1
|
Bereda CC, Dewey EB, Nasr MA, Chirasani VR, Sekelsky J. Functions of the Bloom syndrome helicase N-terminal intrinsically disordered region. Genetics 2025; 229:iyaf005. [PMID: 39792594 PMCID: PMC11912835 DOI: 10.1093/genetics/iyaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Bloom syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis. Blm orthologs have a well-conserved and highly structured RecQ helicase domain, but more than half of the protein, particularly in the N-terminus, is predicted to be intrinsically disordered. Because this region is poorly conserved across metazoa, we compared closely related species to identify regions of conservation that might be associated with important functions. We deleted 2 Drosophila-conserved regions in Drosophila melanogaster using CRISPR/Cas9 gene editing and assessed the effects on several Blm functions. Each deletion had distinct effects. Deletion of either conserved region 1 (CR1) or CR2 compromised DSB repair through synthesis-dependent strand annealing and resulted in increased mitotic crossovers. In contrast, CR2 is critical for embryonic development, but CR1 is less important. Loss of CR1 leads to defects in meiotic crossover designation and patterning but does not impact meiotic chromosome segregation, whereas deletion of CR2 does not result in significant meiotic defects. Thus, while the 2 regions have overlapping functions, there are distinct roles facilitated by each. These results provide novel insights into functions of the N-terminal region of Blm helicase.
Collapse
Affiliation(s)
- Colleen C Bereda
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Evan B Dewey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA
| | - Mohamed A Nasr
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Venkat R Chirasani
- R.L. Juliano Structural Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeff Sekelsky
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Agrawal R, Agarwal H, Mukherjee C, Chakraborty B, Sharma V, Tripathi V, Kumar N, Priya S, Gupta N, Jhingan G, Bajaj A, Sengupta S. Phosphorylated BLM peptide acts as an agonist for DNA damage response. Nucleic Acids Res 2025; 53:gkaf106. [PMID: 39997217 PMCID: PMC11851105 DOI: 10.1093/nar/gkaf106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/08/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Upon exposure to ionizing irradiation, the MRE11-RAD50-NBS1 complex potentiates the recruitment of ATM (ataxia-telangiectasia mutated) kinase to the double-strand breaks. We show that the lack of BLM causes a decrease in the autophosphorylation of ATM in mice mammary glands, which have lost one or both copies of BLM. In isogenic human cells, the DNA damage response (DDR) pathway was dampened in the absence of BLM, which negatively affected the recruitment of DDR factors onto the chromatin, thereby indicating a direct role of BLM in augmenting DDR. Mechanistically, this was due to the BLM-dependent dissociation of inactive ATM dimers into active monomers. Fragmentation analysis of BLM followed by kinase assays revealed a 20-mer BLM peptide (91-110 aa), sufficient to enhance ATM-dependent p53 phosphorylation. ATM-mediated phosphorylation of BLM at Thr99 within BLM (91-110) peptide enhanced ATM kinase activity due to its interaction with NBS1 and causing ATM monomerization. Delivery of phosphomimetic T99E counterpart of BLM (91-110 aa) peptide led to ATM activation followed by restoration of the DDR even in the absence of ionizing irradiation (both in cells and in BLM knockout mice), indicating its role as a DDR agonist, which can be potentially used to prevent the initiation of neoplastic transformation.
Collapse
Affiliation(s)
- Ritu Agrawal
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
- Biotechnology Research and Innovation Council—National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, West Bengal 741251, India
| | - Himanshi Agarwal
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
| | - Chetana Mukherjee
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
| | - Baishali Chakraborty
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
| | - Vandana Sharma
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
| | - Vivek Tripathi
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
| | - Nitin Kumar
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
| | - Swati Priya
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
| | - Nidhi Gupta
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | | | - Avinash Bajaj
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Sagar Sengupta
- Biotechnology Research and Innovation Council—National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi110067, India
- Biotechnology Research and Innovation Council—National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, West Bengal 741251, India
| |
Collapse
|
3
|
Goulart MB, Vieira Neto E, Garcia DRN, Guimarães MM, de Paiva IS, de Ferran K, dos Santos NCK, Barbosa LS, de Figueiredo AF, Ribeiro MCM, Ribeiro MG. Cell Cycle Kinetics and Sister Chromatid Exchange in Mosaic Turner Syndrome. Life (Basel) 2024; 14:848. [PMID: 39063601 PMCID: PMC11278208 DOI: 10.3390/life14070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Turner syndrome (TS) is caused by a complete or partial absence of an X or Y chromosome, including chromosomal mosaicism, affecting 1 in 2500 female live births. Sister chromatid exchange (SCE) is used as a sensitive indicator of spontaneous chromosome instability. Cells from mosaic patients constitute useful material for SCE evaluations as they grow under the influence of the same genetic background and endogenous and exogenous factors. We evaluated the proliferation dynamics and SCE frequencies of 45,X and 46,XN cells of 17 mosaic TS patients. In two participants, the 45,X cells exhibited a proliferative disadvantage in relation to 46,XN cells after 72 h of cultivation. The analysis of the mean proliferation index (PI) showed a trend for a significant difference between the 45,X and 46,X+der(X)/der(Y) cell lineages; however, there were no intra-individual differences. On the other hand, mean SCE frequencies showed that 46,X+der(X) had the highest mean value and 46,XX the lowest, with 45,X occupying an intermediate position among the lineages found in at least three participants; moreover, there were intra-individual differences in five patients. Although 46,X+der(X)/der(Y) cell lineages, found in more than 70% of participants, were the most unstable, they had a slightly higher mean PI than the 45,X cell lineages in younger (≤17 years) mosaic TS participants. This suggests that cells with a karyotype distinct from 45,X may increase with time in mosaic TS children and adolescents.
Collapse
Affiliation(s)
- Miriam Beatriz Goulart
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
| | - Eduardo Vieira Neto
- Genetic and Genomic Medicine Division, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Daniela R. Ney Garcia
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
| | - Marília Martins Guimarães
- Pediatric Endocrinology Service, IPPMG, UFRJ, Rio de Janeiro 21941-912, RJ, Brazil; (M.M.G.); (K.d.F.); (N.C.K.d.S.)
| | - Isaías Soares de Paiva
- Faculty of Medicine, University of Grande Rio (Unigranrio), Duque de Caxias 25071-202, RJ, Brazil;
- Faculty of Medicine, Serra dos Órgãos Educational Center (UNIFESO), Teresópolis 25964-004, RJ, Brazil
| | - Karina de Ferran
- Pediatric Endocrinology Service, IPPMG, UFRJ, Rio de Janeiro 21941-912, RJ, Brazil; (M.M.G.); (K.d.F.); (N.C.K.d.S.)
| | | | - Luciana Santos Barbosa
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
| | - Amanda F. de Figueiredo
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
| | - Maria Cecília Menks Ribeiro
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
- NUMPEX-BIO Laboratory, Campus Duque de Caxias, UFRJ, Duque de Caxias 25240-005, RJ, Brazil
| | - Márcia Gonçalves Ribeiro
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
- Medical Genetics Service, IPPMG, UFRJ, Rio de Janeiro 21941-912, RJ, Brazil
| |
Collapse
|
4
|
Bereda CC, Dewey EB, Nasr MA, Sekelsky J. Functions of the Bloom Syndrome Helicase N-terminal Intrinsically Disordered Region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589165. [PMID: 38659896 PMCID: PMC11042211 DOI: 10.1101/2024.04.12.589165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis. Blm orthologs have a well conserved and highly structured RecQ helicase domain, but more than half of the protein, particularly in the N-terminus, is predicted to be unstructured. Because this region is poorly conserved across multicellular organisms, we compared closely related species to identify regions of conservation, potentially indicating important functions. We deleted two of these Drosophila-conserved regions in D. melanogaster using CRISPR/Cas9 gene editing and assessed the effects on different Blm functions. Each deletion had distinct effects on different Blm activities. Deletion of either conserved region 1 (CR1) or conserved region 2 (CR2) compromised DSB repair through synthesis-dependent strand annealing and resulted in increased mitotic crossovers. In contrast, CR2 is critical for embryonic development but CR1 is not as important. CR1 deletion allows for proficient meiotic chromosome segregation but does lead to defects in meiotic crossover designation and patterning. Finally, deletion of CR2 does not lead to significant meiotic defects, indicating that while each region has overlapping functions, there are discreet roles facilitated by each. These results provide novel insights into functions of the N-terminal disordered region of Blm.
Collapse
Affiliation(s)
- Colleen C. Bereda
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Evan B. Dewey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mohamed A. Nasr
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jeff Sekelsky
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
5
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
6
|
Primary Colonic Diffuse Large B-Cell Lymphoma in Bloom Syndrome. ACG Case Rep J 2022. [DOI: 10.14309/crj.0000000000000686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Szmyd B, Mlynarski W, Pastorczak A. Genetic predisposition to lymphomas: Overview of rare syndromes and inherited familial variants. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108386. [PMID: 34893151 DOI: 10.1016/j.mrrev.2021.108386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 01/19/2023]
Abstract
Approximately 10 % of malignancies occur in carriers of germline mutations predisposing to cancer. A high risk of developing lymphomas has been noted in many primary immunodeficiencies, including DNA repair disorders. Moreover, implementation of next-generation sequencing has recently enabled to uncover rare genetic variants predisposing patients to lymphoid neoplasms. Some patients harboring inherited predisposition to lymphomas require dedicated clinical management, which will contribute to effective cancer treatment and to the prevention of potential severe toxicities and secondary malignancies. In line with that, our review summarizes the natural history of lymphoid tumors developing on different germline genetic backgrounds and discusses the progress that has been made toward successfully treating these malignancies.
Collapse
Affiliation(s)
- Bartosz Szmyd
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
8
|
Bermisheva MA, Gilyazova IR, Akhmadishina LZ, Gimalova GF, Zinnatullina GF, Khusnutdinova EK. A WRN Nonsense Mutation, p.R1406X, is Not a Risk Factor of Breast Cancer. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419070056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
França IGDF, Melo MMLD, Teixeira MSC, Cordeiro JVA, Borges DDP, Oliveira RTGD, Furtado SR, Magalhães SMM, Pinheiro RF. Role of conventional cytogenetics in sequential karyotype analysis of myelodysplastic syndrome: a patient with der(1;7)(q10;p10). Hematol Transfus Cell Ther 2019; 41:91-94. [PMID: 30793111 PMCID: PMC6371229 DOI: 10.1016/j.htct.2018.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/23/2018] [Indexed: 12/02/2022] Open
|
10
|
Behnfeldt JH, Acharya S, Tangeman L, Gocha AS, Keirsey J, Groden J. A tri-serine cluster within the topoisomerase IIα-interaction domain of the BLM helicase is required for regulating chromosome breakage in human cells. Hum Mol Genet 2019; 27:1241-1251. [PMID: 29385443 DOI: 10.1093/hmg/ddy038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/17/2018] [Indexed: 01/31/2023] Open
Abstract
The recQ-like helicase BLM interacts directly with topoisomerase IIα to regulate chromosome breakage in human cells. We demonstrate that a phosphosite tri-serine cluster (S577/S579/S580) within the BLM topoisomerase IIα-interaction region is required for this function. Enzymatic activities of BLM and topoisomerase IIα are reciprocally stimulated in vitro by ten-fold for topoisomerase IIα decatenation/relaxation activity and three-fold for BLM unwinding of forked DNA duplex substrates. A BLM transgene encoding alanine substitutions of the tri-serine cluster in BLM-/- transfected cells increases micronuclei, DNA double strand breaks and anaphase ultra-fine bridges (UFBs), and decreases cellular co-localization of BLM with topoisomerase IIα. In vitro, these substitutions significantly reduce the topoisomerase IIα-mediated stimulation of BLM unwinding of forked DNA duplexes. Substitution of the tri-serine cluster with aspartic acids to mimic serine phosphorylation reverses these effects in vitro and in vivo. Our findings implicate the modification of this BLM tri-serine cluster in regulating chromosomal stability.
Collapse
Affiliation(s)
- Julia Harris Behnfeldt
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Samir Acharya
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Larissa Tangeman
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - April Sandy Gocha
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jeremy Keirsey
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Joanna Groden
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Polymyxin B causes DNA damage in HK-2 cells and mice. Arch Toxicol 2018; 92:2259-2271. [PMID: 29556720 DOI: 10.1007/s00204-018-2192-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
Increasing incidence of multidrug-resistant bacteria presents an imminent risk to global health. Polymyxins are 'last-resort' antibiotics against Gram-negative 'superbugs'; however, nephrotoxicity remains a key impediment in their clinical use. Molecular mechanisms underlying this nephrotoxicity remain poorly defined. Here, we examined the pathways which led to polymyxin B induced cell death in vitro and in vivo. Human proximal tubular cells were treated with polymyxin B (12.5-100 μM) for up to 24 h and showed a significant increase in micronuclei frequency, as well as abnormal mitotic events (over 40% in treated cells, p < 0.05). Time-course studies were performed using a mouse nephrotoxicity model (cumulative 72 mg/kg). Kidneys were collected over 48 h and investigated for histopathology and DNA damage. Notable increases in γH2AX foci (indicative of double-stranded breaks) were observed in both cell culture (up to ~ 44% cells with 5+ foci at 24 h, p < 0.05) and mice treated with polymyxin B (up to ~ 25%, p < 0.05). Consistent with these results, in vitro assays showed high binding affinity of polymyxin B to DNA. Together, our results indicate that polymyxin B nephrotoxicity is associated with DNA damage, leading to chromosome missegregation and genome instability. This novel mechanistic information may lead to new strategies to overcome the nephrotoxicity of this important last-line class of antibiotics.
Collapse
|
12
|
Tripathi V, Agarwal H, Priya S, Batra H, Modi P, Pandey M, Saha D, Raghavan SC, Sengupta S. MRN complex-dependent recruitment of ubiquitylated BLM helicase to DSBs negatively regulates DNA repair pathways. Nat Commun 2018. [PMID: 29523790 PMCID: PMC5844875 DOI: 10.1038/s41467-018-03393-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutations in BLM in Bloom Syndrome patients predispose them to multiple types of cancers. Here we report that BLM is recruited in a biphasic manner to annotated DSBs. BLM recruitment is dependent on the presence of NBS1, MRE11 and ATM. While ATM activity is essential for BLM recruitment in early phase, it is dispensable in late phase when MRE11 exonuclease activity and RNF8-mediated ubiquitylation of BLM are the key determinants. Interaction between polyubiquitylated BLM and NBS1 is essential for the helicase to be retained at the DSBs. The helicase activity of BLM is required for the recruitment of HR and c-NHEJ factors onto the chromatin in S- and G1-phase, respectively. During the repair phase, BLM inhibits HR in S-phase and c-NHEJ in G1-phase. Consequently, inhibition of helicase activity of BLM enhances the rate of DNA alterations. Thus BLM utilizes its pro- and anti-repair functions to maintain genome stability. Bloom helicase is recruited to double strand breaks in an ATM dependent manner. Here the authors show that Bloom helicase is recruited to double strand breaks in an ATM and MRN dependent manner with HR and NHEJ regulated by the helicase depending on the phase of the cell cycle.
Collapse
Affiliation(s)
- Vivek Tripathi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Himanshi Agarwal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swati Priya
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Harish Batra
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Priyanka Modi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Monica Pandey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Dhurjhoti Saha
- Institute of Genomics and Integrative Biology, CSIR, Mathura Road, New Delhi, 110025, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
13
|
Bermisheva MA, Bogdanova NV, Gilyazova IR, Zinnatullina GF, Bisultanova ZI, Khusnutdinova EK. Ethnic Features of Genetic Susceptibility to Breast Cancer. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418020047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
BLM germline and somatic PKMYT1 and AHCY mutations: Genetic variations beyond MYCN and prognosis in neuroblastoma. Med Hypotheses 2016; 97:22-25. [PMID: 27876123 DOI: 10.1016/j.mehy.2016.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/27/2016] [Accepted: 10/18/2016] [Indexed: 12/28/2022]
Abstract
Neuroblastoma (NB) is the most common extra cranial solid tumor of childhood and often lethal in childhood. Clinical and biologic characteristics that are independently prognostic of outcome in NB are currently used for risk stratification to optimally the therapy. It includes age at diagnosis, International Neuroblastoma Staging System tumor histopathology and MYCN amplification. However, even in patients with theoretically good prognosis, such as localized tumor and non-amplified MYCN, either disease progress or recurrence may occur. Potential genetic determinants of this unfavorable behavior are not yet fully clarified. The presence of elevated expression of AHCY, PKMYT1, and BLM has accompanied poor prognosis MYCN-amplified neuroblastoma patients. Considering the potential implication of these genes on the clinical management of NB, we hypothesize that the identification of genetic variations may have significant impact during development of the recurrent or progressive disease. Using targeted DNA sequencing, we analyzed the mutation profiles of the genes PKMYT1, AHCY, and BLM in tumor samples of five patients with MYCN amplified and 15 MYCN non-amplified NB. In our study, BLM germline variants were detected in two patients with MYCN-non-amplified neuroblastoma. Our data allow us to hypothesize that, regardless of MYCN status, these mutations partially abolish BLM protein activity by impairing its ATPase and helicase activities. BLM mutations are also clinically relevant because BLM plays an important role in DNA damage repair and the maintenance of genomic integrity. We also found a novel variant in our cohort, PKMYT1 mutation localized in the C-terminal domain with effect unknown on NB. We hypothesize that this variant may affect the catalytic activity of PKMYT1 in NB, specifically when CDK1 is complexed to cyclins. The prognostic value of this mutation must be further investigated. Another mutation identified was a nonsynonymous variant in AHCY. This variant may be related to the slow progression of the disease, even in more aggressive cases. It affects the maintenance of the catalytic capacity of AHCY, leading to the consequent functional effects observed in the NB patients studied. In conclusion, our hypothesis may provide that mutations in BLM, AHCY and PKMYT1 genes found in children with MYCN-amplified or MYCN-non amplified neuroblastomas, may be associated with the prognosis of the disease.
Collapse
|
15
|
Deleterious Germline BLM Mutations and the Risk for Early-onset Colorectal Cancer. Sci Rep 2015; 5:14060. [PMID: 26358404 PMCID: PMC4566092 DOI: 10.1038/srep14060] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
Bloom syndrome is an autosomal recessive disorder characterized by chromosomal instability and increased cancer risk, caused by biallelic mutations in the RECQL-helicase gene BLM. Previous studies have led to conflicting conclusions as to whether carriers of heterozygous BLM mutations have an increased risk to develop colorectal cancer (CRC). We recently identified two carriers of a pathogenic BLM mutation in a cohort of 55 early-onset CRC patients (≤45 years of age), suggesting an overrepresentation compared to the normal population. Here, we performed targeted sequencing using molecular inversion probes to screen an additional cohort of 185 CRC patients (≤50 years of age) and 532 population-matched controls for deleterious BLM mutations. In total, we identified three additional CRC patients (1.6%) and one control individual (0.2%) that carried a known pathogenic BLM mutation, suggesting that these mutations are enriched in early-onset CRC patients (P = 0.05516). A comparison with local and publically available databases from individuals without suspicion for hereditary cancer confirmed this enrichment (P = 0.003534). Analysis of family members of the five BLM mutation carriers with CRC suggests an incomplete penetrance for CRC development. Therefore, these data indicate that carriers of deleterious BLM mutations are at increased risk to develop CRC, albeit with a moderate-to-low penetrance.
Collapse
|
16
|
Arora A, Abdel-Fatah TMA, Agarwal D, Doherty R, Moseley PM, Aleskandarany MA, Green AR, Ball G, Alshareeda AT, Rakha EA, Chan SYT, Ellis IO, Madhusudan S. Transcriptomic and Protein Expression Analysis Reveals Clinicopathological Significance of Bloom Syndrome Helicase (BLM) in Breast Cancer. Mol Cancer Ther 2015; 14:1057-65. [PMID: 25673821 DOI: 10.1158/1535-7163.mct-14-0939] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/04/2015] [Indexed: 11/16/2022]
Abstract
Bloom syndrome helicase (BLM) has key roles in homologous recombination repair, telomere maintenance, and DNA replication. Germ-line mutations in the BLM gene causes Bloom syndrome, a rare disorder characterized by premature aging and predisposition to multiple cancers, including breast cancer. The clinicopathologic significance of BLM in sporadic breast cancers is unknown. We investigated BLM mRNA expression in the Molecular Taxonomy of Breast Cancer International Consortium cohort (n = 1,950) and validated in an external dataset of 2,413 tumors. BLM protein level was evaluated in the Nottingham Tenovus series comprising 1,650 breast tumors. BLM mRNA overexpression was significantly associated with high histologic grade, larger tumor size, estrogen receptor-negative (ER(-)), progesterone receptor-negative (PR(-)), and triple-negative phenotypes (ps < 0.0001). BLM mRNA overexpression was also linked to aggressive molecular phenotypes, including PAM50.Her2 (P < 0.0001), PAM50.Basal (P < 0.0001), and PAM50.LumB (P < 0.0001) and Genufu subtype (ER(+)/Her2(-)/high proliferation; P < 0.0001). PAM50.LumA tumors and Genufu subtype (ER(+)/Her2(-)/low proliferation) were more likely to express low levels of BLM mRNA (ps < 0.0001). Integrative molecular clusters (intClust) intClust.1 (P < 0.0001), intClust.5 (P < 0.0001), intClust.9 (P < 0.0001), and intClust.10 (P < 0.0001) were also more likely in tumors with high BLM mRNA expression. BLM mRNA overexpression was associated with poor breast cancer-specific survival (BCSS; ps < 0.000001). At the protein level, altered subcellular localization with high cytoplasmic BLM and low nuclear BLM was linked to aggressive phenotypes. In multivariate analysis, BLM mRNA and BLM protein levels independently influenced BCSS. This is the first and the largest study to provide evidence that BLM is a promising biomarker in breast cancer.
Collapse
Affiliation(s)
- Arvind Arora
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom. Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham, United Kingdom
| | - Rachel Doherty
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Paul M Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Mohammed A Aleskandarany
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Andrew R Green
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham, United Kingdom
| | - Alaa T Alshareeda
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Emad A Rakha
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Stephen Y T Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Ian O Ellis
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom. Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
17
|
Esquissato GNM, De Sant'anna JR, Franco CCS, Rosada LJ, Dos Santos PASR, De Castro-Prado MAA. Gene homozygosis and mitotic recombination induced by camptothecin and irinotecan in Aspergillus nidulans diploid cells. AN ACAD BRAS CIENC 2014; 86:1703-10. [PMID: 25590709 DOI: 10.1590/0001-3765201420130106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 02/17/2014] [Indexed: 11/22/2022] Open
Abstract
Mitotic recombination is a process involved in carcinogenesis which can lead to genetic loss through the loss of heterozygosity. The recombinogenic potentials of two anticancer drugs topoisomerase I inhibitors, camptothecin (CPT) and irinotecan (CPT-11), were evaluated in the present study. The homozygotization assay, which assess the induction of mitotic recombination and gene homozygosis, as well as the heterozygous A757//UT448 diploid strain of Aspergillus nidulans were employed. The three non-cytotoxic concentrations of CPT (3.5 ng mL-1, 10.5 ng mL-1 and 17.4 ng mL-1) were found to induce both mitotic recombination and gene homozygosis. CPT treatment produced three diploids homozygous, for nutritional and conidia color genes, and Homozygotization Indices (HI) significantly different from negative control. On the other hand, only the highest CPT-11 concentration tested (18 µg mL-1), corresponding to the maximal single chemotherapeutic dose, produced HI values higher than 2.0 and significantly different from negative control HI values. The recombinogenic effects of both topoisomerase I blockers were associated with the recombinational repair of DNA strand breaks induced by CPT and CPT-11. The anticancer drugs CPT and CPT-11 may be characterized as secondary malignancies promoters in cancer patients after chemotherapy treatment.
Collapse
Affiliation(s)
- Giovana N M Esquissato
- Genética e Biologia Celular, Departamento de Biotecnologia, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Juliane R De Sant'anna
- Genética e Biologia Celular, Departamento de Biotecnologia, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Claudinéia C S Franco
- Genética e Biologia Celular, Departamento de Biotecnologia, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Lúcia J Rosada
- Genética e Biologia Celular, Departamento de Biotecnologia, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Paula A S R Dos Santos
- Genética e Biologia Celular, Departamento de Biotecnologia, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Marialba A A De Castro-Prado
- Genética e Biologia Celular, Departamento de Biotecnologia, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
18
|
Mason PA, Boubriak I, Cox LS. A fluorescence-based exonuclease assay to characterize DmWRNexo, orthologue of human progeroid WRN exonuclease, and its application to other nucleases. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2013:e50722. [PMID: 24378758 PMCID: PMC4109568 DOI: 10.3791/50722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
WRN exonuclease is involved in resolving DNA damage that occurs either during DNA replication or following exposure to endogenous or exogenous genotoxins. It is likely to play a role in preventing accumulation of recombinogenic intermediates that would otherwise accumulate at transiently stalled replication forks, consistent with a hyper-recombinant phenotype of cells lacking WRN. In humans, the exonuclease domain comprises an N-terminal portion of a much larger protein that also possesses helicase activity, together with additional sites important for DNA and protein interaction. By contrast, in Drosophila, the exonuclease activity of WRN (DmWRNexo) is encoded by a distinct genetic locus from the presumptive helicase, allowing biochemical (and genetic) dissection of the role of the exonuclease activity in genome stability mechanisms. Here, we demonstrate a fluorescent method to determine WRN exonuclease activity using purified recombinant DmWRNexo and end-labeled fluorescent oligonucleotides. This system allows greater reproducibility than radioactive assays as the substrate oligonucleotides remain stable for months, and provides a safer and relatively rapid method for detailed analysis of nuclease activity, permitting determination of nuclease polarity, processivity, and substrate preferences.
Collapse
Affiliation(s)
| | | | - Lynne S. Cox
- Department of Biochemistry, University of Oxford
| |
Collapse
|
19
|
Wyatt HDM, Sarbajna S, Matos J, West SC. Coordinated actions of SLX1-SLX4 and MUS81-EME1 for Holliday junction resolution in human cells. Mol Cell 2013; 52:234-47. [PMID: 24076221 DOI: 10.1016/j.molcel.2013.08.035] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/18/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
Holliday junctions (HJs) are four-way DNA intermediates that form during homologous recombination, and their efficient resolution is essential for chromosome segregation. Here, we show that three structure-selective endonucleases, namely SLX1-SLX4, MUS81-EME1, and GEN1, define two pathways of HJ resolution in human cells. One pathway is mediated by GEN1, whereas SLX1-SLX4 and MUS81-EME1 provide a second and genetically distinct pathway (SLX-MUS). Cells depleted for SLX-MUS or GEN1 pathway proteins exhibit severe defects in chromosome segregation and reduced survival. In response to CDK-mediated phosphorylation, SLX1-SLX4 and MUS81-EME1 associate at the G2/M transition to form a stable SLX-MUS holoenzyme, which can be reconstituted in vitro. Biochemical studies show that SLX-MUS is a HJ resolvase that coordinates the active sites of two distinct endonucleases during HJ resolution. This cleavage reaction is more efficient and orchestrated than that mediated by SLX1-SLX4 alone, which exhibits a potent nickase activity that acts promiscuously upon DNA secondary structures.
Collapse
Affiliation(s)
- Haley D M Wyatt
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | | | | | | |
Collapse
|
20
|
Guiraldelli MF, Eyster C, Pezza RJ. Genome instability and embryonic developmental defects in RMI1 deficient mice. DNA Repair (Amst) 2013; 12:835-43. [PMID: 23900276 DOI: 10.1016/j.dnarep.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/04/2013] [Accepted: 07/08/2013] [Indexed: 12/19/2022]
Abstract
RMI1 forms an evolutionarily conserved complex with BLM/TOP3α/RMI2 (BTR complex) to prevent and resolve aberrant recombination products, thereby promoting genome stability. Most of our knowledge about RMI1 function has been obtained from biochemical studies in vitro. In contrast, the role of RMI1 in vivo remains unclear. Previous attempts to generate an Rmi1 knockout mouse line resulted in pre-implantation embryonic lethality, precluding the use of mouse embryonic fibroblasts (MEFs) and embryonic morphology to assess the role of RMI1 in vivo. Here, we report the generation of an Rmi1 deficient mouse line (hy/hy) that develops until 9.5 days post coitum (dpc) with marked defects in development. MEFs derived from Rmi1(hy/hy) are characterized by severely impaired cell proliferation, frequently having elevated DNA content, high numbers of micronuclei and an elevated percentage of partial condensed chromosomes. Our results demonstrate the importance of RMI1 in maintaining genome integrity and normal embryonic development.
Collapse
Affiliation(s)
- Michel F Guiraldelli
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | | |
Collapse
|
21
|
Brassesco MS, Valera ET, Scrideli CA, Tone LG. Bloom's and myelodysplastic syndromes: Report of a rare pediatric case with gain of an isochromosome 5p. Leuk Res 2011; 36:e18-9. [PMID: 21982639 DOI: 10.1016/j.leukres.2011.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/05/2011] [Accepted: 09/19/2011] [Indexed: 01/03/2023]
|
22
|
Sharma S. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases. J Nucleic Acids 2011; 2011:724215. [PMID: 21977309 PMCID: PMC3185257 DOI: 10.4061/2011/724215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/25/2011] [Indexed: 01/14/2023] Open
Abstract
In addition to the canonical B-form structure first described by Watson and Crick, DNA can adopt a number of alternative structures. These non-B-form DNA secondary structures form spontaneously on tracts of repeat sequences that are abundant in genomes. In addition, structured forms of DNA with intrastrand pairing may arise on single-stranded DNA produced transiently during various cellular processes. Such secondary structures have a range of biological functions but also induce genetic instability. Increasing evidence suggests that genomic instabilities induced by non-B DNA secondary structures result in predisposition to diseases. Secondary DNA structures also represent a new class of molecular targets for DNA-interactive compounds that might be useful for targeting telomeres and transcriptional control. The equilibrium between the duplex DNA and formation of multistranded non-B-form structures is partly dependent upon the helicases that unwind (resolve) these alternate DNA structures. With special focus on tetraplex, triplex, and cruciform, this paper summarizes the incidence of non-B DNA structures and their association with genomic instability and emphasizes the roles of RecQ-like DNA helicases in genome maintenance by resolution of DNA secondary structures. In future, RecQ helicases are anticipated to be additional molecular targets for cancer chemotherapeutics.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Suite 3424A, Washington, DC 20059, USA
| |
Collapse
|
23
|
Wang Y, Smith K, Waldman BC, Waldman AS. Depletion of the bloom syndrome helicase stimulates homology-dependent repair at double-strand breaks in human chromosomes. DNA Repair (Amst) 2011; 10:416-26. [PMID: 21300576 DOI: 10.1016/j.dnarep.2011.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/10/2010] [Accepted: 01/14/2011] [Indexed: 12/29/2022]
Abstract
Mutation of BLM helicase causes Blooms syndrome, a disorder associated with genome instability, high levels of sister chromatid exchanges, and cancer predisposition. To study the influence of BLM on double-strand break (DSB) repair in human chromosomes, we stably transfected a normal human cell line with a DNA substrate that contained a thymidine kinase (tk)-neo fusion gene disrupted by the recognition site for endonuclease I-SceI. The substrate also contained a closely linked functional tk gene to serve as a recombination partner for the tk-neo fusion gene. We derived two cell lines each containing a single integrated copy of the DNA substrate. In these cell lines, a DSB was introduced within the tk-neo fusion gene by expression of I-SceI. DSB repair events that occurred via homologous recombination (HR) or nonhomologous end-joining (NHEJ) were recovered by selection for G418-resistant clones. DSB repair was examined under conditions of either normal BLM expression or reduced BLM expression brought about by RNA interference. We report that BLM knockdown in both cell lines specifically increased the frequency of HR events that produced deletions by crossovers or single-strand annealing while leaving the frequency of gene conversions unchanged or reduced. We observed no change in the accuracy of individual HR events and no substantial alteration of the nature of individual NHEJ events when BLM expression was reduced. Our work provides the first direct evidence that BLM influences DSB repair pathway choice in human chromosomes and suggests that BLM deficiency can engender genomic instability by provoking an increased frequency of HR events of a potentially deleterious nature.
Collapse
Affiliation(s)
- Yibin Wang
- Department of Biological Science, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA.
| | | | | | | |
Collapse
|
24
|
Pathways for Holliday junction processing during homologous recombination in Saccharomyces cerevisiae. Mol Cell Biol 2011; 31:1921-33. [PMID: 21343337 DOI: 10.1128/mcb.01130-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae Rmi1 protein is a component of the highly conserved Sgs1-Top3-Rmi1 complex. Deletion of SGS1, TOP3, or RMI1 is synthetically lethal when combined with the loss of the Mus81-Mms4 or Slx1-Slx4 endonucleases, which have been implicated in Holliday junction (HJ) resolution. To investigate the causes of this synthetic lethality, we isolated a temperature-sensitive mutant of the RMI1 strain, referred to as the rmi1-1 mutant. At the restrictive temperature, this mutant phenocopies an rmi1Δ strain but behaves like the wild type at the permissive temperature. Following a transient exposure to methyl methanesulfonate, rmi1-1 mutants accumulate unprocessed homologous recombination repair (HRR) intermediates. These intermediates are slowly resolved at the restrictive temperature, revealing a redundant resolution activity when Rmi1 is impaired. This resolution depends on Mus81-Mms4 but not on either Slx1-Slx4 or another HJ resolvase, Yen1. Similar results were also observed when Top3 function was impaired. We propose that the Sgs1-Top3-Rmi1 complex constitutes the main pathway for the processing of HJ-containing HRR intermediates but that Mus81-Mms4 can also resolve these intermediates.
Collapse
|
25
|
Russell B, Bhattacharyya S, Keirsey J, Sandy A, Grierson P, Perchiniak E, Kavecansky J, Acharya S, Groden J. Chromosome breakage is regulated by the interaction of the BLM helicase and topoisomerase IIalpha. Cancer Res 2011; 71:561-71. [PMID: 21224348 DOI: 10.1158/0008-5472.can-10-1727] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cells deficient in the recQ-like helicase BLM are characterized by chromosome changes that suggest the disruption of normal mechanisms needed to resolve recombination intermediates and to maintain chromosome stability. Human BLM and topoisomerase IIα interact directly via amino acids 489-587 of BLM and colocalize predominantly in late G2 and M phases of the cell cycle. Deletion of this region does not affect the inherent in vitro helicase activity of BLM but inhibits the topoisomerase IIα-dependent enhancement of its activity, based on the analysis of specific DNA substrates that represent some recombination intermediates. Deletion of the interaction domain from BLM fails to correct the elevated chromosome breakage of transfected BLM-deficient cells. Our results demonstrate that the BLM-topoisomerase IIα interaction is important for preventing chromosome breakage and elucidate a DNA repair mechanism that is critical to maintain chromosome stability in cells and to prevent tumor formation.
Collapse
Affiliation(s)
- Beatriz Russell
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, Ohio 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Franco CCS, Castro-Prado J, Rosada LJ, Sant'Anna JR, Castro-Prado MAA. Mitotic recombination: a genotoxic effect of the antidepressant citalopram in Aspergillus nidulans. Exp Biol Med (Maywood) 2010; 235:1257-62. [PMID: 20851831 DOI: 10.1258/ebm.2010.010159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This report evaluates the potential of the antidepressant drug citalopram to induce homozygotization of genes previously present in a heterozygous condition, by homologous recombination. In order to address this question, a heterozygous diploid strain of the filamentous fungus Aspergillus nidulans and the homozygotization assay were utilized. Non-cytotoxic concentrations of citalopram (50, 75 and 100 μmol/L) showed a strong recombinogenic effect in A. nidulans, inducing homozygosis of the diploid strain's nutritional markers. The genetic markers exhibited homozygotization index (HI) rates higher than 2.0 and significantly different from HI control ones. Since citalopram has been previously characterized as a DNA synthesis inhibitor, the recombinogenic potential of this antidepressant in A. nidulans may be associated with the recombinational repair of citalopram-induced DNA strand breaks.
Collapse
Affiliation(s)
- Claudinéia C S Franco
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Avenida Colombo 5790, Bloco H67. Maringá, Paraná 87020-900, Brazil
| | - Juliana Castro-Prado
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Avenida Colombo 5790, Bloco H67. Maringá, Paraná 87020-900, Brazil
| | - Lúcia J Rosada
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Avenida Colombo 5790, Bloco H67. Maringá, Paraná 87020-900, Brazil
| | - Juliane R Sant'Anna
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Avenida Colombo 5790, Bloco H67. Maringá, Paraná 87020-900, Brazil
| | - Marialba A A Castro-Prado
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Avenida Colombo 5790, Bloco H67. Maringá, Paraná 87020-900, Brazil
| |
Collapse
|
27
|
Holloway JK, Morelli MA, Borst PL, Cohen PE. Mammalian BLM helicase is critical for integrating multiple pathways of meiotic recombination. ACTA ACUST UNITED AC 2010; 188:779-89. [PMID: 20308424 PMCID: PMC2845075 DOI: 10.1083/jcb.200909048] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Improper chromosome pairing, synapsis, and segregation impair meiotic progression in the absence of the BLM helicase in mammalian cells. Bloom’s syndrome (BS) is an autosomal recessive disorder characterized by growth retardation, cancer predisposition, and sterility. BS mutated (Blm), the gene mutated in BS patients, is one of five mammalian RecQ helicases. Although BLM has been shown to promote genome stability by assisting in the repair of DNA structures that arise during homologous recombination in somatic cells, less is known about its role in meiotic recombination primarily because of the embryonic lethality associated with Blm deletion. However, the localization of BLM protein on meiotic chromosomes together with evidence from yeast and other organisms implicates a role for BLM helicase in meiotic recombination events, prompting us to explore the meiotic phenotype of mice bearing a conditional mutant allele of Blm. In this study, we show that BLM deficiency does not affect entry into prophase I but causes severe defects in meiotic progression. This is exemplified by improper pairing and synapsis of homologous chromosomes and altered processing of recombination intermediates, resulting in increased chiasmata. Our data provide the first analysis of BLM function in mammalian meiosis and strongly argue that BLM is involved in proper pairing, synapsis, and segregation of homologous chromosomes; however, it is dispensable for the accumulation of recombination intermediates.
Collapse
Affiliation(s)
- J Kim Holloway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Mutations in the highly conserved RecQ helicase, BLM, cause the rare cancer predisposition disorder, Bloom's syndrome. The orthologues of BLM in Saccharomyces cerevisiae and Schizosaccharomyces pombe are SGS1 and rqh1(+), respectively. Studies in these yeast species have revealed a plethora of roles for the Sgs1 and Rqh1 proteins in repair of double strand breaks, restart of stalled replication forks, processing of aberrant intermediates that arise during meiotic recombination, and maintenance of telomeres. In this review, we focus on the known roles of Sgs1 and Rqh1 and how studies in yeast species have improved our knowledge of how BLM suppresses neoplastic transformation.
Collapse
Affiliation(s)
- Thomas M Ashton
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | |
Collapse
|
29
|
Abstract
In order to maintain genome integrity, it is essential that any DNA damage is repaired. This is achieved in diverse ways in all cells to ensure cellular survival. There is a large repertoire of proteins that remove and repair DNA damage. However, sometimes these processes do not function correctly, leading to genome instability. Studies of DNA repair and genome instability and their causes and cures were showcased in the 2008 Biochemical Society Annual Symposium. The present article provides a summary of the talks given and the subsequent papers in this issue of Biochemical Society Transactions.
Collapse
|