1
|
Li Z, Nong Y, Liu Y, Wang Z, Wang J, Li Z. Genome-Wide Association Study of Body Size Traits in Luning Chickens Using Whole-Genome Sequencing. Animals (Basel) 2025; 15:972. [PMID: 40218365 PMCID: PMC11987916 DOI: 10.3390/ani15070972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Growth traits are crucial for poultry breeding and production. Marker-assisted selection (MAS) and genomic selection (GS) of growth traits require a substantial number of accurate genetic markers. A genome-wide association study (GWAS) for body size traits was performed on 248 Luning chickens to identify significant single-nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs) related to the growth and development of chickens. A total of 30 significant SNPs and 13 INDELs were obtained for body size traits. Two notable regions, spanning from 43.072 to 43.219 Mb on chromosome 1 and from 4.751 to 4.800 Mb on chromosome 11, were found to be significantly associated with growth traits in the GWAS of both SNPs and INDELs. Some genes, including PPFIA2, KITLG, DUSP6, TOX3, MTNR1B, FAT3, PTPRR, VEZT, BBS9, and CYLD, were identified as important candidate genes for the growth of chickens. The results provide valuable information for understanding the genetic basis of growth traits which is beneficial for the subsequent selective breeding in Luning chickens.
Collapse
Affiliation(s)
- Zhiyi Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Z.L.); (Y.N.); (Y.L.); (Z.W.); (J.W.)
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
| | - Yi Nong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Z.L.); (Y.N.); (Y.L.); (Z.W.); (J.W.)
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
| | - Yuan Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Z.L.); (Y.N.); (Y.L.); (Z.W.); (J.W.)
| | - Zi Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Z.L.); (Y.N.); (Y.L.); (Z.W.); (J.W.)
| | - Jiayan Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Z.L.); (Y.N.); (Y.L.); (Z.W.); (J.W.)
| | - Zhixiong Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Z.L.); (Y.N.); (Y.L.); (Z.W.); (J.W.)
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
2
|
Rodríguez-Vega A, Dutra-Tavares AC, Souza TP, Semeão KA, Filgueiras CC, Ribeiro-Carvalho A, Manhães AC, Abreu-Villaça Y. Nicotine Exposure in a Phencyclidine-Induced Mice Model of Schizophrenia: Sex-Selective Medial Prefrontal Cortex Protein Markers of the Combined Insults in Adolescent Mice. Int J Mol Sci 2023; 24:14634. [PMID: 37834084 PMCID: PMC10572990 DOI: 10.3390/ijms241914634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Tobacco misuse as a comorbidity of schizophrenia is frequently established during adolescence. However, comorbidity markers are still missing. Here, the method of label-free proteomics was used to identify deregulated proteins in the medial prefrontal cortex (prelimbic and infralimbic) of male and female mice modelled to schizophrenia with a history of nicotine exposure during adolescence. Phencyclidine (PCP), used to model schizophrenia (SCHZ), was combined with an established model of nicotine minipump infusions (NIC). The combined insults led to worse outcomes than each insult separately when considering the absolute number of deregulated proteins and that of exclusively deregulated ones. Partially shared Reactome pathways between sexes and between PCP, NIC and PCPNIC groups indicate functional overlaps. Distinctively, proteins differentially expressed exclusively in PCPNIC mice reveal unique effects associated with the comorbidity model. Interactome maps of these proteins identified sex-selective subnetworks, within which some proteins stood out: for females, peptidyl-prolyl cis-trans isomerase (Fkbp1a) and heat shock 70 kDa protein 1B (Hspa1b), both components of the oxidative stress subnetwork, and gamma-enolase (Eno2), a component of the energy metabolism subnetwork; and for males, amphiphysin (Amph), a component of the synaptic transmission subnetwork. These are proposed to be further investigated and validated as markers of the combined insult during adolescence.
Collapse
Affiliation(s)
- Andrés Rodríguez-Vega
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Ana Carolina Dutra-Tavares
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Thainá P. Souza
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Keila A. Semeão
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Claudio C. Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo 24435-005, RJ, Brazil;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| |
Collapse
|
3
|
Wu S, Fan J, Tang F, Chen L, Zhang X, Xiao D, Li X. The role of RIM in neurotransmitter release: promotion of synaptic vesicle docking, priming, and fusion. Front Neurosci 2023; 17:1123561. [PMID: 37179554 PMCID: PMC10169678 DOI: 10.3389/fnins.2023.1123561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
There are many special sites at the end of a synapse called active zones (AZs). Synaptic vesicles (SVs) fuse with presynaptic membranes at these sites, and this fusion is an important step in neurotransmitter release. The cytomatrix in the active zone (CAZ) is made up of proteins such as the regulating synaptic membrane exocytosis protein (RIM), RIM-binding proteins (RIM-BPs), ELKS/CAST, Bassoon/Piccolo, Liprin-α, and Munc13-1. RIM is a scaffold protein that interacts with CAZ proteins and presynaptic functional components to affect the docking, priming, and fusion of SVs. RIM is believed to play an important role in regulating the release of neurotransmitters (NTs). In addition, abnormal expression of RIM has been detected in many diseases, such as retinal diseases, Asperger's syndrome (AS), and degenerative scoliosis. Therefore, we believe that studying the molecular structure of RIM and its role in neurotransmitter release will help to clarify the molecular mechanism of neurotransmitter release and identify targets for the diagnosis and treatment of the aforementioned diseases.
Collapse
Affiliation(s)
- Shanshan Wu
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jiali Fan
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fajuan Tang
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Lin Chen
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoyan Zhang
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dongqiong Xiao
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xihong Li
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
4
|
Waqas A, Liaqat R, Shaheen S, Khan AZ, Habib AH, Binothman N, Aljadani M, Zehri Z, Shaheen S, Alkathiri A, Naz R, Umair M, Abbas S. A novel homozygous truncating variant in PPFIBP1 further delineates PPFIBP1-associated neurodevelopmental disorder. Int J Dev Neurosci 2022; 83:191-200. [PMID: 36527195 DOI: 10.1002/jdn.10247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are classified as a group of disorders affecting function and development of the brain and having wide clinical variability. Herein, we describe two affected individuals segregating a recessive NDD. The affected individuals exhibited phenotypes such as global developmental delay (GDD), intellectual disability (ID), microcephaly and speech delay. Whole-exome sequencing (WES) followed by bidirectional Sanger sequencing techniques identified a homozygous nonsense variant (c.466C > T; p.Gln156*) in the PPFIBP1 gene (NM_003622.4) that segregated with the disease phenotype. Further, to elucidate the effect of the variant on protein structure, 3D protein modelling was performed for the mutant and normal protein that suggested substantial reduction of the mutant protein. Our data support the evidence that PPFIBP1 has a pivotal role in neurodevelopment in humans, and loss-of-function variants cause clinically variable neurodevelopmental phenotypes.
Collapse
Affiliation(s)
- Ahmed Waqas
- Department Zoology, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
| | - Romana Liaqat
- Institute of Chemical Science, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Sidrah Shaheen
- Department of Higher Education, Government Girls degree College No. 1, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Ali Zaman Khan
- Department of Surgery, Surgical Ward 'A', Khyber Teaching Hospital, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Alaa Hamed Habib
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Majidah Aljadani
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Zamrud Zehri
- Shaheed Nawab Ghous Bakhsh Raisani Memorial Hospital, Mastung, Balochistan, Pakistan
| | - Shabnam Shaheen
- Department of Higher Education, Government Girls Degree College, Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
| | - Afnan Alkathiri
- Medical Genetics, Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Rubina Naz
- Institute of Chemical Science, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Umair
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Punjab, Pakistan
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
| | - Safdar Abbas
- Department of Biological Science, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
5
|
Yeo XY, Lim YT, Chae WR, Park C, Park H, Jung S. Alterations of presynaptic proteins in autism spectrum disorder. Front Mol Neurosci 2022; 15:1062878. [PMID: 36466804 PMCID: PMC9715400 DOI: 10.3389/fnmol.2022.1062878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2025] Open
Abstract
The expanded use of hypothesis-free gene analysis methods in autism research has significantly increased the number of genetic risk factors associated with the pathogenesis of autism. A further examination of the implicated genes directly revealed the involvement in processes pertinent to neuronal differentiation, development, and function, with a predominant contribution from the regulators of synaptic function. Despite the importance of presynaptic function in synaptic transmission, the regulation of neuronal network activity, and the final behavioral output, there is a relative lack of understanding of the presynaptic contribution to the pathology of autism. Here, we will review the close association among autism-related mutations, autism spectrum disorders (ASD) phenotypes, and the altered presynaptic protein functions through a systematic examination of the presynaptic risk genes relating to the critical stages of synaptogenesis and neurotransmission.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Woo Ri Chae
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of BioNano Technology, Gachon University, Seongnam, South Korea
| | - Chungwon Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Sangyong Jung
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Qi C, Luo LD, Feng I, Ma S. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci 2022; 14:939793. [PMID: 36176941 PMCID: PMC9513053 DOI: 10.3389/fnsyn.2022.939793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.
Collapse
Affiliation(s)
- Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Cai Qi,
| | - Li-Da Luo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, United States
| | - Irena Feng
- Boston University School of Medicine, Boston, MA, United States
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
7
|
Bi-allelic loss-of-function variants in PPFIBP1 cause a neurodevelopmental disorder with microcephaly, epilepsy, and periventricular calcifications. Am J Hum Genet 2022; 109:1421-1435. [PMID: 35830857 PMCID: PMC9388382 DOI: 10.1016/j.ajhg.2022.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
PPFIBP1 encodes for the liprin-β1 protein, which has been shown to play a role in neuronal outgrowth and synapse formation in Drosophila melanogaster. By exome and genome sequencing, we detected nine ultra-rare homozygous loss-of-function variants in 16 individuals from 12 unrelated families. The individuals presented with moderate to profound developmental delay, often refractory early-onset epilepsy, and progressive microcephaly. Further common clinical findings included muscular hyper- and hypotonia, spasticity, failure to thrive and short stature, feeding difficulties, impaired vision, and congenital heart defects. Neuroimaging revealed abnormalities of brain morphology with leukoencephalopathy, ventriculomegaly, cortical abnormalities, and intracranial periventricular calcifications as major features. In a fetus with intracranial calcifications, we identified a rare homozygous missense variant that by structural analysis was predicted to disturb the topology of the SAM domain region that is essential for protein-protein interaction. For further insight into the effects of PPFIBP1 loss of function, we performed automated behavioral phenotyping of a Caenorhabditis elegans PPFIBP1/hlb-1 knockout model, which revealed defects in spontaneous and light-induced behavior and confirmed resistance to the acetylcholinesterase inhibitor aldicarb, suggesting a defect in the neuronal presynaptic zone. In conclusion, we establish bi-allelic loss-of-function variants in PPFIBP1 as a cause of an autosomal recessive severe neurodevelopmental disorder with early-onset epilepsy, microcephaly, and periventricular calcifications.
Collapse
|
8
|
Cornejo F, Cortés BI, Findlay GM, Cancino GI. LAR Receptor Tyrosine Phosphatase Family in Healthy and Diseased Brain. Front Cell Dev Biol 2021; 9:659951. [PMID: 34966732 PMCID: PMC8711739 DOI: 10.3389/fcell.2021.659951] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Protein phosphatases are major regulators of signal transduction and they are involved in key cellular mechanisms such as proliferation, differentiation, and cell survival. Here we focus on one class of protein phosphatases, the type IIA Receptor-type Protein Tyrosine Phosphatases (RPTPs), or LAR-RPTP subfamily. In the last decade, LAR-RPTPs have been demonstrated to have great importance in neurobiology, from neurodevelopment to brain disorders. In vertebrates, the LAR-RPTP subfamily is composed of three members: PTPRF (LAR), PTPRD (PTPδ) and PTPRS (PTPσ), and all participate in several brain functions. In this review we describe the structure and proteolytic processing of the LAR-RPTP subfamily, their alternative splicing and enzymatic regulation. Also, we review the role of the LAR-RPTP subfamily in neural function such as dendrite and axon growth and guidance, synapse formation and differentiation, their participation in synaptic activity, and in brain development, discussing controversial findings and commenting on the most recent studies in the field. Finally, we discuss the clinical outcomes of LAR-RPTP mutations, which are associated with several brain disorders.
Collapse
Affiliation(s)
- Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Bastián I Cortés
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Greg M Findlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gonzalo I Cancino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
9
|
Liprins in oncogenic signaling and cancer cell adhesion. Oncogene 2021; 40:6406-6416. [PMID: 34654889 PMCID: PMC8602034 DOI: 10.1038/s41388-021-02048-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
Liprins are a multifunctional family of scaffold proteins, identified by their involvement in several important neuronal functions related to signaling and organization of synaptic structures. More recently, the knowledge on the liprin family has expanded from neuronal functions to processes relevant to cancer progression, including cell adhesion, cell motility, cancer cell invasion, and signaling. These proteins consist of regions, which by prediction are intrinsically disordered, and may be involved in the assembly of supramolecular structures relevant for their functions. This review summarizes the current understanding of the functions of liprins in different cellular processes, with special emphasis on liprins in tumor progression. The available data indicate that liprins may be potential biomarkers for cancer progression and may have therapeutic importance.
Collapse
|
10
|
Xie X, Liang M, Yu C, Wei Z. Liprin-α-Mediated Assemblies and Their Roles in Synapse Formation. Front Cell Dev Biol 2021; 9:653381. [PMID: 33869211 PMCID: PMC8044993 DOI: 10.3389/fcell.2021.653381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 01/20/2023] Open
Abstract
Brain's functions, such as memory and learning, rely on synapses that are highly specialized cellular junctions connecting neurons. Functional synapses orchestrate the assembly of ion channels, receptors, enzymes, and scaffold proteins in both pre- and post-synapse. Liprin-α proteins are master scaffolds in synapses and coordinate various synaptic proteins to assemble large protein complexes. The functions of liprin-αs in synapse formation have been largely uncovered by genetic studies in diverse model systems. Recently, emerging structural and biochemical studies on liprin-α proteins and their binding partners begin to unveil the molecular basis of the synaptic assembly. This review summarizes the recent structural findings on liprin-αs, proposes the assembly mechanism of liprin-α-mediated complexes, and discusses the liprin-α-organized assemblies in the regulation of synapse formation and function.
Collapse
Affiliation(s)
- Xingqiao Xie
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Mingfu Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Fukai S, Yoshida T. Roles of type IIa receptor protein tyrosine phosphatases as synaptic organizers. FEBS J 2020; 288:6913-6926. [PMID: 33301645 DOI: 10.1111/febs.15666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
Neurons establish circuits for brain functions such as cognition, emotion, learning, and memory. Their connections are mediated by synapses, which are specialized cell-cell adhesions responsible for neuronal signal transmission. During neurodevelopment, synapse formation is triggered by interactions of cell adhesion molecules termed synaptic organizers or synapse organizers. Type IIa receptor protein tyrosine phosphatases (IIa RPTPs; also known as leukocyte common antigen-related receptor tyrosine phosphatases or LAR-RPTPs) play important roles in axon guidance and neurite extension, and also serve as presynaptic organizers. IIa RPTPs transsynaptically interact with multiple sets of postsynaptic organizers, mostly in a splicing-dependent fashion. Here, we review and update research progress on IIa RPTPs, particularly regarding their functional roles in vivo demonstrated using conditional knockout approach and structural insights into their extracellular and intracellular molecular interactions revealed by crystallography and other biophysical techniques. Future directions in the research field of IIa RPTPs are also discussed, including recent findings of the molecular assembly mechanism underlying the formation of synapse-specific nanostructures essential for synaptic functions.
Collapse
Affiliation(s)
- Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| |
Collapse
|
12
|
Chou VT, Johnson SA, Van Vactor D. Synapse development and maturation at the drosophila neuromuscular junction. Neural Dev 2020; 15:11. [PMID: 32741370 PMCID: PMC7397595 DOI: 10.1186/s13064-020-00147-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Synapses are the sites of neuron-to-neuron communication and form the basis of the neural circuits that underlie all animal cognition and behavior. Chemical synapses are specialized asymmetric junctions between a presynaptic neuron and a postsynaptic target that form through a series of diverse cellular and subcellular events under the control of complex signaling networks. Once established, the synapse facilitates neurotransmission by mediating the organization and fusion of synaptic vesicles and must also retain the ability to undergo plastic changes. In recent years, synaptic genes have been implicated in a wide array of neurodevelopmental disorders; the individual and societal burdens imposed by these disorders, as well as the lack of effective therapies, motivates continued work on fundamental synapse biology. The properties and functions of the nervous system are remarkably conserved across animal phyla, and many insights into the synapses of the vertebrate central nervous system have been derived from studies of invertebrate models. A prominent model synapse is the Drosophila melanogaster larval neuromuscular junction, which bears striking similarities to the glutamatergic synapses of the vertebrate brain and spine; further advantages include the simplicity and experimental versatility of the fly, as well as its century-long history as a model organism. Here, we survey findings on the major events in synaptogenesis, including target specification, morphogenesis, and the assembly and maturation of synaptic specializations, with a emphasis on work conducted at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Vivian T Chou
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth A Johnson
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Abstract
Background Insulin is stored within large dense-core granules in pancreatic beta (β)-cells and is released by Ca2+-triggered exocytosis with increasing blood glucose levels. Polarized and targeted secretion of insulin from β-cells in pancreatic islets into the vasculature has been proposed; however, the mechanisms related to cellular and molecular localization remain largely unknown. Within nerve terminals, the Ca2+-dependent release of a polarized transmitter is limited to the active zone, a highly specialized area of the presynaptic membrane. Several active zone-specific proteins have been characterized; among them, the CAST/ELKS protein family members have the ability to form large protein complexes with other active zone proteins to control the structure and function of the active zone for tight regulation of neurotransmitter release. Notably, ELKS but not CAST is also expressed in β-cells, implying that ELKS may be involved in polarized insulin secretion from β-cells. Scope of review This review provides an overview of the current findings regarding the role(s) of ELKS and other active zone proteins in β-cells and focuses on the molecular mechanism underlying ELKS regulation within polarized insulin secretion from islets. Major conclusions ELKS localizes at the vascular-facing plasma membrane of β-cells in mouse pancreatic islets. ELKS forms a potent insulin secretion complex with L-type voltage-dependent Ca2+ channels on the vascular-facing plasma membrane of β-cells, enabling polarized Ca2+ influx and first-phase insulin secretion from islets. This model provides novel insights into the functional polarity observed during insulin secretion from β-cells within islets at the molecular level. This active zone-like region formed by ELKS at the vascular side of the plasma membrane is essential for coordinating physiological insulin secretion and may be disrupted in diabetes.
Collapse
Affiliation(s)
- Mica Ohara-Imaizumi
- Department of Cellular Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan.
| | - Kyota Aoyagi
- Department of Cellular Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
14
|
Structural insights into selective interaction between type IIa receptor protein tyrosine phosphatases and Liprin-α. Nat Commun 2020; 11:649. [PMID: 32005855 PMCID: PMC6994669 DOI: 10.1038/s41467-020-14516-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/15/2020] [Indexed: 01/07/2023] Open
Abstract
Synapse formation is induced by transsynaptic interaction of neuronal cell-adhesion molecules termed synaptic organizers. Type IIa receptor protein tyrosine phosphatases (IIa RPTPs) function as presynaptic organizers. The cytoplasmic domain of IIa RPTPs consists of two phosphatase domains, and the membrane-distal one (D2) is essential for synapse formation. Liprin-α, which is an active zone protein critical for synapse formation, interacts with D2 via its C-terminal domain composed of three tandem sterile alpha motifs (tSAM). Structural mechanisms of this critical interaction for synapse formation remain elusive. Here, we report the crystal structure of the complex between mouse PTPδ D2 and Liprin-α3 tSAM at 1.91 Å resolution. PTPδ D2 interacts with the N-terminal helix and the first and second SAMs (SAM1 and SAM2, respectively) of Liprin-α3. Structure-based mutational analyses in vitro and in cellulo demonstrate that the interactions with Liprin-α SAM1 and SAM2 are essential for the binding and synaptogenic activity.
Collapse
|
15
|
Xie X, Luo L, Liang M, Zhang W, Zhang T, Yu C, Wei Z. Structural basis of liprin-α-promoted LAR-RPTP clustering for modulation of phosphatase activity. Nat Commun 2020; 11:169. [PMID: 31924785 PMCID: PMC6954185 DOI: 10.1038/s41467-019-13949-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023] Open
Abstract
Leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) are cell adhesion molecules involved in mediating neuronal development. The binding of LAR-RPTPs to extracellular ligands induces local clustering of LAR-RPTPs to regulate axon growth and synaptogenesis. LAR-RPTPs interact with synaptic liprin-α proteins via the two cytoplasmic phosphatase domains, D1 and D2. Here we solve the crystal structure of LAR_D1D2 in complex with the SAM repeats of liprin-α3, uncovering a conserved two-site binding mode. Cellular analysis shows that liprin-αs robustly promote clustering of LAR in cells by both the liprin-α/LAR interaction and the oligomerization of liprin-α. Structural analysis reveals a unique homophilic interaction of LAR via the catalytically active D1 domains. Disruption of the D1/D1 interaction diminishes the liprin-α-promoted LAR clustering and increases tyrosine dephosphorylation, demonstrating that the phosphatase activity of LAR is negatively regulated by forming clusters. Additionally, we find that the binding of LAR to liprin-α allosterically regulates the liprin-α/liprin-β interaction. Leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) mediate guided axon growth and synapse formation and liprin-α proteins are their intracellular binding partners. Here the authors present the crystal structure of the phosphatase domains from the LAR-RPTP family member LAR bound to the SAM repeats of liprin-α3 and show that liprin-α binding enhances LAR cluster formation and reduces LAR phosphatase activity in cells.
Collapse
Affiliation(s)
- Xingqiao Xie
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ling Luo
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Mingfu Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wenchao Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ting Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, 518055, China
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China. .,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
16
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
17
|
He Y, de Witte LD, Schubart CD, Van Gastel WA, Koeleman BPC, de Jong S, Ophoff RA, Hol EM, Boks MP. Liprin alfa 2 gene expression is increased by cannabis use and associated with neuropsychological function. Eur Neuropsychopharmacol 2019; 29:643-652. [PMID: 30879928 DOI: 10.1016/j.euroneuro.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/13/2019] [Accepted: 03/02/2019] [Indexed: 11/18/2022]
Abstract
The relation of heavy cannabis use with decreased neuropsychological function has frequently been described but the underlying biological mechanisms are still largely unknown. This study investigates the relation of cannabis use with genome wide gene expression and subsequently examines the relations with neuropsychological function. Genome-wide gene expression in whole blood was compared between heavy cannabis users (N = 90) and cannabis naïve participants (N = 100) that were matched for psychotic like experiences. The results were validated using quantitative real-time PCR. Psychotic like experiences were assessed using the Comprehensive Assessment of Psychotic Experiences (CAPE). Neuropsychological function was estimated using four subtasks of the Wechsler Adult Intelligence Scale (WAIS). Subsequent in vitro studies in monocytes and a neuroblastoma cell line investigated expression changes in response to two major psychotropic components of cannabis; tetrahydrocannabinol (THC) and cannabidiol (CBD). mRNA expression of Protein Tyrosine Phosphatase Receptor Type F Polypeptide-Interacting-Protein Alpha-2 (PPFIA2) was significantly higher in cannabis users (LogFold Change 0.17) and confirmed by qPCR analysis. PPFIA2 expression level was negatively correlated with estimated intelligence (B=-22.9, p = 0.002) also in the 100 non-users (B=-28.5, p = 0.037). In vitro exposure of monocytes to CBD led to significant increase in PPFIA2 expression. However, exposure of monocytes to THC and neuroblastoma cells to THC or CBD did not change PPFIA2 expression. Change in PPFIA2 gene expression in response to cannabinoids is a putative mechanism by which cannabis could influence neuropsychological functions. The findings warrant further exploration of the role of PPFIA2 in cannabis induced changes of neuropsychological function, particularly in relation to CBD.
Collapse
Affiliation(s)
- Yujie He
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands; Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Chris D Schubart
- Ter Gooi Hospital, Department of Psychiatry, Blaricum, The Netherlands
| | | | - Bobby P C Koeleman
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht University, The Netherlands
| | - Simone de Jong
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Roel A Ophoff
- UCLA Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands; Neuroimmunology, Netherlands Institute for Neuroscience, An institute of the royal academy of arts and sciences, Amsterdam, The Netherlands
| | - Marco P Boks
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, The Netherlands.
| |
Collapse
|
18
|
Duan X, Gan J, Peng DY, Bao Q, Xiao L, Wei L, Wu J. Identification and functional analysis of microRNAs in rats following focal cerebral ischemia injury. Mol Med Rep 2019; 19:4175-4184. [PMID: 30896823 PMCID: PMC6471137 DOI: 10.3892/mmr.2019.10073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/22/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNA sequencing (miRNA‑seq) was performed in the present study to investigate miRNA expression profiles in infarcted brain areas following focal cerebral ischemia induced by middle cerebral artery occlusion in rats. In total, 20 miRNAs were identified to be upregulated and 17 to be downregulated in the infarct area. The expression levels of six differentially expressed miRNAs (DEmiRs), miR‑211‑5p, miR‑183‑5p, miR‑10b‑3p, miR‑182, miR‑217‑5p and miR‑96‑5p, were examined by reverse transcription‑quantitative polymerase chain reaction. Subsequently, a miRNA‑mRNA network was constructed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to investigate the functions of the mRNAs targeted by these DEmiRs. The present study aimed to investigate the association between miRNAs and cerebral ischemia to provide potential insight into the molecular mechanisms underlying ischemic stroke.
Collapse
Affiliation(s)
- Xianchun Duan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Jianghua Gan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Dai-Yin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Qiuyu Bao
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Ling Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Liangbing Wei
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Jian Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| |
Collapse
|
19
|
Blaz J, Barrera-Redondo J, Vázquez-Rosas-Landa M, Canedo-Téxon A, Aguirre von Wobeser E, Carrillo D, Stouthamer R, Eskalen A, Villafán E, Alonso-Sánchez A, Lamelas A, Ibarra-Juarez LA, Pérez-Torres CA, Ibarra-Laclette E. Genomic Signals of Adaptation towards Mutualism and Sociality in Two Ambrosia Beetle Complexes. Life (Basel) 2018; 9:E2. [PMID: 30583535 PMCID: PMC6463014 DOI: 10.3390/life9010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/08/2018] [Accepted: 12/20/2018] [Indexed: 01/03/2023] Open
Abstract
Mutualistic symbiosis and eusociality have developed through gradual evolutionary processes at different times in specific lineages. Like some species of termites and ants, ambrosia beetles have independently evolved a mutualistic nutritional symbiosis with fungi, which has been associated with the evolution of complex social behaviors in some members of this group. We sequenced the transcriptomes of two ambrosia complexes (Euwallacea sp. near fornicatus⁻Fusarium euwallaceae and Xyleborus glabratus⁻Raffaelea lauricola) to find evolutionary signatures associated with mutualism and behavior evolution. We identified signatures of positive selection in genes related to nutrient homeostasis; regulation of gene expression; development and function of the nervous system, which may be involved in diet specialization; behavioral changes; and social evolution in this lineage. Finally, we found convergent changes in evolutionary rates of proteins across lineages with phylogenetically independent origins of sociality and mutualism, suggesting a constrained evolution of conserved genes in social species, and an evolutionary rate acceleration related to changes in selective pressures in mutualistic lineages.
Collapse
Affiliation(s)
- Jazmín Blaz
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Josué Barrera-Redondo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04500, Mexico.
| | | | - Anahí Canedo-Téxon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | | | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA.
| | - Richard Stouthamer
- Department of Plant Pathology, University of California⁻Riverside, Riverside, CA 92521, USA.
| | - Akif Eskalen
- Department of Plant Pathology, University of California, Davis, CA 95616-8751, USA.
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Alexandro Alonso-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Araceli Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Luis Arturo Ibarra-Juarez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
- Cátedras CONACyT/Instituto de Ecología A.C., Xalapa, Veracruz 91070, Mexico.
| | - Claudia Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
- Cátedras CONACyT/Instituto de Ecología A.C., Xalapa, Veracruz 91070, Mexico.
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| |
Collapse
|
20
|
Liprin-α1 modulates cancer cell signaling by transmembrane protein CD82 in adhesive membrane domains linked to cytoskeleton. Cell Commun Signal 2018; 16:41. [PMID: 30005669 PMCID: PMC6045882 DOI: 10.1186/s12964-018-0253-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
Background PPFIA1 is located at the 11q13 region commonly amplified in cancer. The protein liprin-α1 encoded by PPF1A1 contributes to the adhesive and invasive structures of cytoskeletal elements and is located at the invadosomes in cancer cells. However, the precise mechanism of liprin-α1 function in cancer progression has remained elusive. Methods Invasion regulating activity of liprin-α1 was examined by analyzing the functions of squamous cell carcinoma of head and neck (HNSCC) cell lines in three-dimensional collagen I after RNAi mediated gene knockdown. Transcriptome profiling and Gene Set Enrichment Analysis from HNSCC and breast cancer cells were used to identify expression changes relevant to specific cellular localizations, biological processes and signaling pathways after PPFIA1 knockdown. The significance of the results was assessed by relevant statistical methods (Wald and Benjamini-Hochberg). Localization of proteins associated to liprin-α1 was studied by immunofluorescence in 2D and 3D conditions. The association of PPFIA1 amplification to HNSCC patient survival was explored using The Cancer Genome Atlas data. Results In this study, we show that liprin-α1 regulates biological processes related to membrane microdomains in breast carcinoma, as well as protein trafficking, cell-cell and cell-substrate contacts in HNSCC cell lines cultured in three-dimensional matrix. Importantly, we show that in all these cancer cells liprin-α1 knockdown leads to the upregulation of transmembrane protein CD82, which is a suppressor of metastasis in several solid tumors. Conclusions Our results provide novel information regarding the function of liprin-α1 in biological processes essential in cancer progression. The results reveal liprin-α1 as a novel regulator of CD82, linking liprin-α1 to the cancer cell invasion and metastasis pathways. Electronic supplementary material The online version of this article (10.1186/s12964-018-0253-y) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Schroeder A, Vanderlinden J, Vints K, Ribeiro LF, Vennekens KM, Gounko NV, Wierda KD, de Wit J. A Modular Organization of LRR Protein-Mediated Synaptic Adhesion Defines Synapse Identity. Neuron 2018; 99:329-344.e7. [PMID: 29983322 DOI: 10.1016/j.neuron.2018.06.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/04/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
Pyramidal neurons express rich repertoires of leucine-rich repeat (LRR)-containing adhesion molecules with similar synaptogenic activity in culture. The in vivo relevance of this molecular diversity is unclear. We show that hippocampal CA1 pyramidal neurons express multiple synaptogenic LRR proteins that differentially distribute to the major excitatory inputs on their apical dendrites. At Schaffer collateral (SC) inputs, FLRT2, LRRTM1, and Slitrk1 are postsynaptically localized and differentially regulate synaptic structure and function. FLRT2 controls spine density, whereas LRRTM1 and Slitrk1 exert opposing effects on synaptic vesicle distribution at the active zone. All LRR proteins differentially affect synaptic transmission, and their combinatorial loss results in a cumulative phenotype. At temporoammonic (TA) inputs, LRRTM1 is absent; FLRT2 similarly controls functional synapse number, whereas Slitrk1 function diverges to regulate postsynaptic AMPA receptor density. Thus, LRR proteins differentially control synaptic architecture and function and act in input-specific combinations and a context-dependent manner to specify synaptic properties.
Collapse
Affiliation(s)
- Anna Schroeder
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Jeroen Vanderlinden
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Katlijn Vints
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium; Electron Microscopy Platform & VIB BioImaging Core, Herestraat 49, 3000 Leuven, Belgium
| | - Luís F Ribeiro
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Kristel M Vennekens
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Natalia V Gounko
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium; Electron Microscopy Platform & VIB BioImaging Core, Herestraat 49, 3000 Leuven, Belgium
| | - Keimpe D Wierda
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
22
|
PTPσ Drives Excitatory Presynaptic Assembly via Various Extracellular and Intracellular Mechanisms. J Neurosci 2018; 38:6700-6721. [PMID: 29934346 DOI: 10.1523/jneurosci.0672-18.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 11/21/2022] Open
Abstract
Leukocyte common antigen-receptor protein tyrosine phosphatases (LAR-RPTPs) are hub proteins that organize excitatory and inhibitory synapse development through binding to various extracellular ligands. Here, we report that knockdown (KD) of the LAR-RPTP family member PTPσ reduced excitatory synapse number and transmission in cultured rat hippocampal neurons, whereas KD of PTPδ produced comparable decreases at inhibitory synapses, in both cases without altering expression levels of interacting proteins. An extensive series of rescue experiments revealed that extracellular interactions of PTPσ with Slitrks are important for excitatory synapse development. These experiments further showed that the intracellular D2 domain of PTPσ is required for induction of heterologous synapse formation by Slitrk1 or TrkC, suggesting that interaction of LAR-RPTPs with distinct intracellular presynaptic proteins, drives presynaptic machinery assembly. Consistent with this, double-KD of liprin-α2 and -α3 or KD of PTPσ substrates (N-cadherin and p250RhoGAP) in neurons inhibited Slitrk6-induced, PTPσ-mediated heterologous synapse formation activity. We propose a synaptogenesis model in presynaptic neurons involving LAR-RPTP-organized retrograde signaling cascades, in which both extracellular and intracellular mechanisms are critical in orchestrating distinct synapse types.SIGNIFICANCE STATEMENT In this study, we sought to test the unproven hypothesis that PTPσ and PTPδ are required for excitatory and inhibitory synapse formation/transmission, respectively, in cultured hippocampal neurons, using knockdown-based loss-of-function analyses. We further performed extensive structure-function analyses, focusing on PTPσ-mediated actions, to address the mechanisms of presynaptic assembly at excitatory synaptic sites. Using interdisciplinary approaches, we systematically applied a varied set of PTPσ deletion variants, point mutants, and splice variants to demonstrate that both extracellular and intracellular mechanisms are involved in organizing presynaptic assembly. Strikingly, extracellular interactions of PTPσ with heparan sulfates and Slitrks, intracellular interactions of PTPσ with liprin-α and its associated proteins through the D2 domain, as well as distinct substrates are all critical.
Collapse
|
23
|
Maffioli E, Schulte C, Nonnis S, Grassi Scalvini F, Piazzoni C, Lenardi C, Negri A, Milani P, Tedeschi G. Proteomic Dissection of Nanotopography-Sensitive Mechanotransductive Signaling Hubs that Foster Neuronal Differentiation in PC12 Cells. Front Cell Neurosci 2018; 11:417. [PMID: 29354032 PMCID: PMC5758595 DOI: 10.3389/fncel.2017.00417] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Neuronal cells are competent in precisely sensing nanotopographical features of their microenvironment. The perceived microenvironmental information will be “interpreted” by mechanotransductive processes and impacts on neuronal functioning and differentiation. Attempts to influence neuronal differentiation by engineering substrates that mimic appropriate extracellular matrix (ECM) topographies are hampered by the fact that profound details of mechanosensing/-transduction complexity remain elusive. Introducing omics methods into these biomaterial approaches has the potential to provide a deeper insight into the molecular processes and signaling cascades underlying mechanosensing/-transduction but their exigence in cellular material is often opposed by technical limitations of major substrate top-down fabrication methods. Supersonic cluster beam deposition (SCBD) allows instead the bottom-up fabrication of nanostructured substrates over large areas characterized by a quantitatively controllable ECM-like nanoroughness that has been recently shown to foster neuron differentiation and maturation. Exploiting this capacity of SCBD, we challenged mechanosensing/-transduction and differentiative behavior of neuron-like PC12 cells with diverse nanotopographies and/or changes of their biomechanical status, and analyzed their phosphoproteomic profiles in these settings. Versatile proteins that can be associated to significant processes along the mechanotransductive signal sequence, i.e., cell/cell interaction, glycocalyx and ECM, membrane/f-actin linkage and integrin activation, cell/substrate interaction, integrin adhesion complex, actomyosin organization/cellular mechanics, nuclear organization, and transcriptional regulation, were affected. The phosphoproteomic data suggested furthermore an involvement of ILK, mTOR, Wnt, and calcium signaling in these nanotopography- and/or cell mechanics-related processes. Altogether, potential nanotopography-sensitive mechanotransductive signaling hubs participating in neuronal differentiation were dissected.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Carsten Schulte
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Claudio Piazzoni
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy
| | - Cristina Lenardi
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy
| | - Armando Negri
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| | - Paolo Milani
- Centre for Nanostructured Materials and Interfaces, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.,Fondazione Filarete, Milan, Italy
| |
Collapse
|
24
|
Lenihan JA, Saha O, Young PW. Proteomic analysis reveals novel ligands and substrates for LNX1 E3 ubiquitin ligase. PLoS One 2017; 12:e0187352. [PMID: 29121065 PMCID: PMC5679597 DOI: 10.1371/journal.pone.0187352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/18/2017] [Indexed: 11/25/2022] Open
Abstract
Ligand of Numb protein X1 (LNX1) is an E3 ubiquitin ligase that contains a catalytic RING (Really Interesting New Gene) domain and four PDZ (PSD-95, DlgA, ZO-1) domains. LNX1 can ubiquitinate Numb, as well as a number of other ligands. However, the physiological relevance of these interactions in vivo remain unclear. To gain functional insights into the LNX family, we have characterised the LNX1 interactome using affinity purification and mass spectrometry. This approach identified a large number of novel LNX1-interacting proteins, as well as confirming known interactions with NUMB and ERC2. Many of the novel interactions mapped to the LNX PDZ domains, particularly PDZ2, and many showed specificity for LNX1 over the closely related LNX2. We show that PPFIA1 (liprin-α1), KLHL11, KIF7 and ERC2 are substrates for ubiquitination by LNX1. LNX1 ubiquitination of liprin-α1 is dependent on a PDZ binding motif containing a carboxyl terminal cysteine that binds LNX1 PDZ2. Surprisingly, the neuronally-expressed LNX1p70 isoform, that lacks the RING domain, was found to promote ubiquitination of PPFIA1 and KLHL11, albeit to a lesser extent than the longer RING-containing LNX1p80 isoform. Of several E3-ligases identified in the LNX1 interactome we confirm interactions of LNX1 with MID2/TRIM1 and TRIM27. On this basis we propose a model whereby LNX1p70, despite lacking a catalytic RING domain, may function as a scaffold to promote ubiquitination of its ligands through recruitment of other E3-ligases. These findings provide functional insights into the LNX protein family, particularly the neuronal LNX1p70 isoform.
Collapse
Affiliation(s)
- Joan A. Lenihan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Orthis Saha
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Paul W. Young
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
25
|
Scholz CJ, Weber H, Jungwirth S, Danielczyk W, Reif A, Tragl KH, Fischer P, Riederer P, Deckert J, Grünblatt E. Explorative results from multistep screening for potential genetic risk loci of Alzheimer's disease in the longitudinal VITA study cohort. J Neural Transm (Vienna) 2017; 125:77-87. [PMID: 29027019 DOI: 10.1007/s00702-017-1796-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that preferentially affects individuals of advanced age. Heritability estimates for AD range between 60 and 80%, but only few genetic risk factors have been identified so far. In the present explorative study, we aimed at characterizing the genetic contribution to late-onset AD in participants of the Vienna Transdanube Aging (VITA) longitudinal birth cohort study in a two-step approach. First, we performed a genome-wide screen of pooled DNA samples (n = 588) to identify allele frequency differences between AD patients and non-AD individuals using life-time diagnoses made at the age of 80 (t = 60 months). This analysis suggested a high proportion of brain-expressed genes required for cell adhesion, cell signaling and cell morphogenesis, and also scored in known AD risk genes. In a second step, we confirmed associations using individual genotypes of top-ranked markers examining AD diagnoses as well as the dimensional scores: FULD and MMSE determined up to the age of 82.5 (t = 90 months). Taken together, our study proposes genes ANKS1B, ENST00000414107, LOC100505811, SLC22A14, QRFPR, ZDHHC8P1, ADAMTS3 and PPFIA1 as possible new candidates involved in the etiology of late-onset AD, with further research being needed to clarify their exact roles.
Collapse
Affiliation(s)
- Claus-Jürgen Scholz
- Core Unit Systems Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Heike Weber
- Department of Psychiatry, Psychosomatics, Psychotherapy, University Hospital Frankfurt/Main, Frankfurt/Main, Germany
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Susanne Jungwirth
- Ludwig Boltzmann Society, L. Boltzmann Institute of Aging Research, Vienna, Austria
- Department of Psychiatry, Social Medicine Center East- Donauspital, Vienna, Austria
| | - Walter Danielczyk
- Ludwig Boltzmann Society, L. Boltzmann Institute of Aging Research, Vienna, Austria
| | - Andreas Reif
- Department of Psychiatry, Psychosomatics, Psychotherapy, University Hospital Frankfurt/Main, Frankfurt/Main, Germany
| | - Karl-Heinz Tragl
- Ludwig Boltzmann Society, L. Boltzmann Institute of Aging Research, Vienna, Austria
| | - Peter Fischer
- Ludwig Boltzmann Society, L. Boltzmann Institute of Aging Research, Vienna, Austria
- Department of Psychiatry, Social Medicine Center East- Donauspital, Vienna, Austria
| | - Peter Riederer
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Edna Grünblatt
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany.
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Wagistrasse 12, Schlieren, 8952, Zurich, Switzerland.
| |
Collapse
|
26
|
Bernadzki KM, Gawor M, Pęziński M, Mazurek P, Niewiadomski P, Rędowicz MJ, Prószyński TJ. Liprin-α-1 is a novel component of the murine neuromuscular junction and is involved in the organization of the postsynaptic machinery. Sci Rep 2017; 7:9116. [PMID: 28831123 PMCID: PMC5567263 DOI: 10.1038/s41598-017-09590-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023] Open
Abstract
Neuromuscular junctions (NMJs) are specialized synapses that connect motor neurons to skeletal muscle fibers and orchestrate proper signal transmission from the nervous system to muscles. The efficient formation and maintenance of the postsynaptic machinery that contains acetylcholine receptors (AChR) are indispensable for proper NMJ function. Abnormalities in the organization of synaptic components often cause severe neuromuscular disorders, such as muscular dystrophy. The dystrophin-associated glycoprotein complex (DGC) was shown to play an important role in NMJ development. We recently identified liprin-α-1 as a novel binding partner for one of the cytoplasmic DGC components, α-dystrobrevin-1. In the present study, we performed a detailed analysis of localization and function of liprin-α-1 at the murine NMJ. We showed that liprin-α-1 localizes to both pre- and postsynaptic compartments at the NMJ, and its synaptic enrichment depends on the presence of the nerve. Using cultured muscle cells, we found that liprin-α-1 plays an important role in AChR clustering and the organization of cortical microtubules. Our studies provide novel insights into the function of liprin-α-1 at vertebrate neuromuscular synapses.
Collapse
Affiliation(s)
- Krzysztof M Bernadzki
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Marta Gawor
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Marcin Pęziński
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Paula Mazurek
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Paweł Niewiadomski
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Maria J Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland
| | - Tomasz J Prószyński
- Laboratory of Synaptogenesis, Polish Academy of Sciences, 3 Pasteura Street, Warsaw, 02-093, Poland.
| |
Collapse
|
27
|
Cdk5-dependent phosphorylation of liprinα1 mediates neuronal activity-dependent synapse development. Proc Natl Acad Sci U S A 2017; 114:E6992-E7001. [PMID: 28760951 DOI: 10.1073/pnas.1708240114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The experience-dependent modulation of brain circuitry depends on dynamic changes in synaptic connections that are guided by neuronal activity. In particular, postsynaptic maturation requires changes in dendritic spine morphology, the targeting of postsynaptic proteins, and the insertion of synaptic neurotransmitter receptors. Thus, it is critical to understand how neuronal activity controls postsynaptic maturation. Here we report that the scaffold protein liprinα1 and its phosphorylation by cyclin-dependent kinase 5 (Cdk5) are critical for the maturation of excitatory synapses through regulation of the synaptic localization of the major postsynaptic organizer postsynaptic density (PSD)-95. Whereas Cdk5 phosphorylates liprinα1 at Thr701, this phosphorylation decreases in neurons in response to neuronal activity. Blockade of liprinα1 phosphorylation enhances the structural and functional maturation of excitatory synapses. Nanoscale superresolution imaging reveals that inhibition of liprinα1 phosphorylation increases the colocalization of liprinα1 with PSD-95. Furthermore, disruption of liprinα1 phosphorylation by a small interfering peptide, siLIP, promotes the synaptic localization of PSD-95 and enhances synaptic strength in vivo. Our findings collectively demonstrate that the Cdk5-dependent phosphorylation of liprinα1 is important for the postsynaptic organization during activity-dependent synapse development.
Collapse
|
28
|
Yang J, Wu NN, Huang DJ, Luo YC, Huang JZ, He HY, Lu HL, Song WL. PPFIA1 is upregulated in liver metastasis of breast cancer and is a potential poor prognostic indicator of metastatic relapse. Tumour Biol 2017; 39:1010428317713492. [PMID: 28720060 DOI: 10.1177/1010428317713492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although the oncogenic role of PPFIA1 (liprin-α1) in breast cancer has been reported, whether its dysregulation is associated with metastasis risk or survival outcomes in breast cancer patients is not clear. Our primary data showed that PPFIA1 expression was significantly higher in liver metastatic breast tumors than in the primary tumors. Then, we tried to pool previous annotated genomic data to assess the prognostic value of PPFIA1 in distant metastasis-free survival, the risk of metastatic relapse, and metastatic relapse-free survival in breast cancer patients by data mining in two large databases, Kaplan-Meier plotter and bc-GenExMiner 4.0. Results from Kaplan-Meier plotter showed that although high PPFIA1 expression was generally associated with decreased distant metastasis-free survival in estrogen receptor+ patients, subgroup analysis only confirmed significant association in estrogen receptor+/N- (nodal negative) group (median survival, high PPFIA1 group vs low PPFIA1 cohort: 191.21 vs 236.22 months; hazard ratio: 2.23, 95% confidence interval: 1.42-3.5, p < 0.001), but not in estrogen receptor+/N+ (nodal positive) group (hazard ratio: 1.63, 95% confidence interval: 0.88-3.03, p = 0.12). In estrogen receptor- patients, there was no association between PPFIA1 expression and distant metastasis-free survival, no matter in Nm (nodal status mixed), N-, or N+ subgroups. In bc-GenExMiner 4.0, Nottingham Prognostic Index- and Adjuvant! Online-adjusted analysis validated the independent prognostic value of PPFIA1 in metastatic risks in estrogen receptor+/N- patients. Based on these findings, we infer that high PPFIA1 expression might be an independent prognostic indicator of increased metastatic relapse risk in patients with estrogen receptor+/N- breast cancer, but not in estrogen receptor+/N+ or estrogen receptor- patients.
Collapse
Affiliation(s)
- Jing Yang
- 1 Department of Interventional Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ning-Ni Wu
- 2 Department of Medical Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - De-Jia Huang
- 3 Department of Interventional Radiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yao-Chang Luo
- 4 Department of Interventional Radiology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jun-Zhen Huang
- 4 Department of Interventional Radiology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Hai-Yuan He
- 4 Department of Interventional Radiology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Hai-Lin Lu
- 4 Department of Interventional Radiology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Wen-Ling Song
- 4 Department of Interventional Radiology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
29
|
Abstract
Exocytosis is a fundamental cellular process whereby secreted molecules are packaged into vesicles that move along cytoskeletal filaments and fuse with the plasma membrane. To function optimally, cells are strongly dependent on precisely controlled delivery of exocytotic cargo. In mammalian cells, microtubules serve as major tracks for vesicle transport by motor proteins, and thus microtubule organization is important for targeted delivery of secretory carriers. Over the years, multiple microtubule-associated and cortical proteins have been discovered that facilitate the interaction between the microtubule plus ends and the cell cortex. In this review, we focus on mammalian protein complexes that have been shown to participate in both cortical microtubule capture and exocytosis, thereby regulating the spatial organization of secretion. These complexes include microtubule plus-end tracking proteins, scaffolding factors, actin-binding proteins, and components of vesicle docking machinery, which together allow efficient coordination of cargo transport and release.
Collapse
Affiliation(s)
- Ivar Noordstra
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| |
Collapse
|
30
|
Bouchet BP, Gough RE, Ammon YC, van de Willige D, Post H, Jacquemet G, Altelaar AM, Heck AJ, Goult BT, Akhmanova A. Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions. eLife 2016; 5. [PMID: 27410476 PMCID: PMC4995097 DOI: 10.7554/elife.18124] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/12/2016] [Indexed: 12/23/2022] Open
Abstract
The cross-talk between dynamic microtubules and integrin-based adhesions to the extracellular matrix plays a crucial role in cell polarity and migration. Microtubules regulate the turnover of adhesion sites, and, in turn, focal adhesions promote the cortical microtubule capture and stabilization in their vicinity, but the underlying mechanism is unknown. Here, we show that cortical microtubule stabilization sites containing CLASPs, KIF21A, LL5β and liprins are recruited to focal adhesions by the adaptor protein KANK1, which directly interacts with the major adhesion component, talin. Structural studies showed that the conserved KN domain in KANK1 binds to the talin rod domain R7. Perturbation of this interaction, including a single point mutation in talin, which disrupts KANK1 binding but not the talin function in adhesion, abrogates the association of microtubule-stabilizing complexes with focal adhesions. We propose that the talin-KANK1 interaction links the two macromolecular assemblies that control cortical attachment of actin fibers and microtubules. DOI:http://dx.doi.org/10.7554/eLife.18124.001 Animal cells are organized into tissues and organs. A scaffold-like framework outside of the cells called the extracellular matrix provides support to the cells and helps to hold them in place. Cells attach to the extracellular matrix via structures called focal adhesions on the cell surface; these structures contain a protein called talin. For a cell to be able to move, the existing focal adhesions must be broken down and new adhesions allowed to form. This process is regulated by the delivery and removal of different materials along fibers called microtubules. Microtubules can usually grow and shrink rapidly, but near focal adhesions they are captured at the surface of the cell and become more stable. However, it is not clear how focal adhesions promote microtubule capture and stability. Bouchet et al. found that a protein called KANK1 binds to the focal adhesion protein talin in human cells grown in a culture dish. This allows KANK1 to recruit microtubules to the cell surface around the focal adhesions by binding to particular proteins that are associated with microtubules. Disrupting the interaction between KANK1 and talin by making small alterations in these two proteins blocked the ability of focal adhesions to capture surrounding microtubules. The next step following on from this work will be to find out whether this process also takes place in the cells within an animal’s body, such as a fly or a mouse. DOI:http://dx.doi.org/10.7554/eLife.18124.002
Collapse
Affiliation(s)
- Benjamin P Bouchet
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Rosemarie E Gough
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - York-Christoph Ammon
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Dieudonnée van de Willige
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, The Netherlands.,Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,The Netherlands Proteomics Centre, Utrecht University, Utrecht, The Netherlands
| | | | - Af Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, The Netherlands.,Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,The Netherlands Proteomics Centre, Utrecht University, Utrecht, The Netherlands
| | - Albert Jr Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, The Netherlands.,Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,The Netherlands Proteomics Centre, Utrecht University, Utrecht, The Netherlands
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
31
|
Liprin-α1 is a regulator of vimentin intermediate filament network in the cancer cell adhesion machinery. Sci Rep 2016; 6:24486. [PMID: 27075696 PMCID: PMC4830931 DOI: 10.1038/srep24486] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/30/2016] [Indexed: 12/13/2022] Open
Abstract
PPFIA1 is located at the 11q13 region, which is one of the most commonly amplified regions in several epithelial cancers including head and neck squamous cell carcinoma and breast carcinoma. Considering the location of PPFIA1 in this amplicon, we examined whether protein encoded by PPFIA1, liprin-α1, possesses oncogenic properties in relevant carcinoma cell lines. Our results indicate that liprin-α1 localizes to different adhesion and cytoskeletal structures to regulate vimentin intermediate filament network, thereby altering the invasion and growth properties of the cancer cells. In non-invasive cells liprin-α1 promotes expansive growth behavior with limited invasive capacity, whereas in invasive cells liprin-α1 has significant impact on mesenchymal cancer cell invasion in three-dimensional collagen. Current results identify liprin-α1 as a novel regulator of the tumor cell intermediate filaments with differential oncogenic properties in actively proliferating or motile cells.
Collapse
|
32
|
Chiaretti S, Astro V, Chiricozzi E, de Curtis I. Effects of the scaffold proteins liprin-α1, β1 and β2 on invasion by breast cancer cells. Biol Cell 2016; 108:65-75. [PMID: 26663347 DOI: 10.1111/boc.201500063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/08/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND INFORMATION The expression of the scaffold protein liprin-α1 is upregulated in human breast cancer. This protein is part of a molecular network that is important for tumour cell invasion in vitro. Liprin-α1 promotes invasion by supporting the protrusive activity at the leading edge of the migrating tumour cell and the degradation of the extracellular matrix by invadopodia. In this study, we have addressed the role of liprin-α1 in the invasive process in vivo and of liprin-proteins in tumor cell motility. RESULTS The human tumour cell line MDA-MB-231 expresses liprin-α1 and is able to promote the formation of metastasis in mice. Liprin-α proteins may hetero-oligomerize with the members of the subfamily of the liprin-β adaptor proteins. Analysis of the role of liprin-β1 and liprin-β2 has shown that while liprin-β1 contributes positively to tumour cell motility in vitro; liprin-β2 has a negative effect on both cell motility and invasion. Interestingly, we also observed differential effects on the ability of tumour cells to degrade the extracellular matrix, which is required for efficient invasion by tumour cells. In addition, analysis of the formation of lung metastases in vivo revealed that while the overexpression of liprin-α1 in MDA-MB-231 cells did not evidently affect the metastatic process, silencing of the endogenous protein strongly impaired the formation of metastases by two independent invasion assays, without inhibiting the growth of primary tumours. CONCLUSIONS Our data support an important role of distinct liprin family members in the regulation of tumour cell invasion, highlighting pro-invasive and anti-invasive effects by liprin-α1 and liprin-β2, respectively. SIGNIFICANCE Our results indicate the importance of liprins in breast cancer cell invasion, and are expected to lead to future investigations on the mechanisms underlying the effects of distinct liprin proteins in different processes linked to tumor cell migration and invasion.
Collapse
Affiliation(s)
- Sara Chiaretti
- Division of Neuroscience, Cell Adhesion Laboratory, San Raffaele Scientific Institute, Milano, 20132, Italy
| | - Veronica Astro
- Division of Neuroscience, Cell Adhesion Laboratory, San Raffaele Scientific Institute, Milano, 20132, Italy
| | - Elena Chiricozzi
- Division of Neuroscience, Cell Adhesion Laboratory, San Raffaele Scientific Institute, Milano, 20132, Italy
| | - Ivan de Curtis
- Division of Neuroscience, Cell Adhesion Laboratory, San Raffaele Scientific Institute, Milano, 20132, Italy
| |
Collapse
|
33
|
Gingras J, Gawor M, Bernadzki KM, Grady RM, Hallock P, Glass DJ, Sanes JR, Proszynski TJ. Α-Dystrobrevin-1 recruits Grb2 and α-catulin to organize neurotransmitter receptors at the neuromuscular junction. J Cell Sci 2016; 129:898-911. [PMID: 26769899 DOI: 10.1242/jcs.181180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/11/2016] [Indexed: 12/17/2022] Open
Abstract
Neuromuscular junctions (NMJs), the synapses made by motor neurons on muscle fibers, form during embryonic development but undergo substantial remodeling postnatally. Several lines of evidence suggest that α-dystrobrevin, a component of the dystrophin-associated glycoprotein complex (DGC), is a crucial regulator of the remodeling process and that tyrosine phosphorylation of one isoform, α-dystrobrevin-1, is required for its function at synapses. We identified a functionally important phosphorylation site on α-dystrobrevin-1, generated phosphorylation-specific antibodies to it and used them to demonstrate dramatic increases in phosphorylation during the remodeling period, as well as in nerve-dependent regulation in adults. We then identified proteins that bind to this site in a phosphorylation-dependent manner and others that bind to α-dystrobrevin-1 in a phosphorylation-independent manner. They include multiple members of the DGC, as well as α-catulin, liprin-α1, Usp9x, PI3K, Arhgef5 and Grb2. Finally, we show that two interactors, α-catulin (phosphorylation independent) and Grb2 (phosphorylation dependent) are localized to NMJs in vivo, and that they are required for proper organization of neurotransmitter receptors on myotubes.
Collapse
Affiliation(s)
- Jacinthe Gingras
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Marta Gawor
- Laboratory of Synaptogenesis, Dept. of Cell Biology, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland
| | - Krzysztof M Bernadzki
- Laboratory of Synaptogenesis, Dept. of Cell Biology, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland
| | - R Mark Grady
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Peter Hallock
- Novartis Biomedical Institute, Cambridge, MA 02139, USA
| | - David J Glass
- Novartis Biomedical Institute, Cambridge, MA 02139, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Tomasz J Proszynski
- Laboratory of Synaptogenesis, Dept. of Cell Biology, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland
| |
Collapse
|
34
|
Ponsuksili S, Zebunke M, Murani E, Trakooljul N, Krieter J, Puppe B, Schwerin M, Wimmers K. Integrated Genome-wide association and hypothalamus eQTL studies indicate a link between the circadian rhythm-related gene PER1 and coping behavior. Sci Rep 2015; 5:16264. [PMID: 26537429 PMCID: PMC4633681 DOI: 10.1038/srep16264] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
Animal personality and coping styles are basic concepts for evaluating animal welfare. Struggling response of piglets in so-called backtests early in life reflects their coping strategy. Behavioral reactions of piglets in backtests have a moderate heritability, but their genetic basis largely remains unknown. Here, latency, duration and frequency of struggling attempts during one-minute backtests were repeatedly recorded of piglets at days 5, 12, 19, and 26. A genome-wide association study for backtest traits revealed 465 significant SNPs (FDR ≤ 0.05) mostly located in QTL (quantitative trait locus) regions on chromosome 3, 5, 12 and 16. In order to capture genes in these regions, 37 transcripts with significant SNPs were selected for expressionQTL analysis in the hypothalamus. Eight genes (ASGR1, CPAMD8, CTC1, FBXO39, IL19, LOC100511790, RAD51B, UBOX5) had cis- and five (RANGRF, PER1, PDZRN3, SH2D4B, LONP2) had trans-expressionQTL. In particular, for PER1, with known physiological implications for maintenance of circadian rhythms, a role in coping behavior was evidenced by confirmed association in an independent population. For CTC1 a cis-expression QTL and the consistent relationship of gene polymorphism, mRNA expression level and backtest traits promoted its link to coping style. GWAS and eQTL analyses uncovered positional and functional gene candidates for coping behavior.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Manuela Zebunke
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Joachim Krieter
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
| | - Birger Puppe
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Behavioral Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Manfred Schwerin
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
35
|
Muhammad K, Reddy-Alla S, Driller JH, Schreiner D, Rey U, Böhme MA, Hollmann C, Ramesh N, Depner H, Lützkendorf J, Matkovic T, Götz T, Bergeron DD, Schmoranzer J, Goettfert F, Holt M, Wahl MC, Hell SW, Scheiffele P, Walter AM, Loll B, Sigrist SJ. Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function. Nat Commun 2015; 6:8362. [PMID: 26471740 PMCID: PMC4633989 DOI: 10.1038/ncomms9362] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/13/2015] [Indexed: 11/17/2022] Open
Abstract
Assembly and maturation of synapses at the Drosophila neuromuscular junction
(NMJ) depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by
the scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold
protein spinophilin binds to the C-terminal portion of neurexin and is needed to
limit neurexin/neuroligin signalling by acting antagonistic to Syd-1. Loss of
presynaptic spinophilin results in the formation of excess, but atypically small
active zones. Neuroligin-1/neurexin-1/Syd-1 levels are increased at
spinophilin mutant NMJs, and removal of single copies of the
neurexin-1, Syd-1 or neuroligin-1 genes suppresses the
spinophilin-active zone phenotype. Evoked transmission is strongly reduced at
spinophilin terminals, owing to a severely reduced release probability at
individual active zones. We conclude that presynaptic spinophilin fine-tunes
neurexin/neuroligin signalling to control active zone number and functionality,
thereby optimizing them for action potential-induced exocytosis. Synaptic assembly depends on trans-synaptic Neurexin/Neuroligin
signalling. Here, Muhammad et al. show that Spinophilin, a pre-synaptic
scaffolding protein, interacts with Neurexin, in competition with Syd-1, to regulate the
formation and function of synaptic active zones at Drosophila neuromuscular
junctions.
Collapse
Affiliation(s)
- Karzan Muhammad
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, Berlin 14195, Germany.,NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany
| | - Suneel Reddy-Alla
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, Berlin 14195, Germany.,NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany
| | - Jan H Driller
- Freie Universität Berlin, Institut für Chemie und Biochemie /Strukturbiochmie, Takustrasse 6, Berlin D-14195, Germany
| | - Dietmar Schreiner
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, Basel 4056, Switzerland
| | - Ulises Rey
- NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany
| | | | | | - Niraja Ramesh
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, Berlin 14195, Germany
| | - Harald Depner
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, Berlin 14195, Germany.,NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany
| | | | - Tanja Matkovic
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, Berlin 14195, Germany.,NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany
| | - Torsten Götz
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, Berlin 14195, Germany.,NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany
| | | | - Jan Schmoranzer
- Freie Universität Berlin, Institut für Chemie und Biochemie /Strukturbiochmie, Takustrasse 6, Berlin D-14195, Germany.,Leibniz Institut für Molekulare Pharmakologie, Robert-Roessle-Strasse 10, Berlin 13125, Germany
| | - Fabian Goettfert
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Mathew Holt
- VIB Center for the Biology of Disease, Herestraat 49, Leuven 3000, Belgium
| | - Markus C Wahl
- Freie Universität Berlin, Institut für Chemie und Biochemie /Strukturbiochmie, Takustrasse 6, Berlin D-14195, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Peter Scheiffele
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, Basel 4056, Switzerland
| | - Alexander M Walter
- NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany.,Leibniz Institut für Molekulare Pharmakologie, Robert-Roessle-Strasse 10, Berlin 13125, Germany
| | - Bernhard Loll
- Freie Universität Berlin, Institut für Chemie und Biochemie /Strukturbiochmie, Takustrasse 6, Berlin D-14195, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, Berlin 14195, Germany.,NeuroCure, Charité, Charitéplatz 1, Berlin 10117, Germany
| |
Collapse
|
36
|
Bruckner JJ, Zhan H, O'Connor-Giles KM. Advances in imaging ultrastructure yield new insights into presynaptic biology. Front Cell Neurosci 2015; 9:196. [PMID: 26052269 PMCID: PMC4440913 DOI: 10.3389/fncel.2015.00196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
Synapses are the fundamental functional units of neural circuits, and their dysregulation has been implicated in diverse neurological disorders. At presynaptic terminals, neurotransmitter-filled synaptic vesicles are released in response to calcium influx through voltage-gated calcium channels activated by the arrival of an action potential. Decades of electrophysiological, biochemical, and genetic studies have contributed to a growing understanding of presynaptic biology. Imaging studies are yielding new insights into how synapses are organized to carry out their critical functions. The development of techniques for rapid immobilization and preservation of neuronal tissues for electron microscopy (EM) has led to a new renaissance in ultrastructural imaging that is rapidly advancing our understanding of synapse structure and function.
Collapse
Affiliation(s)
- Joseph J Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison Madison, WI, USA
| | - Hong Zhan
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison Madison, WI, USA
| | - Kate M O'Connor-Giles
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison Madison, WI, USA ; Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison Madison, WI, USA ; Laboratory of Genetics, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
37
|
Brenig J, de Boor S, Knyphausen P, Kuhlmann N, Wroblowski S, Baldus L, Scislowski L, Artz O, Trauschies P, Baumann U, Neundorf I, Lammers M. Structural and Biochemical Basis for the Inhibitory Effect of Liprin-α3 on Mouse Diaphanous 1 (mDia1) Function. J Biol Chem 2015; 290:14314-27. [PMID: 25911102 DOI: 10.1074/jbc.m114.621946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 11/06/2022] Open
Abstract
Diaphanous-related formins are eukaryotic actin nucleation factors regulated by an autoinhibitory interaction between the N-terminal RhoGTPase-binding domain (mDiaN) and the C-terminal Diaphanous-autoregulatory domain (DAD). Although the activation of formins by Rho proteins is well characterized, its inactivation is only marginally understood. Recently, liprin-α3 was shown to interact with mDia1. Overexpression of liprin-α3 resulted in a reduction of the cellular actin filament content. The molecular mechanisms of how liprin-α3 exerts this effect and counteracts mDia1 activation by RhoA are unknown. Here, we functionally and structurally define a minimal liprin-α3 core region, sufficient to recapitulate the liprin-α3 determined mDia1-respective cellular functions. We show that liprin-α3 alters the interaction kinetics and thermodynamics of mDiaN with RhoA·GTP and DAD. RhoA displaces liprin-α3 allosterically, whereas DAD competes with liprin-α3 for a highly overlapping binding site on mDiaN. Liprin-α3 regulates actin polymerization by lowering the regulatory potency of RhoA and DAD on mDiaN. We present a model of a mechanistically unexplored and new aspect of mDiaN regulation by liprin-α3.
Collapse
Affiliation(s)
- Julian Brenig
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Susanne de Boor
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Philipp Knyphausen
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Nora Kuhlmann
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Sarah Wroblowski
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Linda Baldus
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Lukas Scislowski
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Oliver Artz
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Philip Trauschies
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| | - Ulrich Baumann
- the Institute for Biochemistry, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| | - Ines Neundorf
- the Institute for Biochemistry, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| | - Michael Lammers
- From the Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, University of Cologne, 50931 Cologne, Germany and
| |
Collapse
|
38
|
Urwyler O, Izadifar A, Dascenco D, Petrovic M, He H, Ayaz D, Kremer A, Lippens S, Baatsen P, Guérin CJ, Schmucker D. Investigating CNS synaptogenesis at single-synapse resolution by combining reverse genetics with correlative light and electron microscopy. Development 2014; 142:394-405. [PMID: 25503410 DOI: 10.1242/dev.115071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Determining direct synaptic connections of specific neurons in the central nervous system (CNS) is a major technical challenge in neuroscience. As a corollary, molecular pathways controlling developmental synaptogenesis in vivo remain difficult to address. Here, we present genetic tools for efficient and versatile labeling of organelles, cytoskeletal components and proteins at single-neuron and single-synapse resolution in Drosophila mechanosensory (ms) neurons. We extended the imaging analysis to the ultrastructural level by developing a protocol for correlative light and 3D electron microscopy (3D CLEM). We show that in ms neurons, synaptic puncta revealed by genetically encoded markers serve as a reliable indicator of individual active zones. Block-face scanning electron microscopy analysis of ms axons revealed T-bar-shaped dense bodies and other characteristic ultrastructural features of CNS synapses. For a mechanistic analysis, we directly combined the single-neuron labeling approach with cell-specific gene disruption techniques. In proof-of-principle experiments we found evidence for a highly similar requirement for the scaffolding molecule Liprin-α and its interactors Lar and DSyd-1 (RhoGAP100F) in synaptic vesicle recruitment. This suggests that these important synapse regulators might serve a shared role at presynaptic sites within the CNS. In principle, our CLEM approach is broadly applicable to the developmental and ultrastructural analysis of any cell type that can be targeted with genetically encoded markers.
Collapse
Affiliation(s)
- Olivier Urwyler
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Azadeh Izadifar
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Dan Dascenco
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Milan Petrovic
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Haihuai He
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Derya Ayaz
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| | - Anna Kremer
- VIB, Bio Imaging Core Gent, Technologiepark 927, Zwijnaarde 9052, Belgium Department of Biomedical Molecular Biology, University of Gent, Technologiepark 927, Zwijnaarde 9052, Belgium
| | - Saskia Lippens
- VIB, Bio Imaging Core Gent, Technologiepark 927, Zwijnaarde 9052, Belgium Department of Biomedical Molecular Biology, University of Gent, Technologiepark 927, Zwijnaarde 9052, Belgium
| | - Pieter Baatsen
- VIB, Center for the Biology of Disease, Herestraat 49 box 602, Leuven 3000, Belgium
| | - Christopher J Guérin
- VIB, Bio Imaging Core Gent, Technologiepark 927, Zwijnaarde 9052, Belgium Department of Biomedical Molecular Biology, University of Gent, Technologiepark 927, Zwijnaarde 9052, Belgium VIB, Inflammation Research Center Microscopy and Cytometry Core, Technologiepark 927, Zwijnaarde 9052, Belgium
| | - Dietmar Schmucker
- Neuronal Wiring Laboratory, Vesalius Research Center, VIB, Herestraat 49 box 912, Leuven 3000, Belgium Neuronal Wiring Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Herestraat 49 box 912, Leuven 3000, Belgium
| |
Collapse
|
39
|
Sakamoto S, Narumiya S, Ishizaki T. A new role of multi scaffold protein Liprin-α: Liprin-α suppresses Rho-mDia mediated stress fiber formation. BIOARCHITECTURE 2014; 2:43-49. [PMID: 22754629 PMCID: PMC3383721 DOI: 10.4161/bioa.20442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regulation of the actin cytoskeleton is crucial for cell morphology and migration. One of the key molecules that regulates actin remodeling is the small GTPase Rho. Rho shuttles between the inactive GDP-bound form and the active GTP-bound form, and works as a molecular switch in actin remodeling in response to both extra- and intra-cellular stimuli. Mammalian homolog of Diaphanous (mDia) is one of the Rho effectors and produces unbranched actin filaments. While Rho GTPases activate mDia, the mechanisms of how the activity of mDia is downregulated in cells remains largely unknown. In our recent paper, we identified Liprin-α as an mDia interacting protein and found that Liprin-α negatively regulates the activity of mDia in the cell by displacing it from the plasma membrane through binding to the DID-DD region of mDia. Here, we review these findings and discuss how Liprin-α regulates the Rho-mDia pathway and how the mDia-Liprin-α complex functions in vivo.
Collapse
Affiliation(s)
- Satoko Sakamoto
- Department of Pharmacology; Kyoto University Graduate School of Medicine; Kyoto, Japan
| | | | | |
Collapse
|
40
|
Zheng Q, Ahlawat S, Schaefer A, Mahoney T, Koushika SP, Nonet ML. The vesicle protein SAM-4 regulates the processivity of synaptic vesicle transport. PLoS Genet 2014; 10:e1004644. [PMID: 25329901 PMCID: PMC4199485 DOI: 10.1371/journal.pgen.1004644] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 08/02/2014] [Indexed: 12/31/2022] Open
Abstract
Axonal transport of synaptic vesicles (SVs) is a KIF1A/UNC-104 mediated process critical for synapse development and maintenance yet little is known of how SV transport is regulated. Using C. elegans as an in vivo model, we identified SAM-4 as a novel conserved vesicular component regulating SV transport. Processivity, but not velocity, of SV transport was reduced in sam-4 mutants. sam-4 displayed strong genetic interactions with mutations in the cargo binding but not the motor domain of unc-104. Gain-of-function mutations in the unc-104 motor domain, identified in this study, suppress the sam-4 defects by increasing processivity of the SV transport. Genetic analyses suggest that SAM-4, SYD-2/liprin-α and the KIF1A/UNC-104 motor function in the same pathway to regulate SV transport. Our data support a model in which the SV protein SAM-4 regulates the processivity of SV transport. Most cellular components of neurons are synthesized in the cell body and must be transported great distances to form synapses at the ends of axons and dendrites. Neurons use a specialized axonal transport system consisting of microtubule cytoskeletal tracks and numerous molecular motors to shuttle specific cargo to specific destinations in the cell. Disruption of this transport system has severe consequences to human health. Disruption of specific neuronal motors are linked to hereditary neurodegenerative conditions including forms of Charcot Marie Tooth disease, several types of hereditary spastic paraplegia, and certain forms of amyotrophic lateral sclerosis motor neuron disease. Despite recent progress in defining the cargo of many of kinesin family motors in neurons, little is known about how the activity of these transport systems is regulated. Here, using a simple invertebrate model we identify and characterize a novel protein that regulates the efficacy of the KIF1A motor that mediates transport of synaptic vesicles. These studies define a new pathway regulating SV transport with potential links to human neurological disease.
Collapse
Affiliation(s)
- Qun Zheng
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri, United States of America
| | - Shikha Ahlawat
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Anneliese Schaefer
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University Medical School, St. Louis, Missouri, United States of America
| | - Tim Mahoney
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri, United States of America
- Huffington Center On Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Michael L. Nonet
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
41
|
Chua JJE. Macromolecular complexes at active zones: integrated nano-machineries for neurotransmitter release. Cell Mol Life Sci 2014; 71:3903-16. [PMID: 24912984 PMCID: PMC11113288 DOI: 10.1007/s00018-014-1657-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 02/06/2023]
Abstract
The release of neurotransmitters from synaptic vesicles exocytosing at presynaptic nerve terminals is a critical event in the initiation of synaptic transmission. This event occurs at specialized sites known as active zones. The task of faithfully executing various steps in the process is undertaken by careful orchestration of overlapping sets of molecular nano-machineries upon a core macromolecular scaffold situated at active zones. However, their composition remains incompletely elucidated. This review provides an overview of the role of the active zone in mediating neurotransmitter release and summarizes the recent progress using neuroproteomic approaches to decipher their composition. Key proteins of these nano-machineries are highlighted.
Collapse
Affiliation(s)
- John Jia En Chua
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany,
| |
Collapse
|
42
|
Hayashi T, Harada N. Post-translational dual regulation of cytochrome P450 aromatase at the catalytic and protein levels by phosphorylation/dephosphorylation. FEBS J 2014; 281:4830-40. [PMID: 25158681 DOI: 10.1111/febs.13021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/31/2014] [Accepted: 08/22/2014] [Indexed: 11/27/2022]
Abstract
The post-translational regulation of aromatase has not been well characterized as compared with transcriptional regulation. Several studies of post-translational regulation have focused on decreases in catalytic activity following phosphorylation. We report here dual post-translational regulation of aromatase, at the catalytic activity and protein levels. Microsomal aromatase prepared from JEG-3 cells was rapidly inactivated and subsequently degraded in the presence of a cytosolic fraction with calcium, magnesium, and ATP. In a reconstituted system consisting of microsomal and cytosolic fractions, aromatase was protected from protein degradation by treatment with alkaline phosphatase, whereas degradation was enhanced by treatment with calcineurin inhibitors (FK506 and cyclosporin A). Furthermore, aromatase was protected from degradation by treatment with kinase inhibitors, especially the calcium/calmodulin kinase inhibitors KN62 and KN93. Similarly to the reconstituted system, aromatase in cultured JEG-3 cells was protected from degradation by KN93, whereas FK503 increased degradation in the presence of cycloheximide, although cellular aromatase mRNA levels were unchanged by these reagents. Knockdown of calcineurin and calcium/calmodulin kinase II (CaMKII) with small interfering RNAs resulted in a dose-dependent increase in aromatase degradation and protection from degradation, respectively. The cytosol fraction-dependent phosphorylation of microsomal aromatase was inhibited by calcineurin, KN62, and KN93, and promoted by CaMKII and FK506. These results indicate that aromatase is regulated acutely at the catalytic activity level and subsequently at the enzyme content level by CaMKII/calcineurin-dependent phosphorylation/dephosphorylation.
Collapse
Affiliation(s)
- Takanori Hayashi
- Department of Biochemistry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | | |
Collapse
|
43
|
Anjum R, Ayoubian H, Schmitz F. Differential synaptic distribution of the scaffold proteins Cask and Caskin1 in the bovine retina. Mol Cell Neurosci 2014; 62:19-29. [DOI: 10.1016/j.mcn.2014.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/24/2014] [Accepted: 08/10/2014] [Indexed: 11/26/2022] Open
|
44
|
Drosophila Syd-1, liprin-α, and protein phosphatase 2A B' subunit Wrd function in a linear pathway to prevent ectopic accumulation of synaptic materials in distal axons. J Neurosci 2014; 34:8474-87. [PMID: 24948803 DOI: 10.1523/jneurosci.0409-14.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
During synaptic development, presynaptic differentiation occurs as an intrinsic property of axons to form specialized areas of plasma membrane [active zones (AZs)] that regulate exocytosis and endocytosis of synaptic vesicles. Genetic and biochemical studies in vertebrate and invertebrate model systems have identified a number of proteins involved in AZ assembly. However, elucidating the molecular events of AZ assembly in a spatiotemporal manner remains a challenge. Syd-1 (synapse defective-1) and Liprin-α have been identified as two master organizers of AZ assembly. Genetic and imaging analyses in invertebrates show that Syd-1 works upstream of Liprin-α in synaptic assembly through undefined mechanisms. To understand molecular pathways downstream of Liprin-α, we performed a proteomic screen of Liprin-α-interacting proteins in Drosophila brains. We identify Drosophila protein phosphatase 2A (PP2A) regulatory subunit B' [Wrd (Well Rounded)] as a Liprin-α-interacting protein, and we demonstrate that it mediates the interaction of Liprin-α with PP2A holoenzyme and the Liprin-α-dependent synaptic localization of PP2A. Interestingly, loss of function in syd-1, liprin-α, or wrd shares a common defect in which a portion of synaptic vesicles, dense-core vesicles, and presynaptic cytomatrix proteins ectopically accumulate at the distal, but not proximal, region of motoneuron axons. Strong genetic data show that a linear syd-1/liprin-α/wrd pathway in the motoneuron antagonizes glycogen synthase kinase-3β kinase activity to prevent the ectopic accumulation of synaptic materials. Furthermore, we provide data suggesting that the syd-1/liprin-α/wrd pathway stabilizes AZ specification at the nerve terminal and that such a novel function is independent of the roles of syd-1/liprin-α in regulating the morphology of the T-bar structural protein BRP (Bruchpilot).
Collapse
|
45
|
Bury LA, Sabo SL. Dynamic mechanisms of neuroligin-dependent presynaptic terminal assembly in living cortical neurons. Neural Dev 2014; 9:13. [PMID: 24885664 PMCID: PMC4049477 DOI: 10.1186/1749-8104-9-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/12/2014] [Indexed: 12/23/2022] Open
Abstract
Background Synapse formation occurs when synaptogenic signals trigger coordinated development of pre and postsynaptic structures. One of the best-characterized synaptogenic signals is trans-synaptic adhesion. However, it remains unclear how synaptic proteins are recruited to sites of adhesion. In particular, it is unknown whether synaptogenic signals attract synaptic vesicle (SV) and active zone (AZ) proteins to nascent synapses or instead predominantly function to create sites that are capable of forming synapses. It is also unclear how labile synaptic proteins are at developing synapses after their initial recruitment. To address these issues, we used long-term, live confocal imaging of presynaptic terminal formation in cultured cortical neurons after contact with the synaptogenic postsynaptic adhesion proteins neuroligin-1 or SynCAM-1. Results Surprisingly, we find that trans-synaptic adhesion does not attract SV or AZ proteins nor alter their transport. In addition, although neurexin (the presynaptic partner of neuroligin) typically accumulates over the entire region of contact between axons and neuroligin-1-expressing cells, SV proteins selectively assemble at spots of enhanced neurexin clustering. The arrival and maintenance of SV proteins at these sites is highly variable over the course of minutes to hours, and this variability correlates with neurexin levels at individual synapses. Conclusions Together, our data support a model of synaptogenesis where presynaptic proteins are trapped at specific axonal sites, where they are stabilized by trans-synaptic adhesion signaling.
Collapse
Affiliation(s)
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
46
|
Joshi CS, Khan SA, Khole VV. Regulation of acrosome reaction by Liprin α3, LAR and its ligands in mouse spermatozoa. Andrology 2013; 2:165-74. [PMID: 24327330 DOI: 10.1111/j.2047-2927.2013.00167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 11/30/2022]
Abstract
Zona pellucida-based induction of acrosome reaction (AR) is a popular and well-accepted hypothesis. However, this hypothesis is being challenged in recent years and it has been proposed that the cumulus cells might be the site of AR. In our previous study, we reported the presence of a synaptic protein Liprin α3 on sperm acrosome, and proposed its role in AR. This study was designed to understand the role of Liprin α3 and its interacting proteins in regulation of AR. It is observed that the presence of anti-Liprin α3 antibody inhibits the process of AR. Colocalization experiments demonstrate the coexistence of leucocyte antigen related (LAR) protein, Rab-interacting molecule (RIM) and Liprin α3 on sperm acrosome thereby completing the identification of all the members of RIM/MUNC/Rab3A/liprinα complex required for membrane fusion. This study demonstrates the effect of LAR ligands such as Syndecans, Nidogens and LAR wedge domain peptide on AR. We could see an increase in AR in presence of these ligands. On the basis of these data, we speculate that in presence of ligands or wedge peptide, LAR undergoes dimerization leading to inhibition of phosphatase activity and increase in AR. The presence of one of the ligands Syndecan-1 on cumulus cells led us to hypothesize that it is Syndecan which induces AR in vivo and thus another site of AR could lie in cumulus.
Collapse
Affiliation(s)
- C S Joshi
- Department of Gamete Immunobiology, National Institute for Research in Reproductive Health, Mumbai, India
| | | | | |
Collapse
|
47
|
Kittelmann M, Hegermann J, Goncharov A, Taru H, Ellisman MH, Richmond JE, Jin Y, Eimer S. Liprin-α/SYD-2 determines the size of dense projections in presynaptic active zones in C. elegans. J Cell Biol 2013; 203:849-63. [PMID: 24322429 PMCID: PMC3857474 DOI: 10.1083/jcb.201302022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 11/06/2013] [Indexed: 01/23/2023] Open
Abstract
Synaptic vesicle (SV) release is spatially and temporally regulated by a network of proteins that form the presynaptic active zone (AZ). The hallmark of most AZs is an electron-dense projection (DP) surrounded by SVs. Despite their importance for our understanding of triggered SV release, high-resolution analyses of DP structures are limited. Using electron microscopy, we show that DPs at Caenorhabditis elegans neuromuscular junctions (NMJs) were highly structured, composed of building units forming bays in which SVs are docked to the AZ membrane. Furthermore, larger ribbonlike DPs that were multimers of the NMJ building unit are found at synapses between inter- and motoneurons. We also demonstrate that DP size is determined by the activity of the AZ protein SYD-2/Liprin-α. Whereas loss of syd-2 function led to smaller DPs, syd-2 gain-of-function mutants displayed larger ribbonlike DPs through increased recruitment of ELKS-1/ELKS. Therefore, our data suggest that a main role of SYD-2/Liprin-α in synaptogenesis is to regulate the polymerization of DPs.
Collapse
Affiliation(s)
- Maike Kittelmann
- European Neuroscience Institute, 37077 Göttingen, Germany
- Cellular Neurobiology, Schwann-Schleiden-Centre for Molecular Cell Biology, 37077 Göttingen, Germany
| | - Jan Hegermann
- European Neuroscience Institute, 37077 Göttingen, Germany
- Center for Molecular Physiology of the Brain, 37073 Göttingen, Germany
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - Alexandr Goncharov
- Howard Hughes Medical Institute, Division of Biological Sciences; and Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neurosciences; University of California, San Diego, La Jolla, CA 92093
| | - Hidenori Taru
- Howard Hughes Medical Institute, Division of Biological Sciences; and Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neurosciences; University of California, San Diego, La Jolla, CA 92093
- Laboratory of Neuronal Cell Biology, Graduate School of Pharmaceutical Sciences and Creative Research Institute, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Mark H. Ellisman
- Howard Hughes Medical Institute, Division of Biological Sciences; and Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neurosciences; University of California, San Diego, La Jolla, CA 92093
| | - Janet E. Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Yishi Jin
- Howard Hughes Medical Institute, Division of Biological Sciences; and Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neurosciences; University of California, San Diego, La Jolla, CA 92093
| | - Stefan Eimer
- European Neuroscience Institute, 37077 Göttingen, Germany
- Center for Molecular Physiology of the Brain, 37073 Göttingen, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79108 Freiburg, Germany
| |
Collapse
|
48
|
Matkovic T, Siebert M, Knoche E, Depner H, Mertel S, Owald D, Schmidt M, Thomas U, Sickmann A, Kamin D, Hell SW, Bürger J, Hollmann C, Mielke T, Wichmann C, Sigrist SJ. The Bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles. ACTA ACUST UNITED AC 2013; 202:667-83. [PMID: 23960145 PMCID: PMC3747298 DOI: 10.1083/jcb.201301072] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two Bruchpilot isoforms create a stereotypic arrangement of the cytomatrix that defines the size of the readily releasable pool of synaptic vesicles. Synaptic vesicles (SVs) fuse at a specialized membrane domain called the active zone (AZ), covered by a conserved cytomatrix. How exactly cytomatrix components intersect with SV release remains insufficiently understood. We showed previously that loss of the Drosophila melanogaster ELKS family protein Bruchpilot (BRP) eliminates the cytomatrix (T bar) and declusters Ca2+ channels. In this paper, we explored additional functions of the cytomatrix, starting with the biochemical identification of two BRP isoforms. Both isoforms alternated in a circular array and were important for proper T-bar formation. Basal transmission was decreased in isoform-specific mutants, which we attributed to a reduction in the size of the readily releasable pool (RRP) of SVs. We also found a corresponding reduction in the number of SVs docked close to the remaining cytomatrix. We propose that the macromolecular architecture created by the alternating pattern of the BRP isoforms determines the number of Ca2+ channel-coupled SV release slots available per AZ and thereby sets the size of the RRP.
Collapse
Affiliation(s)
- Tanja Matkovic
- Neurogenetik, Institut für Biologie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
LAR-RPTPs: synaptic adhesion molecules that shape synapse development. Trends Cell Biol 2013; 23:465-75. [DOI: 10.1016/j.tcb.2013.07.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 12/21/2022]
|
50
|
van der Vaart B, van Riel W, Doodhi H, Kevenaar J, Katrukha E, Gumy L, Bouchet B, Grigoriev I, Spangler S, Yu K, Wulf P, Wu J, Lansbergen G, van Battum E, Pasterkamp R, Mimori-Kiyosue Y, Demmers J, Olieric N, Maly I, Hoogenraad C, Akhmanova A. CFEOM1-Associated Kinesin KIF21A Is a Cortical Microtubule Growth Inhibitor. Dev Cell 2013; 27:145-160. [DOI: 10.1016/j.devcel.2013.09.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 05/21/2013] [Accepted: 09/12/2013] [Indexed: 12/20/2022]
|