encoded and transmitted while ensuring signal specificity.
Collapse
Affiliation(s)
- Marcelo Behar
- Departments of Physics
- Program in Cellular and Molecular Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | | | - Timothy C. Elston
- Pharmacology, and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Willoughby D, Cooper DMF. Organization and Ca2+Regulation of Adenylyl Cyclases in cAMP Microdomains. Physiol Rev 2007; 87:965-1010. [PMID: 17615394 DOI: 10.1152/physrev.00049.2006] [Citation(s) in RCA: 337] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The adenylyl cyclases are variously regulated by G protein subunits, a number of serine/threonine and tyrosine protein kinases, and Ca2+. In some physiological situations, this regulation can be readily incorporated into a hormonal cascade, controlling processes such as cardiac contractility or neurotransmitter release. However, the significance of some modes of regulation is obscure and is likely only to be apparent in explicit cellular contexts (or stages of the cell cycle). The regulation of many of the ACs by the ubiquitous second messenger Ca2+provides an overarching mechanism for integrating the activities of these two major signaling systems. Elaborate devices have been evolved to ensure that this interaction occurs, to guarantee the fidelity of the interaction, and to insulate the microenvironment in which it occurs. Subcellular targeting, as well as a variety of scaffolding devices, is used to promote interaction of the ACs with specific signaling proteins and regulatory factors to generate privileged domains for cAMP signaling. A direct consequence of this organization is that cAMP will exhibit distinct kinetics in discrete cellular domains. A variety of means are now available to study cAMP in these domains and to dissect their components in real time in live cells. These topics are explored within the present review.
Collapse
Affiliation(s)
- Debbie Willoughby
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
28
|
Hilgemann DW. Local PIP(2) signals: when, where, and how? Pflugers Arch 2007; 455:55-67. [PMID: 17534652 DOI: 10.1007/s00424-007-0280-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 10/24/2022]
Abstract
PIP(2) is a minor phospholipid that modulates multiple cellular processes. However, its abundance by mass, like diacylglycerol, is still 20 to 100 times greater than the master phospholipid second messenger, PIP(3). Therefore, it is a case-by-case question whether PIP(2) is acting more like GTP, in being a cofactor in regulatory processes, or whether it is being used as a true second messenger. Analysis of signaling mechanisms in primary cells is essential to answer this question, as overexpression studies will naturally generate false positives. In connection with the possible messenger function of PIP(2), a second question arises as to how and if PIP(2) metabolism and signaling may be limited in space. This review summarizes succinctly the notable cases in which PIP(2) is proposed to function in a localized way and the different mechanistic models that may allow it to function locally. In general, drastic restrictions of PIP(2) diffusion are required. It is speculated that molecular PIP(2) signaling may be possible in the absence of PIP(2) gradients via ternary complexes between PIP(2) and two protein partners. That PIP(2) synthesis and hydrolysis might be locally dependent on protein-protein interactions, and direct lipid "hand-off" is suggested by multiple results.
Collapse
Affiliation(s)
- Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9040, USA.
| |
Collapse
|