1
|
Jiang B, Zheng Y, Xue T, Wu J, Song H, Zhou S, Li Y, Gong J, Wei M, Ji X, Wei M, Wang L, Gong J, Liu M, Wang A, Zhang K, Lv K, Zheng Y. Identification of selenium-containing benzamides as potent microtubule-targeting antitumor agents. Bioorg Chem 2025; 159:108355. [PMID: 40090150 DOI: 10.1016/j.bioorg.2025.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
IMB5046, a microtubule inhibitor discovered by our team, served as the lead compound for designing a series of selenium-containing benzoates and benzamides. Among these, compound 2g emerged as a lead candidate, demonstrating potent antiproliferative activity. Mechanistic studies revealed that 2g bound to the colchicine site of tubulin, caused G2/M cell cycle arrest, and generated ROS. Notably, 2g exhibited exceptional efficacy in P-gp overexpressing MCF7/ADR and KBV200 cell lines, with drug-resistance indices (DRI) of 0.83 and 0.58, respectively, significantly outperforming colchicine (DRIs: 25.4 and 8.03) and paclitaxel (DRIs: 41.0 and 4.96). In an MCF-7 xenograft model, 2g (25 mg/kg, IP) achieved a tumor growth inhibition rate of 57.2 %, surpassing IMB5046 (47.6 %). To enhance solubility and pharmacokinetics, prodrug 2g-P was developed, showing 69 % bioavailability but reduced in vivo efficacy. Further investigation is warranted to elucidate the factors underlying the discrepancy, such as the efficiency of prodrug-to-drug conversion and intracellular accumulation of active 2g. In summary, our study not only identified a novel selenium-containing lead compound, but also provided important insights into prodrug design. These findings lay a solid foundation for the development of next-generation microtubule-targeting agents capable of overcoming drug resistance.
Collapse
Affiliation(s)
- Bin Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Department of Pharmaceutical Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Yijia Zheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tiezheng Xue
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Department of Pharmaceutical Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Jizhou Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huijuan Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Sheng Zhou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Yujing Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiaqi Gong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng Wei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaorui Ji
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meijiao Wei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lujun Wang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, China
| | - Jianhua Gong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kai Zhang
- Department of Pharmaceutical Chemistry, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China.
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yanbo Zheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Zheng S, Raz L, Zhou L, Cohen-Sharir Y, Tian R, Ippolito MR, Gianotti S, Saad R, Wardenaar R, Broekhuis M, Suarez Peredo Rodriguez M, Wobben S, van den Brink A, Bakker P, Santaguida S, Foijer F, Ben-David U. High CDC20 levels increase sensitivity of cancer cells to MPS1 inhibitors. EMBO Rep 2025; 26:1036-1061. [PMID: 39838194 PMCID: PMC11850905 DOI: 10.1038/s44319-024-00363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Spindle assembly checkpoint (SAC) inhibitors are a recently developed class of drugs, which perturb chromosome segregation during cell division, induce chromosomal instability (CIN), and eventually lead to cell death. The molecular features that determine cellular sensitivity to these drugs are not fully understood. We recently reported that aneuploid cancer cells are preferentially sensitive to SAC inhibition. Here we report that sensitivity to SAC inhibition by MPS1 inhibitors is largely driven by the expression of CDC20, a main mitotic activator of the anaphase-promoting complex (APC/C), and that the effect of CDC20 is larger than that of the APC/C itself. Mechanistically, we discovered that CDC20 depletion prolongs metaphase duration, diminishes mitotic errors, and reduces sensitivity to SAC inhibition. We found that aneuploid cells express higher basal levels of CDC20, which shortens the duration of metaphase and leads to multiple mitotic errors, resulting in increased long-term sensitivity to the additional CIN induced by SAC inhibition. Our findings propose high CDC20 expression as a molecular feature associated with the sensitivity to SAC inhibition therapy and as a potential aneuploidy-induced cellular vulnerability.
Collapse
Affiliation(s)
- Siqi Zheng
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Linoy Raz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lin Zhou
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Yael Cohen-Sharir
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruifang Tian
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | | | - Sara Gianotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20141, Italy
| | - Ron Saad
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rene Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
- Functional Genomics Center, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Mathilde Broekhuis
- Functional Genomics Center, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Maria Suarez Peredo Rodriguez
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Soraya Wobben
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Anouk van den Brink
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Petra Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Stefano Santaguida
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20141, Italy
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands.
- Functional Genomics Center, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands.
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
MacKenzie A, Vicory V, Lacefield S. Meiotic cells escape prolonged spindle checkpoint activity through kinetochore silencing and slippage. PLoS Genet 2023; 19:e1010707. [PMID: 37018287 PMCID: PMC10109492 DOI: 10.1371/journal.pgen.1010707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
To prevent chromosome mis-segregation, a surveillance mechanism known as the spindle checkpoint delays the cell cycle if kinetochores are not attached to spindle microtubules, allowing the cell additional time to correct improper attachments. During spindle checkpoint activation, checkpoint proteins bind the unattached kinetochore and send a diffusible signal to inhibit the anaphase promoting complex/cyclosome (APC/C). Previous work has shown that mitotic cells with depolymerized microtubules can escape prolonged spindle checkpoint activation in a process called mitotic slippage. During slippage, spindle checkpoint proteins bind unattached kinetochores, but the cells cannot maintain the checkpoint arrest. We asked if meiotic cells had as robust of a spindle checkpoint response as mitotic cells and whether they also undergo slippage after prolonged spindle checkpoint activity. We performed a direct comparison between mitotic and meiotic budding yeast cells that signal the spindle checkpoint through two different assays. We find that the spindle checkpoint delay is shorter in meiosis I or meiosis II compared to mitosis, overcoming a checkpoint arrest approximately 150 minutes earlier in meiosis than in mitosis. In addition, cells in meiosis I escape spindle checkpoint signaling using two mechanisms, silencing the checkpoint at the kinetochore and through slippage. We propose that meiotic cells undertake developmentally-regulated mechanisms to prevent persistent spindle checkpoint activity to ensure the production of gametes.
Collapse
Affiliation(s)
- Anne MacKenzie
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Victoria Vicory
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
4
|
MacKenzie A, Vicory V, Lacefield S. Meiotic Cells Escape Prolonged Spindle Checkpoint Activity Through Premature Silencing and Slippage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522494. [PMID: 36711621 PMCID: PMC9881877 DOI: 10.1101/2023.01.02.522494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To prevent chromosome mis-segregation, a surveillance mechanism known as the spindle checkpoint delays the cell cycle if kinetochores are not attached to spindle microtubules, allowing the cell additional time to correct improper attachments. During spindle checkpoint activation, checkpoint proteins bind the unattached kinetochore and send a diffusible signal to inhibit the anaphase promoting complex/cyclosome (APC/C). Previous work has shown that mitotic cells with depolymerized microtubules can escape prolonged spindle checkpoint activation in a process called mitotic slippage. During slippage, spindle checkpoint proteins bind unattached kinetochores, but the cells cannot maintain the checkpoint arrest. We asked if meiotic cells had as robust of a spindle checkpoint response as mitotic cells and whether they also undergo slippage after prolonged spindle checkpoint activity. We performed a direct comparison between mitotic and meiotic budding yeast cells that signal the spindle checkpoint due to a lack of either kinetochore-microtubule attachments or due to a loss of tension-bearing attachments. We find that the spindle checkpoint is not as robust in meiosis I or meiosis II compared to mitosis, overcoming a checkpoint arrest approximately 150 minutes earlier in meiosis. In addition, cells in meiosis I escape spindle checkpoint signaling using two mechanisms, silencing the checkpoint at the kinetochore and through slippage. We propose that meiotic cells undertake developmentally-regulated mechanisms to prevent persistent spindle checkpoint activity to ensure the production of gametes. AUTHOR SUMMARY Mitosis and meiosis are the two major types of cell divisions. Mitosis gives rise to genetically identical daughter cells, while meiosis is a reductional division that gives rise to gametes. Cell cycle checkpoints are highly regulated surveillance mechanisms that prevent cell cycle progression when circumstances are unfavorable. The spindle checkpoint promotes faithful chromosome segregation to safeguard against aneuploidy, in which cells have too many or too few chromosomes. The spindle checkpoint is activated at the kinetochore and then diffuses to inhibit cell cycle progression. Although the checkpoint is active in both mitosis and meiosis, most studies involving checkpoint regulation have been performed in mitosis. By activating the spindle checkpoint in both mitosis and meiosis in budding yeast, we show that cells in meiosis elicit a less persistent checkpoint signal compared to cells in mitosis. Further, we show that cells use distinct mechanisms to escape the checkpoint in mitosis and meiosis I. While cells in mitosis and meiosis II undergo anaphase onset while retaining checkpoint proteins at the kinetochore, cells in meiosis I prematurely lose checkpoint protein localization at the kinetochore. If the mechanism to remove the checkpoint components from the kinetochore is disrupted, meiosis I cells can still escape checkpoint activity. Together, these results highlight that cell cycle checkpoints are differentially regulated during meiosis to avoid long delays and to allow gametogenesis.
Collapse
Affiliation(s)
- Anne MacKenzie
- Department of Biology, Indiana University, Bloomington, IN USA
| | - Victoria Vicory
- Department of Biology, Indiana University, Bloomington, IN USA
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN USA,Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH USA,To whom correspondence should be addressed to Soni Lacefield:
| |
Collapse
|
5
|
Sadeghi A, Dervey R, Gligorovski V, Labagnara M, Rahi SJ. The optimal strategy balancing risk and speed predicts DNA damage checkpoint override times. NATURE PHYSICS 2022; 18:832-839. [PMID: 36281344 PMCID: PMC7613727 DOI: 10.1038/s41567-022-01601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/29/2022] [Indexed: 05/15/2023]
Abstract
Checkpoints arrest biological processes allowing time for error correction. The phenomenon of checkpoint override (also known as checkpoint adaptation, slippage, or leakage), during cellular self-replication is biologically critical but currently lacks a quantitative, functional, or system-level understanding. To uncover fundamental laws governing error-correction systems, we derived a general theory of optimal checkpoint strategies, balancing the trade-off between risk and self-replication speed. Mathematically, the problem maps onto the optimization of an absorbing boundary for a random walk. We applied the theory to the DNA damage checkpoint (DDC) in budding yeast, an intensively researched model checkpoint. Using novel reporters for double-strand DNA breaks (DSBs), we first quantified the probability distribution of DSB repair in time including rare events and, secondly, the survival probability after override. With these inputs, the optimal theory predicted remarkably accurately override times as a function of DSB numbers, which we measured precisely for the first time. Thus, a first-principles calculation revealed undiscovered patterns underlying highly noisy override processes. Our multi-DSB measurements revise well-known past results and show that override is more general than previously thought.
Collapse
Affiliation(s)
- Ahmad Sadeghi
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Roxane Dervey
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vojislav Gligorovski
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marco Labagnara
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sahand Jamal Rahi
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
6
|
De Jaeger-Braet J, Krause L, Buchholz A, Schnittger A. Heat stress reveals a specialized variant of the pachytene checkpoint in meiosis of Arabidopsis thaliana. THE PLANT CELL 2022; 34:433-454. [PMID: 34718750 PMCID: PMC8846176 DOI: 10.1093/plcell/koab257] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/14/2021] [Indexed: 05/25/2023]
Abstract
Plant growth and fertility strongly depend on environmental conditions such as temperature. Remarkably, temperature also influences meiotic recombination and thus, the current climate change will affect the genetic make-up of plants. To better understand the effects of temperature on meiosis, we followed male meiocytes in Arabidopsis thaliana by live cell imaging under three temperature regimes: at 21°C; at heat shock conditions of 30°C and 34°C; after an acclimatization phase of 1 week at 30°C. This work led to a cytological framework of meiotic progression at elevated temperature. We determined that an increase from 21°C to 30°C speeds up meiosis with specific phases being more amenable to heat than others. An acclimatization phase often moderated this effect. A sudden increase to 34°C promoted a faster progression of early prophase compared to 21°C. However, the phase in which cross-overs mature was prolonged at 34°C. Since mutants involved in the recombination pathway largely did not show the extension of this phase at 34°C, we conclude that the delay is recombination-dependent. Further analysis also revealed the involvement of the ATAXIA TELANGIECTASIA MUTATED kinase in this prolongation, indicating the existence of a pachytene checkpoint in plants, yet in a specialized form.
Collapse
Affiliation(s)
- Joke De Jaeger-Braet
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Linda Krause
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anika Buchholz
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arp Schnittger
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Bates M, Furlong F, Gallagher MF, Spillane CD, McCann A, O'Toole S, O'Leary JJ. Too MAD or not MAD enough: The duplicitous role of the spindle assembly checkpoint protein MAD2 in cancer. Cancer Lett 2020; 469:11-21. [DOI: 10.1016/j.canlet.2019.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
|
8
|
Moes-Sosnowska J, Rzepecka IK, Chodzynska J, Dansonka-Mieszkowska A, Szafron LM, Balabas A, Lotocka R, Sobiczewski P, Kupryjanczyk J. Clinical importance of FANCD2, BRIP1, BRCA1, BRCA2 and FANCF expression in ovarian carcinomas. Cancer Biol Ther 2019; 20:843-854. [PMID: 30822218 PMCID: PMC6606037 DOI: 10.1080/15384047.2019.1579955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE DNA repair pathways are potential targets of molecular therapy in cancer patients. The FANCD2, BRIP1, BRCA1/2, and FANCF genes are involved in homologous recombination DNA repair, which implicates their possible role in cell response to DNA-damaging agents. We evaluated a clinical significance of pre-treatment expression of these genes at mRNA level in 99 primary, advanced-stage ovarian carcinomas from patients, who later received taxane-platinum (TP) or platinum-cyclophosphamide (PC) treatment. METHODS Gene expression was determined with the use of Real-Time PCR. The BRCA2 and BRIP1 gene sequence was investigated with the use of SSCP, dHPLC, and PCR-sequencing. RESULTS Increased FANCD2 expression occurred to be a negative prognostic factor for all patients (PC+TP:HR 3.85, p = 0.0003 for the risk of recurrence; HR 1.96, p = 0.02 for the risk of death), and this association was even stronger in the TP-treated group (HR 6.7, p = 0.0002 and HR 2.33, p = 0.01, respectively). Elevated BRIP1 expression was the only unfavorable molecular factor in the PC-treated patients (HR 8.37, p = 0.02 for the risk of recurrence). Additionally, an increased FANCD2 and BRCA1/2 expression levels were associated with poor ovarian cancer outcome in either TP53-positive or -negative subgroups of the TP-treated patients, however these groups were small. Sequence analysis identified one protein truncating variant (1/99) in BRCA2 and no mutations (0/56) in BRIP1. CONCLUSIONS Our study shows for the first time that FANCD2 overexpression is a strong negative prognostic factor in ovarian cancer, particularly in patients treated with TP regimen. Moreover, increased mRNA level of the BRIP1 is a negative prognostic factor in the PC-treated patients. Next, changes in the BRCA2 and BRIP1 genes are rare and together with other analyzed FA genes considered as homologous recombination deficiency may not affect the expression level of analyzed genes.
Collapse
Affiliation(s)
- Joanna Moes-Sosnowska
- a Department of Immunology , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Iwona K Rzepecka
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Joanna Chodzynska
- c Laboratory of Bioinformatics and Biostatistics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Agnieszka Dansonka-Mieszkowska
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Lukasz M Szafron
- a Department of Immunology , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Aneta Balabas
- d Department of Genetics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Renata Lotocka
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Piotr Sobiczewski
- e Department of Gynecologic Oncology , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Jolanta Kupryjanczyk
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| |
Collapse
|
9
|
Atalay PB, Kuku G, Tuna BG. Effects of carbendazim and astaxanthin co-treatment on the proliferation of MCF-7 breast cancer cells. In Vitro Cell Dev Biol Anim 2018; 55:113-119. [PMID: 30547284 DOI: 10.1007/s11626-018-0312-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/15/2018] [Indexed: 01/20/2023]
Abstract
There has been a controversy in the oncology field about the use of antioxidants along with chemotherapeutics in cancer treatment. This study aimed to investigate the effects of a potent antioxidant (astaxanthin) co-treatment with a promising anti-cancer drug (carbendazim), which is in phase I clinical trials, on MCF-7 breast cancer cell proliferation. MCF-7 cells were treated with carbendazim, astaxanthin, or their combinations and incubated for 24 h. After the incubation, each treatment group was evaluated for proliferation, cell cycle progression, and production of reactive oxygen species (ROS) using WST-1, flow cytometry, and CM-H2DCFDA, respectively. All tested carbendazim and astaxanthin combinations increased the anti-proliferative effect of Carb treatment alone and increased the G2/M phase cell cycle arrest compared to the DMSO-treated control. Astaxanthin, at all concentrations tested, reduced the elevated intracellular ROS levels induced by the carbendazim treatment. Our data suggest that astaxanthin and carbendazim co-treatment enhances the anti-proliferative effect of carbendazim as a single agent, while alleviating the carbendazim treatment-associated ROS production in MCF-7 cells. These findings may contribute to the current debate on the use of antioxidants along with anti-cancer drugs in cancer chemotherapy.
Collapse
Affiliation(s)
- Pinar Buket Atalay
- Department of Medical Biology and Genetics, Maltepe University Faculty of Medicine, Maltepe University, Marmara Eğitim Köyü 34857, Maltepe, Istanbul, Turkey.
| | - Gamze Kuku
- Department of Genetics and Engineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Bilge Guvenc Tuna
- Department of Biophysics, Yeditepe University School of Medicine, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
10
|
Roy S, Hooiveld GJ, Seehawer M, Caruso S, Heinzmann F, Schneider AT, Frank AK, Cardenas DV, Sonntag R, Luedde M, Trautwein C, Stein I, Pikarsky E, Loosen S, Tacke F, Ringelhan M, Avsaroglu SK, Goga A, Buendia MA, Vucur M, Heikenwalder M, Zucman-Rossi J, Zender L, Roderburg C, Luedde T. microRNA 193a-5p Regulates Levels of Nucleolar- and Spindle-Associated Protein 1 to Suppress Hepatocarcinogenesis. Gastroenterology 2018; 155:1951-1966.e26. [PMID: 30165047 PMCID: PMC6279541 DOI: 10.1053/j.gastro.2018.08.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS We performed an integrated analysis to identify microRNAs (miRNAs) and messenger RNAs (mRNAs) with altered expression in liver tumors from 3 mouse models of hepatocellular carcinoma (HCC) and human tumor tissues. METHODS We analyzed miRNA and mRNA expression profiles of liver tissues from mice with diethylnitrosamine-induced hepatocarcinogenesis, conditional expression of lymphotoxin alpha and lymphotoxin beta, or inducible expression of a Myc transgene (Tet-O-Myc mice), as well as male C57BL/6 mice (controls). miRNA mimics were expressed and miRNAs and mRNAs were knocked down in human (Huh7, Hep3B, JHH2) hepatoma cell lines; cells were analyzed for viability, proliferation, apoptosis, migration, and invasion. Cells were grown as xenograft tumors in nude mice and analyzed. We combined in silico target gene prediction with mRNA profiles from all 3 mouse models. We quantified miRNA levels in 146 fresh-frozen tissues from patients (125 HCCs, 17 matched nontumor tissues, and 4 liver samples from patients without cancer) and published human data sets and tested correlations with patient survival times using Kaplan-Meier curves and the log-rank test. Levels of NUSAP1 mRNA were quantified in 237 HCCs and 5 nontumor liver samples using the TaqMan assay. RESULTS Levels of the miRNA 193a-5p (MIR193A-5p) were reduced in liver tumors from all 3 mouse tumor models and in human HCC samples, compared with nontumor liver tissues. Expression of a MIR193A-5p mimic in hepatoma cells reduced proliferation, survival, migration, and invasion and their growth as xenograft tumors in nude mice. We found nucleolar and spindle-associated protein 1 (NUSAP1) to be a target of MIR193A-5p; HCC cells and tissues with low levels of MIR193A-5p had increased expression of NUSAP1. Increased levels of NUSAP1 in HCC samples correlated with shorter survival times of patients. Knockdown of NUSAP1 in Huh7 cells reduced proliferation, survival, migration, and growth as xenograft tumors in nude mice. Hydrodynamic tail-vein injections of a small hairpin RNA against NUSAP1 reduced growth of Akt1-Myc-induced tumors in mice. CONCLUSIONS MIR193A-5p appears to prevent liver tumorigenesis by reducing levels of NUSAP1. Levels of MIR193A-5p are reduced in mouse and human HCC cells and tissues, leading to increased levels of NUSAP1, associated with shorter survival times of patients. Integrated analyses of miRNAs and mRNAs in tumors from mouse models can lead to identification of therapeutic targets in humans. The currently reported miRNA and mRNA profiling data have been submitted to the Gene Expression Omnibus (super-series accession number GSE102418).
Collapse
Affiliation(s)
- Sanchari Roy
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology,Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany
| | - Guido J. Hooiveld
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, Netherlands
| | - Marco Seehawer
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany,Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Stefano Caruso
- Inserm UMR-1162, Functional Genomics of Solid Tumors, University Paris Descartes, University University Paris Diderot, University Paris 13, Labex Immuno-Oncology, Paris, France
| | - Florian Heinzmann
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany,Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | | | - Anna K. Frank
- Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany
| | | | - Roland Sonntag
- Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany
| | - Mark Luedde
- Department of Cardiology, University Hospital Kiel, 25105 Kiel, Germany
| | | | - Ilan Stein
- Department of Pathology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Pathology, Hadassah–Hebrew University Medical Center, Jerusalem, Israel
| | - Sven Loosen
- Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany
| | - Marc Ringelhan
- Technische Universität München, Ismaningerstr. 22, 81675 München
| | - Seda Kilinc Avsaroglu
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143-0452
| | - Andrei Goga
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143-0452
| | - Marie-Annick Buendia
- Inserm Unit U1193, University Paris-Sud, Paul Brousse Hospital, Villejuif, France
| | - Mihael Vucur
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Germany
| | - Jessica Zucman-Rossi
- Inserm UMR-1162, Functional Genomics of Solid Tumors, University Paris Descartes, University University Paris Diderot, University Paris 13, Labex Immuno-Oncology, Paris, France
| | - Lars Zender
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany,Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany,Translational Gastrointestinal Oncology Group, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | | | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, Aachen Germany; Department of Medicine III, University Hospital RWTH Aachen, Aachen Germany.
| |
Collapse
|
11
|
Komaki S, Schnittger A. The Spindle Assembly Checkpoint in Arabidopsis Is Rapidly Shut Off during Severe Stress. Dev Cell 2017; 43:172-185.e5. [PMID: 29065308 DOI: 10.1016/j.devcel.2017.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/18/2017] [Accepted: 09/21/2017] [Indexed: 12/24/2022]
Abstract
The spindle assembly checkpoint (SAC) in animals and yeast assures equal segregation of chromosomes during cell division. The prevalent occurrence of polyploidy in flowering plants together with the observation that many plants can be readily forced to double their genomes by application of microtubule drugs raises the question of whether plants have a proper SAC. Here, we provide a functional framework of the core SAC proteins in Arabidopsis. We reveal that Arabidopsis will delay mitosis in a SAC-dependent manner if the spindle is perturbed. However, we also show that the molecular architecture of the SAC is unique in plants. Moreover, the SAC is short-lived and cannot stay active for more than 2 hr, after which the cell cycle is reset. This resetting opens the possibility for genome duplications and raises the hypothesis that a rapid termination of a SAC-induced mitotic arrest provides an adaptive advantage for plants impacting plant genome evolution.
Collapse
Affiliation(s)
- Shinichiro Komaki
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | - Arp Schnittger
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, Ohnhorststrasse 18, D-22609 Hamburg, Germany.
| |
Collapse
|
12
|
Zhou J, Ahmad F, Parikh S, Hoffman NE, Rajan S, Verma VK, Song J, Yuan A, Shanmughapriya S, Guo Y, Gao E, Koch W, Woodgett JR, Madesh M, Kishore R, Lal H, Force T. Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy. Circ Res 2016; 118:1208-22. [PMID: 26976650 DOI: 10.1161/circresaha.116.308544] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
RATIONALE Cardiac myocyte-specific deletion of either glycogen synthase kinase (GSK)-3α and GSK-3β leads to cardiac protection after myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration because of the fact that all GSK-3-targeted drugs, including the drugs already in clinical trial target both isoforms of GSK-3, and none are isoform specific. OBJECTIVE To identify the consequences of combined deletion of cardiac myocyte GSK-3α and GSK-3β in heart function. METHODS AND RESULTS We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, double-knockout hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from double-knockout implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. Double-knockout cardiac myocytes showed cell cycle progression resulting in increased DNA content and multinucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe-induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. CONCLUSIONS Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis, and its loss is incompatible with life because of cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy.
Collapse
Affiliation(s)
- Jibin Zhou
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Firdos Ahmad
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Shan Parikh
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Nichole E Hoffman
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Sudarsan Rajan
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Vipin K Verma
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Jianliang Song
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Ancai Yuan
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Santhanam Shanmughapriya
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Yuanjun Guo
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Erhe Gao
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Walter Koch
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - James R Woodgett
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Muniswamy Madesh
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Raj Kishore
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Hind Lal
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.).
| | - Thomas Force
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.).
| |
Collapse
|
13
|
Cairo LV, Ptak C, Wozniak RW. Dual personality of Mad1: regulation of nuclear import by a spindle assembly checkpoint protein. Nucleus 2013; 4:367-73. [PMID: 24076561 DOI: 10.4161/nucl.26573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear transport is a dynamic process that can be modulated in response to changes in cellular physiology. We recently reported that the transport activity of yeast nuclear pore complexes (NPCs) is altered in response to kinetochore-microtubule (KT-MT) interaction defects. Specifically, KT detachment from MTs activates a signaling pathway that prevents the nuclear import of cargos by the nuclear transport factor Kap121p. This loss of Kap121p-mediated import is thought to influence the nuclear environment, including the phosphorylation state of nuclear proteins. A key regulator of this process is the spindle assembly checkpoint protein Mad1p. In response to unattached KTs, Mad1p dynamically cycles between NPCs and KTs. This cycling appears to induce NPC molecular rearrangements that prevent the nuclear import of Kap121p-cargo complexes. Here, we discuss the underlying mechanisms and the physiological relevance of Mad1p cycling and the inhibition of Kap121p-mediated nuclear import, focusing on outstanding questions within the pathway.
Collapse
Affiliation(s)
- Lucas V Cairo
- Department of Cell Biology; University of Alberta; Edmonton, AB Canada
| | | | | |
Collapse
|
14
|
Schuyler SC, Wu YF, Kuan VJW. The Mad1-Mad2 balancing act--a damaged spindle checkpoint in chromosome instability and cancer. J Cell Sci 2012; 125:4197-206. [PMID: 23093575 DOI: 10.1242/jcs.107037] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer cells are commonly aneuploid. The spindle checkpoint ensures accurate chromosome segregation by controlling cell cycle progression in response to aberrant microtubule-kinetochore attachment. Damage to the checkpoint, which is a partial loss or gain of checkpoint function, leads to aneuploidy during tumorigenesis. One form of damage is a change in levels of the checkpoint proteins mitotic arrest deficient 1 and 2 (Mad1 and Mad2), or in the Mad1:Mad2 ratio. Changes in Mad1 and Mad2 levels occur in human cancers, where their expression is regulated by the tumor suppressors p53 and retinoblastoma 1 (RB1). By employing a standard assay, namely the addition of a mitotic poison at mitotic entry, it has been shown that checkpoint function is normal in many cancer cells. However, in several experimental systems, it has been observed that this standard assay does not always reveal checkpoint aberrations induced by changes in Mad1 or Mad2, where excess Mad1 relative to Mad2 can lead to premature anaphase entry, and excess Mad2 can lead to a delay in entering anaphase. This Commentary highlights how changes in the levels of Mad1 and Mad2 result in a damaged spindle checkpoint, and explores how these changes cause chromosome instability that can lead to aneuploidy during tumorigenesis.
Collapse
Affiliation(s)
- Scott C Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, 333 Taiwan, Republic of China.
| | | | | |
Collapse
|
15
|
Kaplan KB, Li R. A prescription for 'stress'--the role of Hsp90 in genome stability and cellular adaptation. Trends Cell Biol 2012; 22:576-83. [PMID: 22959309 DOI: 10.1016/j.tcb.2012.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/08/2012] [Accepted: 08/12/2012] [Indexed: 12/11/2022]
Abstract
Changes in cell homeostasis, or cell 'stress', are thought to tax the ability of the Hsp90 chaperone to facilitate an array of processes critical for genome maintenance. Here, we review the current understanding of how the Hsp90 chaperone machinery ensures the function of proteins important for DNA repair, recombination, and chromosome segregation. We discuss the idea that cell stress can overload Hsp90, resulting in genomic instability that may have important implications for stress adaptation and selection. The importance of Hsp90 in genome maintenance and its limited capacity to buffer the proteome may underlie the initiation or progression of diseases such as cancer.
Collapse
Affiliation(s)
- Kenneth B Kaplan
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
16
|
Hashimoto K, Nakajima Y, Uematsu R, Chatani F. Difference in susceptibility to morphological changes in the nucleus to aneugens between p53-competent and p53-abrogated lymphoblastoid cell lines (TK6 and NH32 cells) in the in vitro micronucleus assay. Mutagenesis 2011; 27:287-93. [DOI: 10.1093/mutage/ger074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|