1
|
Abstract
Complexes I to IV, with the exception of Complex II, are redox-driven proton pumps that convert redox energy of oxygen reduction to proton gradient across the mitochondrial or bacterial membrane; in turn, the created electrochemical gradient drives the adenosine triphosphate synthesis in the cells by utilizing complex V of the chain. Here we address a general question of the efficiency of such enzymes, considering them as molecular machines that couple endergonic and exergonic reactions and converting one form of free energy into another. One well-known example of the efficiency is given by Carnot's theorem for heat engines. Here we extend the concept to respiratory enzymes and specifically focus on the proton pumping by Complex I of the respiratory chain, nicotinamide adenine dinucleotide dehydrogenase. To discuss the efficiency issues, we develop a model of enzyme kinetics, which generalizes the Michaelis-Menten model. Our model includes several substrates and products and, in general, can be considered as Generalized Michaelis-Menten Kinetic model. The model might be useful for describing complex enzyme kinetics, regardless of the efficiency issues that are addressed in this paper.
Collapse
Affiliation(s)
- Alexei A Stuchebrukhov
- Department of Chemistry , University of California at Davis , Davis , California 95616 , United States
| |
Collapse
|
2
|
Samudio BM, Couch V, Stuchebrukhov AA. Monte Carlo Simulations of Glu-242 in Cytochrome c Oxidase. J Phys Chem B 2016; 120:2095-105. [PMID: 26865374 DOI: 10.1021/acs.jpcb.5b10998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monte Carlo (MC) simulations of conformational changes and protonation of Glu-242, a key residue that shuttles protons in cytochrome c oxidase (CcO), are reported. Previous studies suggest that this residue may play a role of the valve of the enzyme proton pump. Here we examine how sensitive the results of simulations are to the computational method used. We applied both molecular mechanic (MM) and hybrid quantum mechanic:molecular mechanic (QM:MM) methods and find that the results are qualitatively different. The results indicate that the mechanism for proton gating in CcO is still an open issue.
Collapse
Affiliation(s)
- Benjamin M Samudio
- Department of Chemistry , University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Vernon Couch
- Department of Chemistry , University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Alexei A Stuchebrukhov
- Department of Chemistry , University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
3
|
Wikström M, Sharma V, Kaila VRI, Hosler JP, Hummer G. New Perspectives on Proton Pumping in Cellular Respiration. Chem Rev 2015; 115:2196-221. [DOI: 10.1021/cr500448t] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mårten Wikström
- Institute
of Biotechnology, University of Helsinki, Biocenter 3 (Viikinkaari 1), PB
65, Helsinki 00014, Finland
| | - Vivek Sharma
- Department
of Physics, Tampere University of Technology, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Ville R. I. Kaila
- Department
Chemie, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching, Germany
| | - Jonathan P. Hosler
- Department
of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße
3, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
4
|
Abriata LA, Vila AJ. Redox-state sensing by hydrogen bonds in the CuA center of cytochrome c oxidase. J Inorg Biochem 2013; 132:18-20. [PMID: 24012017 DOI: 10.1016/j.jinorgbio.2013.07.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 11/25/2022]
Abstract
Cytochrome c oxidases (CcO) couple electron transfer to active proton translocation through a gated mechanism that minimizes energy losses by preventing protons from flowing backwards or leaking. Such a complex mechanism requires that information about the redox and protonation states of the different centers be transmitted between different parts of the oxidase. Here we report a network of residues located around the electron entry point of CcO, the CuA site in subunit II, that experience collective pH equilibria around neutral pH. This network starts at the occluded side of the CuA site and extends to the interface between subunits I and II of the CcO, where the proton exit is located and through which electrons flow into subunit I. One of the residues in this network is directly involved in a hydrogen bond to one of the CuA ligands, whose strength is highly sensitive to the redox state of the metal center. We propose that this interaction mediates the transmission of redox changes from ET centers to other functional regions of the oxidase, and possibly also in other similar machineries, as part of their gating and regulatory mechanisms.
Collapse
Affiliation(s)
- Luciano A Abriata
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
5
|
Siletsky SA, Belevich I, Soulimane T, Verkhovsky MI, Wikström M. The fifth electron in the fully reduced caa3 from Thermus thermophilus is competent in proton pumping. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1-9. [DOI: 10.1016/j.bbabio.2012.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/26/2022]
|
6
|
Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Proton-Coupled Electron Transfer. Chem Rev 2012; 112:4016-93. [DOI: 10.1021/cr200177j] [Citation(s) in RCA: 1177] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David R. Weinberg
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
- Department of Physical and Environmental
Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction,
Colorado 81501-3122, United States
| | - Christopher J. Gagliardi
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Jonathan F. Hull
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Christine Fecenko Murphy
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Caleb A. Kent
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Brittany C. Westlake
- The American Chemical Society,
1155 Sixteenth Street NW, Washington, District of Columbia 20036,
United States
| | - Amit Paul
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Daniel H. Ess
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Dewey Granville McCafferty
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| |
Collapse
|
7
|
Thompson AK, Gray J, Liu A, Hosler JP. The roles of Rhodobacter sphaeroides copper chaperones PCu(A)C and Sco (PrrC) in the assembly of the copper centers of the aa(3)-type and the cbb(3)-type cytochrome c oxidases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:955-64. [PMID: 22248670 DOI: 10.1016/j.bbabio.2012.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 11/28/2022]
Abstract
The α proteobacter Rhodobacter sphaeroides accumulates two cytochrome c oxidases (CcO) in its cytoplasmic membrane during aerobic growth: a mitochondrial-like aa(3)-type CcO containing a di-copper Cu(A) center and mono-copper Cu(B), plus a cbb(3)-type CcO that contains Cu(B) but lacks Cu(A). Three copper chaperones are located in the periplasm of R. sphaeroides, PCu(A)C, PrrC (Sco) and Cox11. Cox11 is required to assemble Cu(B) of the aa(3)-type but not the cbb(3)-type CcO. PrrC is homologous to mitochondrial Sco1; Sco proteins are implicated in Cu(A) assembly in mitochondria and bacteria, and with Cu(B) assembly of the cbb(3)-type CcO. PCu(A)C is present in many bacteria, but not mitochondria. PCu(A)C of Thermus thermophilus metallates a Cu(A) center in vitro, but its in vivo function has not been explored. Here, the extent of copper center assembly in the aa(3)- and cbb(3)-type CcOs of R. sphaeroides has been examined in strains lacking PCu(A)C, PrrC, or both. The absence of either chaperone strongly lowers the accumulation of both CcOs in the cells grown in low concentrations of Cu(2+). The absence of PrrC has a greater effect than the absence of PCu(A)C and PCu(A)C appears to function upstream of PrrC. Analysis of purified aa(3)-type CcO shows that PrrC has a greater effect on the assembly of its Cu(A) than does PCu(A)C, and both chaperones have a lesser but significant effect on the assembly of its Cu(B) even though Cox11 is present. Scenarios for the cellular roles of PCu(A)C and PrrC are considered. The results are most consistent with a role for PrrC in the capture and delivery of copper to Cu(A) of the aa(3)-type CcO and to Cu(B) of the cbb(3)-type CcO, while the predominant role of PCu(A)C may be to capture and deliver copper to PrrC and Cox11. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Audie K Thompson
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | |
Collapse
|
8
|
Wikström M, Verkhovsky MI. The D-channel of cytochrome oxidase: an alternative view. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1273-8. [PMID: 21620795 DOI: 10.1016/j.bbabio.2011.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
The D-pathway in A-type cytochrome c oxidases conducts protons from a conserved aspartate on the negatively charged N-side of the membrane to a conserved glutamic acid at about the middle of the membrane dielectric. Extensive work in the past has indicated that all four protons pumped across the membrane on reduction of O(2) to water are transferred via the D-pathway, and that it is also responsible for transfer of two out of the four "chemical protons" from the N-side to the binuclear oxygen reduction site to form product water. The function of the D-pathway has been discussed in terms of an apparent pK(a) of the glutamic acid. After reacting fully reduced enzyme with O(2), the rate of formation of the F state of the binuclear heme-copper active site was found to be independent of pH up to pH~9, but to drop off at higher pH with an apparent pK(a) of 9.4, which was attributed to the glutamic acid. Here, we present an alternative view, according to which the pH-dependence is controlled by proton transfer into the aspartate residue at the N-side orifice of the D-pathway. We summarise experimental evidence that favours a proton pump mechanism in which the proton to be pumped is transferred from the glutamic acid to a proton-loading site prior to proton transfer for completion of oxygen reduction chemistry. The mechanism is discussed by which the proton-pumping activity is decoupled from electron transfer by structural alterations of the D-pathway. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Collapse
|
9
|
The electron transfer flavoprotein: ubiquinone oxidoreductases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1910-6. [PMID: 20937244 DOI: 10.1016/j.bbabio.2010.10.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/20/2010] [Accepted: 10/05/2010] [Indexed: 12/30/2022]
Abstract
Electron transfer flavoprotein: ubiqionone oxidoreductase (ETF-QO) is a component of the mitochondrial respiratory chain that together with electron transfer flavoprotein (ETF) forms a short pathway that transfers electrons from 11 different mitochondrial flavoprotein dehydrogenases to the ubiquinone pool. The X-ray structure of the pig liver enzyme has been solved in the presence and absence of a bound ubiquinone. This structure reveals ETF-QO to be a monotopic membrane protein with the cofactors, FAD and a [4Fe-4S](+1+2) cluster, organised to suggests that it is the flavin that serves as the immediate reductant of ubiquinone. ETF-QO is very highly conserved in evolution and the recombinant enzyme from the bacterium Rhodobacter sphaeroides has allowed the mutational analysis of a number of residues that the structure suggested are involved in modulating the reduction potential of the cofactors. These experiments, together with the spectroscopic measurement of the distances between the cofactors in solution have confirmed the intramolecular pathway of electron transfer from ETF to ubiquinone. This approach can be extended as the R. sphaeroides ETF-QO provides a template for investigating the mechanistic consequences of single amino acid substitutions of conserved residues that are associated with a mild and late onset variant of the metabolic disease multiple acyl-CoA dehydrogenase deficiency (MADD).
Collapse
|
10
|
Affiliation(s)
- My Hang V Huynh
- DE-1: High Explosive Science and Technology Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | |
Collapse
|