1
|
Zhang Y, Xu M, He H, Ren S, Chen X, Zhang Y, An J, Ren X, Zhang X, Zhang M, Liu Z, Li X. Proteomic analysis of aqueous humor reveals novel regulators of diabetic macular edema. Exp Eye Res 2024; 239:109724. [PMID: 37981180 DOI: 10.1016/j.exer.2023.109724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Diabetic macular edema (DME) is the most common cause of blindness in patients with diabetic retinopathy. To investigate the proteomic profiles of the aqueous humor (AH) of individuals with diabetic macular edema (DME), AH samples were collected from patients with non-diabetes mellitus (NDM), DM, nonproliferative diabetic retinopathy (NPDR), and DME. We performed comparative proteomic analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analyses. We identified 425 proteins in these AH samples, of which 113 showed changes in expression in DME compared with NDM, 95 showed changes in expression in DME vs. DM, and 84 showed changes in expression in DME compared with NPDR. The bioinformatics analysis suggested that DME is closely associated with platelet degranulation, oxidative stress-related pathway, and vascular-related pathways. Upregulation of haptoglobin (HP) and downregulation of fibrillin 1 (FBN1) were validated by ELISA. Receiver operating characteristic (ROC) analysis showed that HP and FBN1 could distinguish DME from NPDR with areas under the curve of 0.987 (p = 0.00608) and 0.791 (p = 0.00629), respectively. The findings provide potential clues for further analysis of the molecular mechanisms and the development of new treatments for DME. HP and FBN1 may be potential key proteins and therapeutic targets in human DME. The proteomics dataset generated has been deposited to the ProteomeXchange/iProX Consortium with Identifier: PXD033404/IPX0004353001.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xiangtai, Hebei, China
| | - Manhong Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hongbo He
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Shaojie Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xin Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jinying An
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xinjun Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Minglian Zhang
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xiangtai, Hebei, China
| | - Zhiqiang Liu
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xiangtai, Hebei, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
2
|
Arroyo E, Pérez Sayáns M, Bravo SB, de Oliveira Barbeiro C, Paravani Palaçon M, Chamorro Petronacci CM, García Vence M, Chantada Vázquez MDP, Blanco Carrión A, Suárez Peñaranda JM, García García A, Gándara Vila P, Días Almeida J, Veríssimo da Costa GC, Sousa Nogueira FC, Medeiros Evaristo JA, de Abreu Pereira D, Rintala M, Salo T, Rautava J, Padín Iruegas E, Oliveira Alves MG, Morandin Ferrisse T, Albergoni da Silveira H, Esquiche León J, Vilela Silva E, Flores IL, Bufalino A. Identification of Proteomic Biomarkers in Proliferative Verrucous Leukoplakia through Liquid Chromatography With Tandem Mass Spectrometry. J Transl Med 2023; 103:100222. [PMID: 37507024 DOI: 10.1016/j.labinv.2023.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Proliferative verrucous leukoplakia (PVL) is an oral potentially malignant disorder associated with high risk of malignant transformation. Currently, there is no treatment available, and restrictive follow-up of patients is crucial for a better prognosis. Oral leukoplakia (OL) shares some clinical and microscopic features with PVL but exhibits different clinical manifestations and a lower rate of malignant transformation. This study aimed to investigate the proteomic profile of PVL in tissue and saliva samples to identify potential diagnostic biomarkers with therapeutic implications. Tissue and saliva samples obtained from patients with PVL were compared with those from patients with oral OL and controls. Label-free liquid chromatography with tandem mass spectrometry was employed, followed by qualitative and quantitative analyses, to identify differentially expressed proteins. Potential biomarkers were identified and further validated using immunohistochemistry. Staining intensity scan analyses were performed on tissue samples from patients with PVL, patients with OL, and controls from Brazil, Spain, and Finland. The study revealed differences in the immune system, cell cycle, DNA regulation, apoptosis pathways, and the whole proteome of PVL samples. In addition, liquid chromatography with tandem mass spectrometry analyses showed that calreticulin (CALR), receptor of activated protein C kinase 1 (RACK1), and 14-3-3 Tau-protein (YWHAQ) were highly expressed in PVL samples. Immunohistochemistry validation confirmed increased CARL expression in PVL compared with OL. Conversely, RACK1 and YWHA were highly expressed in oral potentially malignant disorder compared to the control group. Furthermore, significant differences in CALR and RACK1 expression were observed in the OL group when comparing samples with and without oral epithelial dysplasia, unlike the PVL. This research provides insights into the molecular mechanisms underlying these conditions and highlights potential targets for future diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Esteban Arroyo
- Department of Diagnosis and Surgery, Araraquara, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Mario Pérez Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, University of Santiago de Compostela, Instituto de los materiales de Santiago de Compostela (iMATUS), Santiago, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS) (ORALRES Group), Santiago de Compostela, Spain.
| | - Susana Belen Bravo
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Camila de Oliveira Barbeiro
- Department of Diagnosis and Surgery, Araraquara, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Mariana Paravani Palaçon
- Department of Diagnosis and Surgery, Araraquara, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - María García Vence
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | | | - Andrés Blanco Carrión
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, University of Santiago de Compostela, Instituto de los materiales de Santiago de Compostela (iMATUS), Santiago, Spain
| | - José M Suárez Peñaranda
- Servicio de Anatomia Patológica, Hospital Clinico Universitario de Santiago, Choupana s/n Santiago de Compostela, Spain
| | - Abel García García
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, University of Santiago de Compostela, Instituto de los materiales de Santiago de Compostela (iMATUS), Santiago, Spain
| | - Pilar Gándara Vila
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, University of Santiago de Compostela, Instituto de los materiales de Santiago de Compostela (iMATUS), Santiago, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS) (ORALRES Group), Santiago de Compostela, Spain
| | - Janete Días Almeida
- Department of Bioscience and Buccal Diagnosis, São José dos Campos, Science and Technologies Institute, São Paulo State University (Unesp), São José dos Campos, São Paulo, Brazil
| | - Giovani Carlo Veríssimo da Costa
- Department of Basic Sciences, Nova Friburgo Health Institute, Univ. Federal Fluminense, Nova Friburgo, Rio de Janeiro, Brazil; Laboratory of Proteomics, Technological Development Support Laboratory (LADETEC), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio César Sousa Nogueira
- Laboratory of Proteomics, Technological Development Support Laboratory (LADETEC), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joseph Albert Medeiros Evaristo
- Laboratory of Proteomics, Technological Development Support Laboratory (LADETEC), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise de Abreu Pereira
- Program on Cellular and Molecular Oncobiology, Research Coordination, National Institute of Cancer (INCA), Rio de Janeiro, Brazil
| | - Mirjami Rintala
- Department of Oral Pathology, University of Turku, Turku, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland; Department of Pathology, HUSLAB, Helsinki, Finland; Department of Cancer and Translational Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu, Finland
| | - Jaana Rautava
- Department of Oral Pathology, University of Turku, Turku, Finland; Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland; Department of Pathology, HUSLAB, Helsinki, Finland
| | - Elena Padín Iruegas
- Human Anatomy and Embryology Area, Faculty of Physiotherapy, Department of Functional Biology and Health Sciences, Pontevedra, Spain
| | | | - Túlio Morandin Ferrisse
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Heitor Albergoni da Silveira
- Department of Diagnosis and Surgery, Araraquara, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jorge Esquiche León
- Oral Pathology, Department of Stomatology, Public Oral Health, and Forensic Dentistry, Ribeirão Preto Dental School (FORP/USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Evânio Vilela Silva
- Department of Diagnosis and Surgery, Araraquara, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Isadora Luana Flores
- Oral Pathology Area, Conservative Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre/RS, Brazil
| | - Andreia Bufalino
- Department of Diagnosis and Surgery, Araraquara, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
3
|
Ziaei E, de Paiva IM, Yao SJ, Sarrami N, Mehinrad P, Lai J, Lavasanifar A, Kaur K. Peptide-Drug Conjugate Targeting Keratin 1 Inhibits Triple-Negative Breast Cancer in Mice. Mol Pharm 2023; 20:3570-3577. [PMID: 37307328 PMCID: PMC10699791 DOI: 10.1021/acs.molpharmaceut.3c00189] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective delivery of chemotherapy to the tumor site while sparing healthy cells and tissues is an attractive approach for cancer treatment. Carriers such as peptides can facilitate selective tumor targeting and payload delivery. Peptides with specific affinity for the overexpressed cell-surface receptors in cancer cells are conjugated to chemotherapy to afford peptide-drug conjugates (PDCs) that show selective uptake by cancer cells. Using a 10-mer linear peptide (WxEAAYQrFL) called 18-4 that targets and binds breast cancer cells, we designed a peptide 18-4-doxorubicin (Dox) conjugate with high specific toxicity toward triple-negative breast cancer (TNBC) MDA-MB-231 cells and 30-fold lower toxicity to normal breast MCF10A epithelial cells. Here, we elucidate the in vivo activity of this potent and tumor-selective peptide 18-4-Dox conjugate in mice bearing orthotopic MDA-MB-231 tumors. Mice treated with four weekly injections of the conjugate showed significantly lower tumor volumes compared to mice treated with free Dox at an equivalent Dox dose. Immunohistochemical (IHC) analysis of mice tissues revealed that treatment with a low dose of PDC (2.5 mg/kg of Dox equiv) reduced the expression of proliferation markers (PCNA and Ki-67) and increased apoptosis (evidenced by increased caspase-3 expression). At the same dose of free Dox (2.5 mg/kg), the expression of these markers was similar to that of saline treatment. Accordingly, significantly more Dox accumulated in tumors of conjugate-treated mice (7-fold) compared to the Dox-treated mice, while lower levels of Dox were observed in the liver, heart, and lungs of peptide-Dox conjugate-treated mice (up to 3-fold less) than Dox-treated mice. The IHC analysis of keratin 1 (K1), the receptor for peptide 18-4, revealed K1 upregulation in tumors and low levels in normal mammary fat pad and liver tissues from mice, suggesting preferential uptake of PDCs by TNBC to be K1 receptor-mediated. Taken together, our data support the use of a PDC approach to deliver chemotherapy selectively to the TNBC to inhibit tumor growth.
Collapse
Affiliation(s)
- Elmira Ziaei
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA, 92618-1908, USA
| | - Igor Moura de Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Shih-Jing Yao
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA, 92618-1908, USA
| | - Nasim Sarrami
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Parnian Mehinrad
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Justine Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA, 92618-1908, USA
| |
Collapse
|
4
|
Discovering the Triad between Nav1.5, Breast Cancer, and the Immune System: A Fundamental Review and Future Perspectives. Biomolecules 2022; 12:biom12020310. [PMID: 35204811 PMCID: PMC8869595 DOI: 10.3390/biom12020310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 02/05/2023] Open
Abstract
Nav1.5 is one of the nine voltage-gated sodium channel-alpha subunit (VGSC-α) family members. The Nav1.5 channel typically carries an inward sodium ion current that depolarises the membrane potential during the upstroke of the cardiac action potential. The neonatal isoform of Nav1.5, nNav1.5, is produced via VGSC-α alternative splicing. nNav1.5 is known to potentiate breast cancer metastasis. Despite their well-known biological functions, the immunological perspectives of these channels are poorly explored. The current review has attempted to summarise the triad between Nav1.5 (nNav1.5), breast cancer, and the immune system. To date, there is no such review available that encompasses these three components as most reviews focus on the molecular and pharmacological prospects of Nav1.5. This review is divided into three major subsections: (1) the review highlights the roles of Nav1.5 and nNav1.5 in potentiating the progression of breast cancer, (2) focuses on the general connection between breast cancer and the immune system, and finally (3) the review emphasises the involvements of Nav1.5 and nNav1.5 in the functionality of the immune system and the immunogenicity. Compared to the other subsections, section three is pretty unexploited; it would be interesting to study this subsection as it completes the triad.
Collapse
|
5
|
Ogunnigbagbe O, Bunick CG, Kaur K. Keratin 1 as a cell-surface receptor in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188664. [PMID: 34890750 PMCID: PMC8818032 DOI: 10.1016/j.bbcan.2021.188664] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
Keratins are fibrous proteins that take part in several important cellular functions, including the formation of intermediate filaments. In addition, keratins serve as epithelial cell markers, which has made their role in cancer progression, diagnosis, and treatment an important focus of research. Keratin 1 (K1) is a type II keratin whose structure is comprised of a coiled-coil central domain flanked by flexible, glycine-rich loops in the N- and C-termini. While the structure of cytoplasmic K1 is established, the structure of cell-surface K1 is not known. Several transformed cells, such as cancerous cells and cells that have undergone oxidative stress, display increased levels of overall and/or cell-surface K1 expression. Cell-surface keratins (CSKs) may be modified or truncated, and their role is yet to be fully elucidated. Current studies suggest that CSKs are involved in receptor-mediated endocytosis and immune evasion. In this Review, we discuss findings relating to K1 structure, overexpression, and cell-surface expression in the context of utilizing CSK1 as a receptor for targeted drug delivery to cancer cells, and other strategies to develop novel treatments for cancer.
Collapse
Affiliation(s)
- Oluseye Ogunnigbagbe
- School of Pharmacy, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA
| | - Christopher G. Bunick
- Department of Dermatology, Yale University, New Haven, Connecticut, 06520-8059, USA,corresponding author
| | - Kamaljit Kaur
- School of Pharmacy, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California, 92618-1908, USA,corresponding author
| |
Collapse
|
6
|
Saghaeidehkordi A, Chen S, Yang S, Kaur K. Evaluation of a Keratin 1 Targeting Peptide-Doxorubicin Conjugate in a Mouse Model of Triple-Negative Breast Cancer. Pharmaceutics 2021; 13:661. [PMID: 34063098 PMCID: PMC8148172 DOI: 10.3390/pharmaceutics13050661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy is the main treatment for triple-negative breast cancer (TNBC), a subtype of breast cancer that is aggressive with a poor prognosis. While chemotherapeutics are potent, these agents lack specificity and are equally toxic to cancer and nonmalignant cells and tissues. Targeted therapies for TNBC treatment could lead to more safe and efficacious drugs. We previously engineered a breast cancer cell targeting peptide 18-4 that specifically binds cell surface receptor keratin 1 (K1) on breast cancer cells. A conjugate of peptide 18-4 and doxorubicin (Dox) containing an acid-sensitive hydrazone linker showed specific toxicity toward TNBC cells. Here, we report the in vivo evaluation of the K1 targeting peptide-Dox conjugate (PDC) in a TNBC cell-derived xenograft mouse model. Mice treated with the conjugate show significantly improved antitumor efficacy and reduced off-target toxicity compared to mice treated with Dox or saline. After six weekly treatments, on day 35, the mice treated with PDC (2.5 mg Dox equivalent/kg) showed significant reduction (1.5 times) in tumor volume compared to mice treated with Dox (2.5 mg/kg). The mice treated with the conjugate showed significantly higher (1.4 times) levels of Dox in tumors and lower (1.3-2.2 times) levels of Dox in other organs compared to mice treated with Dox. Blood collected at 15 min showed 3.6 times higher concentration of the drug (PDC and Dox) in mice injected with PDC compared to the drug (Dox) in mice injected with Dox. The study shows that the K1 targeting PDC is a promising novel modality for treatment of TNBC, with a favorable safety profile, and warrants further investigation of K1 targeting conjugates as TNBC therapeutics.
Collapse
Affiliation(s)
- Azam Saghaeidehkordi
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618-1908, USA; (A.S.); (S.Y.)
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA;
| | - Sun Yang
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618-1908, USA; (A.S.); (S.Y.)
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618-1908, USA; (A.S.); (S.Y.)
| |
Collapse
|
7
|
Wu B, Chang N, Xi H, Xiong J, Zhou Y, Wu Y, Wu S, Wang N, Yi H, Song Y, Chen L, Zhang J. PHB2 promotes tumorigenesis via RACK1 in non-small cell lung cancer. Am J Cancer Res 2021; 11:3150-3166. [PMID: 33537079 PMCID: PMC7847695 DOI: 10.7150/thno.52848] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Lung cancer has the highest mortality rate among cancers worldwide, with non-small cell lung cancer (NSCLC) the most common type. Increasing evidence shows that PHB2 is highly expressed in other cancer types; however, the effects of PHB2 in NSCLC are currently poorly understood. Method: PHB2 expression and its clinical relevance in NSCLC tumor tissues were analyzed using a tissue microarray. The biological role of PHB2 in NSCLC was investigated in vitro and in vivo using immunohistochemistry and immunofluorescence staining, gene expression knockdown and overexpression, cell proliferation assay, flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, wound healing assay, Transwell assay, western blot analysis, qRT-PCR, coimmunoprecipitation, and mass spectrometry analysis. Results: Our major finding is that PHB2 facilitates tumorigenesis in NSCLC by interacting with and stabilizing RACK1, which further induces activation of downstream tumor-promoting effectors. PHB2 was found to be overexpressed in NSCLC tumor tissues, and its expression was correlated with clinicopathological features. Furthermore, PHB2 overexpression promoted proliferation, migration, and invasion, whereas PHB2 knockdown enhanced apoptosis in NSCLC cells. The stimulating effect of PHB2 on tumorigenesis was also verified in vivo. In addition, PHB2 interacted with RACK1 and increased its expression through posttranslational modification, which further induced activation of the Akt and FAK pathways. Conclusions: Our results reveal the effects of PHB2 on tumorigenesis and its regulation of RACK1 and RACK1-associated proteins and downstream signaling in NSCLC. We believe that the crosstalk between PHB2 and RACK1 provides us with a great opportunity to design and develop novel therapeutic strategies for NSCLC.
Collapse
|
8
|
Schedlbauer A, Iturrioz I, Ochoa-Lizarralde B, Çapuni R, Han X, de Astigarraga E, Diercks T, Fucini P, Connell SR. Backbone and sidechain NMR assignments for the ribosome maturation factor RbfA from Escherichia coli. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:317-321. [PMID: 32671633 DOI: 10.1007/s12104-020-09969-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
RbfA (ribosome binding factor A; 15.2 kDa) is a protein involved in ribosome biogenesis and has been shown to be important for growth at low temperatures and to act as a suppressor for a cold-sensitive mutation (C23U) in the ribosomal RNA of the small 30S ribosomal subunit. The 3D structure of isolated RbfA has been determined from several organisms showing that RbfA has type-II KH-domain fold topology similar to the KH domain of another assembly factor, Era, whose overexpression can compensate for the deletion of rbfA, suppressing both the cold sensitivity and abnormal accumulation of 17S rRNA in rbfA knockout stains. Interestingly, a RbfAΔ25 variant used in previous NMR studies, truncated at the C-terminal domain to remove 25 unstructured residues causing aggregation at room temperature, was biologically active in the sense that it could complement a knock-out of wildtype RbfA, although it did not act as a suppressor for a 16S cold-sensitive mutation (C23U), nor did it interact stably with the 30S subunit. To complement this work, we report the 1H, 13C, and 15 N backbone and sidechain NMR resonance assignments of full length RbfA from Escherichia coli measured under physiological conditions (pH 7.6). This construct contains seven additional C-terminal residues from the cloning (i.e. one alanine and six residues from the HRV 3C cleavage site) and no aggregation issues were observed over a 1-week period at 293 K. The assignment data has been deposited in the BMRB data bank under Accession No. 27857.
Collapse
Affiliation(s)
- Andreas Schedlbauer
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Idoia Iturrioz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Borja Ochoa-Lizarralde
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Retina Çapuni
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Xu Han
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Elisa de Astigarraga
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain
| | - Paola Fucini
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain.
- Basque Foundation for Science, IKERBASQUE, 48011, Bilbao, Spain.
| | - Sean R Connell
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Bizkaia, Spain.
- Basque Foundation for Science, IKERBASQUE, 48011, Bilbao, Spain.
| |
Collapse
|
9
|
Laser microdissection-based microproteomics of the hippocampus of a rat epilepsy model reveals regional differences in protein abundances. Sci Rep 2020; 10:4412. [PMID: 32157145 PMCID: PMC7064578 DOI: 10.1038/s41598-020-61401-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/18/2020] [Indexed: 01/11/2023] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is a chronic neurological disorder affecting almost 40% of adult patients with epilepsy. Hippocampal sclerosis (HS) is a common histopathological abnormality found in patients with MTLE. HS is characterised by extensive neuronal loss in different hippocampus sub-regions. In this study, we used laser microdissection-based microproteomics to determine the protein abundances in different regions and layers of the hippocampus dentate gyrus (DG) in an electric stimulation rodent model which displays classical HS damage similar to that found in patients with MTLE. Our results indicate that there are differences in the proteomic profiles of different layers (granule cell and molecular), as well as different regions, of the DG (ventral and dorsal). We have identified new signalling pathways and proteins present in specific layers and regions of the DG, such as PARK7, RACK1, and connexin 31/gap junction. We also found two major signalling pathways that are common to all layers and regions: inflammation and energy metabolism. Finally, our results highlight the utility of high-throughput microproteomics and spatial-limited isolation of tissues in the study of complex disorders to fully appreciate the large biological heterogeneity present in different cell populations within the central nervous system.
Collapse
|
10
|
Ziaei E, Saghaeidehkordi A, Dill C, Maslennikov I, Chen S, Kaur K. Targeting Triple Negative Breast Cancer Cells with Novel Cytotoxic Peptide-Doxorubicin Conjugates. Bioconjug Chem 2019; 30:3098-3106. [PMID: 31715102 DOI: 10.1021/acs.bioconjchem.9b00755] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we have designed and synthesized two novel peptide-drug conjugates (PDCs) where the drug, doxorubicin (Dox), is linked to the peptide via a succinimidyl thioether bond or a hydrazone linker. A highly specific and proteolytically stable breast cancer cell targeting peptide (WxEAAYQrFL) is conjugated to Dox to synthesize peptide-Dox thioether (1) or hydrazone (2) conjugate. The evaluation of the stability in water, media, and human serum showed that the conjugate 1 with the succinimidyl thioether linkage is more stable compared to the acid-sensitive hydrazone containing conjugate 2. The cytotoxicity studies showed that the two PDCs were as toxic as free Dox toward the triple negative breast cancer (TNBC) cells and were 7-30 times less toxic (IC50 1.2-4.7 μM for TNBC cells versus 15-39 μM for noncancerous cells) toward the noncancerous breast cells compared to the free doxorubicin (IC50 0.35-1.5 μM for TNBC cells versus 0.24 μM for noncancerous cells). The results from the comparative study of the two PDCs suggest that both may have translational potential for TNBC treatment.
Collapse
Affiliation(s)
- Elmira Ziaei
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus , Chapman University , Irvine , California 92618-1908 , United States
| | - Azam Saghaeidehkordi
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus , Chapman University , Irvine , California 92618-1908 , United States
| | - Cassandra Dill
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus , Chapman University , Irvine , California 92618-1908 , United States
| | - Innokentiy Maslennikov
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus , Chapman University , Irvine , California 92618-1908 , United States
| | - Shiuan Chen
- Department of Cancer Biology , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus , Chapman University , Irvine , California 92618-1908 , United States
| |
Collapse
|
11
|
Zou C, Han C, Zhao M, Yu J, Bai L, Yao Y, Gao S, Cao H, Zheng Z. Change of ranibizumab-induced human vitreous protein profile in patients with proliferative diabetic retinopathy based on proteomics analysis. Clin Proteomics 2018. [PMID: 29541006 PMCID: PMC5844103 DOI: 10.1186/s12014-018-9187-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Preoperative treatment of anti-vascular endothelial growth factor (VEGF) agents is extensively used in proliferative diabetic retinopathy (PDR), but the molecular mechanism is not fully understood. The objective of this research is to observe change of protein profile induced by ranibizumab (an anti-VEGF agent) in vitreous humor from PDR patients and reveal the effects of anti-VEGF treatment on PDR. Methods A proteomic method was used to identify differentially expressed proteins in vitreous humor. Untreated PDR patients were defined as PDR group, while those who treated with intravitreal injection of ranibizumab (IVR) were defined as IVR. Gene Ontology (GO) annotation and REACTOME pathways were obtained from DAVID Bioinformatics Resources. Intravitreal level of apolipoprotein C-I (APOC1), serpin peptidase inhibitor clade A member 5 (SERPINA5), tissue inhibitor of metalloproteinases (TIMP2), and keratin 1 (KRT1) were determined by enzyme-linked immuno sorbent assay (ELISA). Results 339 differentially expressed proteins were identified in response to IVR. The most notable GO annotation describes the altered proteins was “innate immune response”. The most notable REACTOME pathway was “platelet degranulation”. ELISA result showed increased level of APOC1, SERPINA5, KRT1 and a decreased level of TIMP2 in PDR group compared with IVR. Conclusions In addition to decreasing VEGF level, ranibizumab is associated with change of human vitreous protein profile in patients with PDR, in which the differential proteins are involved in immune response, platelet degranulation, complement activation etc., suggesting that the effects of VEGF are involved in these signaling pathways. Electronic supplementary material The online version of this article (10.1186/s12014-018-9187-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen Zou
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| | - Changjing Han
- 2Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004 Shaanxi Province China
| | - Minjie Zhao
- 3Department of Ophthalmology, Yixing People's Hospital, Jiangsu University, No.75 Tongzhenguan Road, Yixing, 214200 Jiangsu China
| | - Jingjing Yu
- Department of Ophthalmology, Changshu the 2nd People's Hospital, Changshu, 215500 Jiangsu China
| | - Lin Bai
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| | - Yuan Yao
- 5Public Health, Stanford University, Stanford, CA 94305 USA
| | - Shuaixin Gao
- 6National Center for Protein Science Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210 China
| | - Hui Cao
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| | - Zhi Zheng
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| |
Collapse
|
12
|
Differential transcriptome regulation by 3,5-T2 and 3',3,5-T3 in brain and liver uncovers novel roles for thyroid hormones in tilapia. Sci Rep 2017; 7:15043. [PMID: 29118400 PMCID: PMC5678081 DOI: 10.1038/s41598-017-14913-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/16/2017] [Indexed: 01/01/2023] Open
Abstract
Although 3,5,3'-triiodothyronine (T3) is considered to be the primary bioactive thyroid hormone (TH) due to its high affinity for TH nuclear receptors (TRs), new data suggest that 3,5-diiodothyronine (T2) can also regulate transcriptional networks. To determine the functional relevance of these bioactive THs, RNA-seq analysis was conducted in the cerebellum, thalamus-pituitary and liver of tilapia treated with equimolar doses of T2 or T3. We identified a total of 169, 154 and 2863 genes that were TH-responsive (FDR < 0.05) in the tilapia cerebellum, thalamus-pituitary and liver, respectively. Among these, 130, 96 and 349 genes were uniquely regulated by T3, whereas 22, 40 and 929 were exclusively regulated by T2 under our experimental paradigm. The expression profiles in response to TH treatment were tissue-specific, and the diversity of regulated genes also resulted in a variety of different pathways being affected by T2 and T3. T2 regulated gene networks associated with cell signalling and transcriptional pathways, while T3 regulated pathways related to cell signalling, the immune system, and lipid metabolism. Overall, the present work highlights the relevance of T2 as a key bioactive hormone, and reveals some of the different functional strategies that underpin TH pleiotropy.
Collapse
|
13
|
Soudy R, Etayash H, Bahadorani K, Lavasanifar A, Kaur K. Breast Cancer Targeting Peptide Binds Keratin 1: A New Molecular Marker for Targeted Drug Delivery to Breast Cancer. Mol Pharm 2017; 14:593-604. [PMID: 28157321 DOI: 10.1021/acs.molpharmaceut.6b00652] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The biomarkers or receptors expressed on cancer cells and the targeting ligands with high binding affinity for biomarkers play a key role in early detection and treatment of breast cancer. The breast cancer targeting peptide p160 (12-mer) and its enzymatically stable analogue 18-4 (10-mer) showed marked potential for breast cancer drug delivery using cell studies and animal models. Herein, we used affinity purification, liquid chromatography-tandem mass spectrometry, and proteomics to identify keratin 1 (KRT1) as the target receptor highly expressed on breast cancer cells for p160 peptide(s). Western blot and immunocytochemistry in MCF-7 breast cancer cells confirmed the identity of KRT1. We demonstrate that the p160 or 18-4 binding to MCF-7 breast cancer cells is dependent on the expression of KRT1, and we confirm peptide-KRT1 binding specificity using SPR experiments (Kd ∼ 1.1 μM and 0.98 μM for p160 and 18-4, respectively). Furthermore, we assessed the ability of peptide 18-4 to improve the cellular uptake and anticancer activity of a pro-apoptotic antimicrobial peptide, microcin J25 (MccJ25), in breast cancer cells. A covalent conjugate of peptide 18-4 with MccJ25 showed preferential cytotoxicity toward breast cancer cells with minimal cytotoxicity against normal HUVEC cells. The conjugate inhibited the growth of MDA-MB-435 MDR multidrug-resistant cells with an IC50 comparable to that of nonresistant cells. Conjugation improved selective cellular uptake of MccJ25, and the conjugate triggered cancer cell death by apoptosis. Our findings establish KRT1 as a new marker for breast cancer targeting. Additionally, it pinpoints the potential use of antimicrobial lasso peptides as a novel class of anticancer therapeutics.
Collapse
Affiliation(s)
- Rania Soudy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada.,Department of Medicine, University of Alberta , Edmonton, Alberta T6G 2B7, Canada.,Faculty of Pharmacy, Cairo University , Giza, Egypt
| | - Hashem Etayash
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Kamran Bahadorani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada.,Department of Chemical and Material Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada
| | - Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada.,Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University , Irvine, California 92618-1908, United States
| |
Collapse
|
14
|
Olausson P, Gerdle B, Ghafouri N, Sjöström D, Blixt E, Ghafouri B. Protein alterations in women with chronic widespread pain--An explorative proteomic study of the trapezius muscle. Sci Rep 2015; 5:11894. [PMID: 26150212 PMCID: PMC4493691 DOI: 10.1038/srep11894] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 06/09/2015] [Indexed: 12/18/2022] Open
Abstract
Chronic widespread pain (CWP) has a high prevalence in the population and is associated with prominent negative individual and societal consequences. There is no clear consensus concerning the etiology behind CWP although alterations in the central processing of nociception maintained by peripheral nociceptive input has been suggested. Here, we use proteomics to study protein changes in trapezius muscle from 18 female patients diagnosed with CWP compared to 19 healthy female subjects. The 2-dimensional gel electrophoresis (2-DE) in combination with multivariate statistical analyses revealed 17 proteins to be differently expressed between the two groups. Proteins were identified by mass spectrometry. Many of the proteins are important enzymes in metabolic pathways like the glycolysis and gluconeogenesis. Other proteins are associated with muscle damage, muscle recovery, stress and inflammation. The altered expressed levels of these proteins suggest abnormalities and metabolic changes in the myalgic trapezius muscle in CWP. Taken together, this study gives further support that peripheral factors may be of importance in maintaining CWP.
Collapse
Affiliation(s)
- Patrik Olausson
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Björn Gerdle
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Nazdar Ghafouri
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Dick Sjöström
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Emelie Blixt
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Bijar Ghafouri
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| |
Collapse
|
15
|
Bhattacharya S, Ghosh MK. HAUSP regulates c-MYC expression via de-ubiquitination of TRRAP. Cell Oncol (Dordr) 2015; 38:265-77. [PMID: 25925205 DOI: 10.1007/s13402-015-0228-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2015] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The de-ubiquitinase HAUSP has been reported to exhibit various biological roles implicated in the development of cancer and other pathologies. The dual nature of HAUSP (i.e., oncogenic and tumor suppressive) makes the protein even more versatile. The major aims of this study were to reveal the effect of HAUSP over-expression on the overall proteome and to identify bona fide substrates of HAUSP. In addition, we aimed to unravel the functionality and physiological relevance of the de-ubiquitinating activity of HAUSP on one of its newly identified substrates, TRRAP. METHODS An overall proteome analysis was performed after exogenous HAUSP over-expression in HEK293 cells, followed by 2-dimensional gel electrophoresis (2-DE). Interacting proteins were subsequently isolated using immunoprecipitation and 1-dimensional gel electrophoresis (1-DE). Both were followed by tandem MALDI-TOF/TOF mass spectrometry and gene ontology-based analyses. To validate the functionality of one of the identified substrates (TRRAP), Western blotting, immunocytochemistry, immunoprecipitation, in vivo de-ubiquitination, quantitative real-time PCR and luciferase assays were performed. RESULTS The substrate screening indicated that HAUSP may be involved in tumorigenesis, cytoskeletal organization and transport, and chaperone systems. One candidate substrate, TRRAP, was found to physically interact and co-localize with HAUSP. As TRRAP regulates c-MYC expression, and in order to validate the effect of HAUSP on TRRAP, c-MYC protein and mRNA expression levels were analyzed after exogenous HAUSP over-expression. Both were found to be up-regulated. We also found that c-MYC transactivation increased upon exogenous HAUSP over-expression. By using a luciferase reporter assay, we found that a c-MYC responsive promoter exhibited increased activity, which was subsequently abrogated upon TRRAP knockdown. CONCLUSIONS From our results we conclude that HAUSP may act as an oncogenic protein that can modulate c-MYC expression via TRRAP. Our results provide a new context in which HAUSP may play a role in cancer cell signalling.
Collapse
Affiliation(s)
- Seemana Bhattacharya
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | | |
Collapse
|
16
|
Blanckaert V, Kerviel V, Lépinay A, Joubert-Durigneux V, Hondermarck H, Chénais B. Docosahexaenoic acid inhibits the invasion of MDA-MB-231 breast cancer cells through upregulation of cytokeratin-1. Int J Oncol 2015; 46:2649-55. [PMID: 25825023 DOI: 10.3892/ijo.2015.2936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022] Open
Abstract
Docosahexaenoic acid (DHA), the main member of the omega-3 essential fatty acid family, has been shown to reduce the invasion of the triple-negative breast cancer cell line MDA-MB-231, but the mechanism involved remains unclear. In the present study, a proteomic approach was used to define changes in protein expression induced by DHA. Proteins from crude membrane preparations of MDA-MB-231 cells treated with 100 µM DHA were separated by two-dimensional electrophoresis (2-DE) and differentially expressed proteins were identified using MALDI-TOF mass spectrometry. The main changes observed were the upregulation of Keratin, type Ⅱ cytoskeletal 1 (KRT1), catalase and lamin-A/C. Immunocytochemistry analyses confirmed the increase in KRT1 induced by DHA. Furthermore, in vitro invasion assays showed that siRNA against KRT1 was able to reverse the DHA-induced inhibition of breast cancer cell invasion. In conclusion, KRT1 is involved in the anti-invasive activity of DHA in breast cancer cells.
Collapse
Affiliation(s)
- Vincent Blanckaert
- Mer, Molécules, Santé (EA2160), IUML‑FR3473 CNRS, Université du Maine, F‑72085 Le Mans, France
| | - Vincent Kerviel
- Mer, Molécules, Santé (EA2160), IUML‑FR3473 CNRS, Université du Maine, F‑72085 Le Mans, France
| | - Alexandra Lépinay
- Mer, Molécules, Santé (EA2160), IUML‑FR3473 CNRS, Université du Maine, F‑72085 Le Mans, France
| | | | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Benoît Chénais
- Mer, Molécules, Santé (EA2160), IUML‑FR3473 CNRS, Université du Maine, F‑72085 Le Mans, France
| |
Collapse
|
17
|
Xu X, Yang X, Xiong Y, Gu J, He C, Hu Y, Xiao F, Chen G, Wang X. Increased expression of receptor for activated C kinase 1 in temporal lobe epilepsy. J Neurochem 2015; 133:134-43. [PMID: 25650116 DOI: 10.1111/jnc.13052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 02/02/2023]
Abstract
Mesial temporal lobe epilepsy (MTLE) is characterized by spontaneous recurrent complex partial seizures. Increased neurogenesis and neuronal plasticity have been reported in animal models of MTLE, but not in detail in human MTLE cases. Here, we showed that receptor for activated C kinase 1 (RACK1) was expressed in the hippocampus and temporal cortex of the MTLE human brain. Interestingly, most of the cells expressing RACK1 in the epileptic temporal cortices co-expressed both polysialylated neural cell adhesion molecules, the migrating neuroblast marker, and the beta-tubulin isotype III, an early neuronal marker, suggesting that these cells may be post-mitotic neurons in the early phase of neuronal development. A subpopulation of RACK1-positive cells also co-express neuronal nuclei, a mature neuronal marker, suggesting that epilepsy may promote the generation of new neurons. Moreover, in the epileptic temporal cortices, the co-expression of both axonal and dendritic markers in the majority of RACK1-positive cells hints at enhanced neuronal plasticity. The expression of b-tubulin II (TUBB2B) associated with neuronal migration and positioning, was decreased. This study is the first to successfully identify a single population of cells expressing RACK1 in the human temporal cortex and the brain of the animal model, which can be up-regulated in epilepsy. Therefore, it is possible that these cells are functionally relevant to the pathophysiology of epilepsy.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Han M, Fan L, Qin Z, Lavingia B, Stastny P. Alleles of keratin 1 in families and populations. Hum Immunol 2013; 74:1453-8. [DOI: 10.1016/j.humimm.2013.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/02/2013] [Accepted: 05/15/2013] [Indexed: 11/16/2022]
|
19
|
Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochim Biophys Acta Gen Subj 2013; 1840:495-506. [PMID: 24135455 DOI: 10.1016/j.bbagen.2013.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thanks to their impressive catalytic properties, cerium oxide nanoparticles (nanoceria) are able to mimic the activity of superoxide dismutase and of catalase, therefore acting as reactive oxygen species (ROS) scavengers in many biological contexts, for instance offering neuroprotection and reduction of apoptosis rate in many types of cells exposed to oxidative stress (stem cells, endothelial cells, epithelial cells, osteoblasts, etc.). METHODS We report on the investigation at gene level, through quantitative real time RT-PCR, of the effects of cerium oxide nanoparticles on ROS mechanisms in neuron-like PC12 cells. After three days of treatment, transcription of 84 genes involved in antioxidant defense, in ROS metabolism, and coding oxygen transporters is evaluated, and its relevance to central nervous system degenerative diseases is considered. RESULTS Experimental evidences reveal intriguing differences in transcriptional profiles of cells treated with cerium oxide nanoparticles with respect to the controls: nanoceria acts as strong exogenous ROS scavenger, modulating transcription of genes involved in natural cell defenses, down-regulating genes involved in inflammatory processes, and up-regulating some genes involved in neuroprotection. CONCLUSIONS Our findings are extremely promising for future biomedical applications of cerium oxide nanoparticles, further supporting their possible exploitation in the treatment of neurodegenerative diseases. GENERAL SIGNIFICANCE This work represents the first documented step to the comprehension of mechanisms underlying the anti-oxidant action of cerium oxide nanoparticles. Our findings allow for a better comprehension of the phenomena of ROS scavenging and neuroprotection at a gene level, suggesting future therapeutic approaches even at a pre-clinical level.
Collapse
|
20
|
Protein profiling of keloidal scar tissue. Arch Dermatol Res 2012; 304:533-40. [DOI: 10.1007/s00403-012-1224-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 01/09/2023]
|
21
|
Guevara-Lora I, Majkucinska M, Barbasz A, Faussner A, Kozik A. Kinin generation from exogenous kininogens at the surface of retinoic acid-differentiated human neuroblastoma IMR-32 cells after stimulation with interferon-γ. Peptides 2011; 32:1193-200. [PMID: 21549779 DOI: 10.1016/j.peptides.2011.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/18/2011] [Accepted: 04/18/2011] [Indexed: 12/25/2022]
Abstract
Bradykinin-related peptides, kinins, ubiquitously occur in the nervous system and together with other pro-inflammatory mediators contribute to pathological states of that tissue such as edema and chronic pain. In the current work we characterized the kinin-forming system of neuronal cells obtained by differentiation of human neuroblastoma cell line IMR-32 with retinoic acid. These cells were shown to concentrate exogenous kinin precursors, kininogens, on the surface, release kinins from kininogens and subsequently convert kinins to their des-Arg metabolites. Significantly higher amounts of kinins and des-Arg-kinins were produced after cell stimulation with interferon-γ, a potent pro-inflammatory mediator involved in many neurological disorders. The expression of the major tissue kininogenase (the human kallikrein 1) and the major cell membrane-bound kininase (the carboxypeptidase M) also increased after cell stimulation with interferon-γ, suggesting the involvement of these enzymes in the kinin production and degradation, respectively. Interferon-γ was also able to up-regulate the expression of two known subtypes of kinin receptors. On the protein level, the changes were only observed in the expression of the des-Arg-kinin-specific type 1 receptor which functions in the propagation of the inflammatory state. Taken together, these results suggest a novel way for local kinin and des-Arg-kinin generation in the nervous tissue during pathological states accompanied by interferon-γ release.
Collapse
Affiliation(s)
- Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | | | | | | | | |
Collapse
|