1
|
The role of SUMOylation during development. Biochem Soc Trans 2021; 48:463-478. [PMID: 32311032 PMCID: PMC7200636 DOI: 10.1042/bst20190390] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
During the development of multicellular organisms, transcriptional regulation plays an important role in the control of cell growth, differentiation and morphogenesis. SUMOylation is a reversible post-translational process involved in transcriptional regulation through the modification of transcription factors and through chromatin remodelling (either modifying chromatin remodelers or acting as a ‘molecular glue’ by promoting recruitment of chromatin regulators). SUMO modification results in changes in the activity, stability, interactions or localization of its substrates, which affects cellular processes such as cell cycle progression, DNA maintenance and repair or nucleocytoplasmic transport. This review focuses on the role of SUMO machinery and the modification of target proteins during embryonic development and organogenesis of animals, from invertebrates to mammals.
Collapse
|
2
|
Dexamethasone Upregulates the Expression of Aquaporin4 by Increasing SUMOylation in A549 Cells. Inflammation 2020; 43:1925-1935. [PMID: 32495129 DOI: 10.1007/s10753-020-01267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Dexamethasone can alleviate the severity of bronchial and alveolar edema and therefore is widely applied in the treatment of various exudative diseases including pulmonary edema. However, the effectiveness of dexamethasone is still being questioned and its mechanism is not fully understood. Aquaporins (AQPs) are mainly responsible for the transmembrane transport of water, which is tightly associated with pulmonary edema. Small ubiquitin-like modifiers (SUMOs) are considered to play a protective role in some pathological conditions. In this study, we demonstrated that dexamethasone can upregulate the expression of AQPs in A549 cells by inducing SUMOylation. We found that a low dose of dexamethasone significantly upregulated the levels of SUMOylation and AQP expression in A549 cells, accompanied by a translocation of SUMOs from the cytoplasm to the nucleus. We also explored the possible relation between SUMOylation and AQPs. Knockdown of SUMO2/3 by RNA interference decreased the level of AQP4 in A549 cells after dexamethasone stimulation. Together, our findings demonstrated that AQP4 expression was upregulated in A549 cells exposed to dexamethasone, and SUMOylation may participate in the regulation of AQP4.
Collapse
|
3
|
Talamillo A, Ajuria L, Grillo M, Barroso-Gomila O, Mayor U, Barrio R. SUMOylation in the control of cholesterol homeostasis. Open Biol 2020; 10:200054. [PMID: 32370667 PMCID: PMC7276529 DOI: 10.1098/rsob.200054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SUMOylation—protein modification by the small ubiquitin-related modifier (SUMO)—affects several cellular processes by modulating the activity, stability, interactions or subcellular localization of a variety of substrates. SUMO modification is involved in most cellular processes required for the maintenance of metabolic homeostasis. Cholesterol is one of the main lipids required to preserve the correct cellular function, contributing to the composition of the plasma membrane and participating in transmembrane receptor signalling. Besides these functions, cholesterol is required for the synthesis of steroid hormones, bile acids, oxysterols and vitamin D. Cholesterol levels need to be tightly regulated: in excess, it is toxic to the cell, and the disruption of its homeostasis is associated with various disorders like atherosclerosis and cardiovascular diseases. This review focuses on the role of SUMO in the regulation of proteins involved in the metabolism of cholesterol.
Collapse
Affiliation(s)
- Ana Talamillo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Leiore Ajuria
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Marco Grillo
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Orhi Barroso-Gomila
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| |
Collapse
|
4
|
Scortegagna M, Berthon A, Settas N, Giannakou A, Garcia G, Li JL, James B, Liddington RC, Vilches-Moure JG, Stratakis CA, Ronai ZA. The E3 ubiquitin ligase Siah1 regulates adrenal gland organization and aldosterone secretion. JCI Insight 2017; 2:97128. [PMID: 29212953 DOI: 10.1172/jci.insight.97128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/19/2017] [Indexed: 01/07/2023] Open
Abstract
Primary and secondary hypertension are major risk factors for cardiovascular disease, the leading cause of death worldwide. Elevated secretion of aldosterone resulting from primary aldosteronism (PA) is a key driver of secondary hypertension. Here, we report an unexpected role for the ubiquitin ligase Siah1 in adrenal gland development and PA. Siah1a-/- mice exhibit altered adrenal gland morphology, as reflected by a diminished X-zone, enlarged medulla, and dysregulated zonation of the glomerulosa as well as increased aldosterone levels and aldosterone target gene expression and reduced plasma potassium levels. Genes involved in catecholamine biosynthesis and cAMP signaling are upregulated in the adrenal glands of Siah1a-/- mice, while genes related to retinoic acid signaling and cholesterol biosynthesis are downregulated. Loss of Siah1 leads to increased expression of the Siah1 substrate PIAS1, an E3 SUMO protein ligase implicated in the suppression of LXR, a key regulator of cholesterol levels in the adrenal gland. In addition, SIAH1 sequence variants were identified in patients with PA; such variants impaired SIAH1 ubiquitin ligase activity, resulting in elevated PIAS1 expression. These data identify a role for the Siah1-PIAS1 axis in adrenal gland organization and function and point to possible therapeutic targets for hyperaldosteronism.
Collapse
Affiliation(s)
- Marzia Scortegagna
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Annabel Berthon
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Nikolaos Settas
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Andreas Giannakou
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Guillermina Garcia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Brian James
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Robert C Liddington
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - José G Vilches-Moure
- Department of Comparative Medicine, Stanford University Medical Center, Stanford, California, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Technion Integrated Cancer Center, Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Pirone L, Xolalpa W, Mayor U, Barrio R, Sutherland JD. Analysis of SUMOylated Proteins in Cells and In Vivo Using the bioSUMO Strategy. Methods Mol Biol 2016; 1475:161-9. [PMID: 27631805 DOI: 10.1007/978-1-4939-6358-4_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Posttranslational regulation of proteins by conjugation of ubiquitin- and ubiquitin-like molecules is a common theme in almost every known biological pathway. SUMO (small ubiquitin-related modifier) is dynamically added and deleted from many cellular substrates to control activity, localization, and recruitment of other SUMO-recognizing protein complexes. The dynamic nature of this modification and its low abundance in resting cells make it challenging to study, with susceptibility to deSUMOylases further complicating its analysis. Here we describe bioSUMO, a general method to isolate and analyze SUMOylated proteins from cultured cells, using Drosophila as a highlighted example. The method also has been validated in transgenic flies, as well as human cells. SUMOylated substrates are labeled by in vivo biotinylation, which facilitates their subsequent purification using streptavidin-based affinity chromatography under stringent conditions and with very low background. The bioSUMO approach can be used to validate whether a specific protein is modified, or used to analyze an entire SUMO subproteome. If coupled to quantitative proteomics methods, it may reveal how the SUMO landscape changes with different stimuli, or in diverse cell or tissue types. This technique offers a complementary approach to study SUMO biology and we expect that the strategy can be extended to other ubiquitin-like proteins.
Collapse
Affiliation(s)
- Lucia Pirone
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, 48160, Spain
| | - Wendy Xolalpa
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, 62100, Mexico
| | - Ugo Mayor
- Biokimika eta Biologia Molekularra Saila, Zientzia eta Teknologia Fakultatea, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, 48940, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, 48013, Spain
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, 48160, Spain.
| | | |
Collapse
|
6
|
Akil A, Wedeh G, Zahid Mustafa M, Gassama-Diagne A. SUMO1 depletion prevents lipid droplet accumulation and HCV replication. Arch Virol 2015; 161:141-8. [PMID: 26449956 DOI: 10.1007/s00705-015-2628-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/24/2015] [Indexed: 02/07/2023]
Abstract
Infection by hepatitis C virus (HCV) is a major public-health problem. Chronic infection often leads to cirrhosis, steatosis, and hepatocellular carcinoma. The life cycle of HCV depends on the host cell machinery and involves intimate interaction between viral and host proteins. However, the role of host proteins in the life cycle of HCV remains poorly understood. Here, we identify the small ubiquitin-related modifier (SUMO1) as a key host factor required for HCV replication. We performed a series of cell biology and biochemistry experiments using the HCV JFH-1 (Japanese fulminate hepatitis 1) genotype 2a strain, which produces infectious particles and recapitulates all the steps of the HCV life cycle. We observed that SUMO1 is upregulated in Huh7.5 infected cells. Reciprocally, SUMO1 was found to regulate the expression of viral core protein. Moreover, knockdown of SUMO1 using specific siRNA influenced the accumulation of lipid droplets and reduced HCV replication as measured by qRT-PCR. Thus, we identify SUMO1 as a key host factor required for HCV replication. To our knowledge, this is the first report showing that SUMO1 regulates lipid droplets in the context of viral infection. Our report provides a meaningful insight into how HCV replicates and interacts with host proteins and is of significant importance for the field of HCV and RNA viruses.
Collapse
Affiliation(s)
- Abdellah Akil
- INSERM, UMR-S 785, 94800, Villejuif, France. .,Univ Paris-Sud, 91400, Orsay, France. .,Faculty of Science, UFR Biochemistry-Immunology, Univ Mohammed V, Rabat-Agdal, Morocco.
| | | | - Mohammad Zahid Mustafa
- INSERM, UMR-S 785, 94800, Villejuif, France.,Univ Paris-Sud, 91400, Orsay, France.,Centre for Advanced Studies in Vaccinology and Biotechnology (CASVAB), University of Balochistan, Quetta, Pakistan
| | | |
Collapse
|
7
|
Scavenger receptors mediate the role of SUMO and Ftz-f1 in Drosophila steroidogenesis. PLoS Genet 2013; 9:e1003473. [PMID: 23637637 PMCID: PMC3630131 DOI: 10.1371/journal.pgen.1003473] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/07/2013] [Indexed: 12/31/2022] Open
Abstract
SUMOylation participates in ecdysteroid biosynthesis at the onset of metamorphosis in Drosophila melanogaster. Silencing the Drosophila SUMO homologue smt3 in the prothoracic gland leads to reduced lipid content, low ecdysone titers, and a block in the larval–pupal transition. Here we show that the SR-BI family of Scavenger Receptors mediates SUMO functions. Reduced levels of Snmp1 compromise lipid uptake in the prothoracic gland. In addition, overexpression of Snmp1 is able to recover lipid droplet levels in the smt3 knockdown prothoracic gland cells. Snmp1 expression depends on Ftz-f1 (an NR5A-type orphan nuclear receptor), the expression of which, in turn, depends on SUMO. Furthermore, we show by in vitro and in vivo experiments that Ftz-f1 is SUMOylated. RNAi–mediated knockdown of ftz-f1 phenocopies that of smt3 at the larval to pupal transition, thus Ftz-f1 is an interesting candidate to mediate some of the functions of SUMO at the onset of metamorphosis. Additionally, we demonstrate that the role of SUMOylation, Ftz-f1, and the Scavenger Receptors in lipid capture and mobilization is conserved in other steroidogenic tissues such as the follicle cells of the ovary. smt3 knockdown, as well as ftz-f1 or Scavenger knockdown, depleted the lipid content of the follicle cells, which could be rescued by Snmp1 overexpression. Therefore, our data provide new insights into the regulation of metamorphosis via lipid homeostasis, showing that Drosophila Smt3, Ftz-f1, and SR-BIs are part of a general mechanism for uptake of lipids such as cholesterol, required during development in steroidogenic tissues. Steroid hormones are cholesterol derivates that control many aspects of animal physiology, including development of the adult organisms, growth, energy storage, and reproduction. In insects, pulses of the steroid hormone ecdysone precede molting and metamorphosis, the regulation of hormonal synthesis being a crucial step that determines animal viability and size. Reduced levels of the small ubiquitin-like modifier SUMO in the prothoracic gland block the synthesis of ecdysone, as SUMO is needed for cholesterol intake. Here we show that SUMO is required for the expression of Scavenger Receptors (Class B, type I). These membrane receptors are necessary for lipid uptake by the gland. Strikingly, their expression is sufficient to recover lipid content when SUMO is removed. The expression of the Scavenger Receptors depends on Ftz-f1, a nuclear transcription factor homologous to mammalian Steroidogenic factor 1 (SF-1). Interestingly, the expression of Ftz-f1 also depends on SUMO and, in addition, Ftz-f1 is SUMOylated. This modification modulates its capacity to activate the Scavenger Receptor Snmp1. The role of SUMO, Scavenger Receptors, and Ftz-f1 on lipid intake is conserved in other tissues that synthesize steroid hormones, such as the ovaries. These factors are conserved in vertebrates, with mutations underlying human disease, so this mechanism to regulate lipid uptake could have implications for human health.
Collapse
|
8
|
Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation. Biochim Biophys Acta Mol Basis Dis 2011; 1812:909-18. [DOI: 10.1016/j.bbadis.2010.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 02/07/2023]
|
9
|
Searching for the boundaries: unlimited expansion of ubiquitin and ubiquitin-like signals in multiple cellular functions. Biochem Soc Trans 2010; 38:1-5. [PMID: 20074026 DOI: 10.1042/bst0380001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ubiquitin-proteasome field has matured, as is evident from the wide diversity of systems and mechanisms in which it participates and that are the subject of investigation, presented in the Ubiquitin-Proteasome System, Dynamics and Targeting meeting held in Barcelona, co-sponsored by the Biochemical Society, the Spanish Ministry of Science, the Spanish Research Council and the Catalan Academy of Sciences. Several of the aspects dealt with in the meeting are discussed in detail in the collection of review papers included in this issue of Biochemical Society Transactions. These papers reflect the importance of ubiquitin and ubiquitin-like modifiers as enormously versatile signalling entities that modulate and direct pathways in specific directions through modification-induced interactions. One conclusion from the meeting is that the field has become so rich and dense that, in order to be useful and informative, future meetings may need to focus on particular aspects of the ubiquitin-proteasome system.
Collapse
|