1
|
Liu MC, Weng PW, Chen SC, Liu TH, Huang HW, Huang CT, Yang CT, Mishra VK, Yang MT. Immunologic, Anti-Inflammatory, and Anti-Muscle Damage Profile of Supplemented Vitamin D 3 in Healthy Adults on Strenuous Endurance Exercise. BIOLOGY 2023; 12:biology12050657. [PMID: 37237471 DOI: 10.3390/biology12050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Reportedly, strenuous endurance exercise can depress the immune system and induce inflammation and muscle damage. Therefore, this double-blinded, matched-pair study aimed to investigate the impact of vitamin D3 supplementation on immune response (leukocyte, neutrophil, lymphocyte, CD4+, CD8+, CD19+, and CD56+ counts), inflammatory profile (TNF-α and IL-6), muscle damage (CK and LDH levels), as well as aerobic capacity after strenuous endurance exercise in 18 healthy men taking 5000 IU of vitamin D3 (n = 9) or placebo (n = 9) daily for 4 weeks. Total and differential blood leukocyte counts, levels of cytokines, and muscle damage biomarkers were determined before, immediately after, and 2, 4, and 24 h after exercise. The IL-6, CK, and LDH levels were significantly lower in vitamin D3 group at 2, 4, and 24 h post exercise (p < 0.05). Maximal and average heart rates during exercise were also significantly lower (p < 0.05). In the vitamin D3 group, the CD4+/CD8+ ratio after 4 weeks of supplementation was only significantly lower at post-0 than at baseline and significantly higher at post-2 than at baseline and post-0 (all p < 0.05). Taken together, 5000 IU of daily vitamin D3 supplementation for 4 weeks exhibited positive effects in terms of increased blood 25(OH)D levels, CD4+/CD8+ ratio (immune response), and aerobic capacity while inhibiting inflammatory cytokines and CK and LDH (muscle damage) in people performing strenuous endurance exercise.
Collapse
Affiliation(s)
- Ming-Che Liu
- School of Dental Technology, Taipei Medical University, Taipei 110301, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Department of Urology, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Research Center of Urology and Kidney, Taipei Medical University, Taipei 110301, Taiwan
| | - Pei-Wei Weng
- School of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan
| | - Sheng-Chang Chen
- School of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ting-Hao Liu
- Center for General Education, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsiang-Wei Huang
- Department of Medical Education, E-DA Hospital, Kaohsiung 824005, Taiwan
| | - Chang-Ti Huang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110301, Taiwan
| | - Cheng-Tse Yang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110301, Taiwan
| | | | - Ming-Ta Yang
- Clinical Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Center for General Education, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
2
|
The physical exercise-induced oxidative/inflammatory response in peripheral blood mononuclear cells: Signaling cellular energetic stress situations. Life Sci 2023; 321:121440. [PMID: 36921686 DOI: 10.1016/j.lfs.2023.121440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 03/14/2023]
Abstract
Peripheral blood mononuclear cells (PBMCs) are a variety of specialized immune cells produced in the bone marrow from hematopoietic stem cells (HSCs) that work together to protect our bodies from harmful pathogens. From a metabolic point of view, these cells can serve as sentinel tissue source for distinguishing multiple types of whole-body physiological perturbations. The significant interaction of PBMCs with systemic physiology makes these cells an attractive target for several interventions such as physical exercise. Analyses of oxidative/inflammatory and metabolic markers of PBMCs obtained from unhealthy and healthy humans have been used in monitoring immune response in different exercise conditions. It is already a common consensus that regular practice of physical exercise, that is planned, structured, and repetitive, influences personal health by altering the metabolic state and the immune system. However, the role of distinct metabolic processes responsible for maintaining metabolic balance during physical exercise in PBMCs is not fully understood. Furthermore, a complete dose-response analysis between different exercise protocols and biomarkers capable of predicting physical performance needs to be better elucidated. The absence of published reviews on this topic compromises the understanding of the crosstalk between the metabolic adaptations of PBMCs and exercise-induced changes in the immune system. Given the above, this review highlights the main findings in the literature involving the responses of PBMCs in the inflammatory/oxidative stress induced by physical exercise. The present review also highlights how distinct phenotypes and functional diversity of PBMCs make these cells an accessible alternative for assessing exercise-induced metabolic adaptations.
Collapse
|
3
|
Moderate-intensity functional training improves mitochondrial capability and redox state in peripheral blood mononuclear cells of metabolic syndrome women. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-020-00657-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
4
|
Raven PB, Young BE, Fadel PJ. Arterial Baroreflex Resetting During Exercise in Humans: Underlying Signaling Mechanisms. Exerc Sport Sci Rev 2020; 47:129-141. [PMID: 30921029 DOI: 10.1249/jes.0000000000000190] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The arterial baroreflex (ABR) resets during exercise in an intensity-dependent manner to operate around a higher blood pressure with maintained sensitivity. This review provides a historical perspective of ABR resetting and the involvement of other neural reflexes in mediating exercise resetting. Furthermore, we discuss potential underlying signaling mechanisms that may contribute to exercise ABR resetting in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Peter B Raven
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth
| | - Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX
| |
Collapse
|
5
|
Tryfidou DV, McClean C, Nikolaidis MG, Davison GW. DNA Damage Following Acute Aerobic Exercise: A Systematic Review and Meta-analysis. Sports Med 2020; 50:103-127. [PMID: 31529301 PMCID: PMC6942015 DOI: 10.1007/s40279-019-01181-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Exercise is widely recognised for its health enhancing benefits. Despite this, an overproduction of reactive oxygen and nitrogen species (RONS), outstripping antioxidant defence mechanisms, can lead to a state of (chronic) oxidative stress. DNA is a vulnerable target of RONS attack and, if left unrepaired, DNA damage may cause genetic instability. OBJECTIVE This meta-analysis aimed to systematically investigate and assess the overall effect of studies reporting DNA damage following acute aerobic exercise. METHODS Web of Science, PubMed, MEDLINE, EMBASE, and Scopus were searched until April 2019. Outcomes included (1) multiple time-points (TPs) of measuring DNA damage post-exercise, (2) two different quantification methods (comet assay and 8-oxo-2'-deoxyguanosine; 8-OHdG), and (3) protocols of high intensity (≥ 75% of maximum rate of oxygen consumption; VO2-max) and long distance (≥ 42 km). RESULTS Literature search identified 4316 non-duplicate records of which 35 studies were included in the meta-analysis. The evidence was strong, showcasing an increase in DNA damage immediately following acute aerobic exercise with a large-effect size at TP 0 (0 h) (SMD = 0.875; 95% CI 0.5, 1.25; p < 0.05). When comparing between comet assay and 8-OHdG at TP 0, a significant difference was observed only when using the comet assay. Finally, when isolating protocols of long-distance and high-intensity exercise, increased DNA damage was only observed in the latter. (SMD = 0.48; 95% CI - 0.16, 1.03; p = 0.15 and SMD = 1.18; 95% CI 0.71, 1.65; p < 0.05 respectively). CONCLUSIONS A substantial increase in DNA damage occurs immediately following acute aerobic exercise. This increase remains significant between 2 h and 1 day, but not within 5-28 days post-exercise. Such an increase was not observed in protocols of a long-distance. The relationship between exercise and DNA damage may be explained through the hormesis theory, which is somewhat one-dimensional, and thus limited. The hormesis theory describes how exercise modulates any advantageous or harmful effects mediated through RONS, by increasing DNA oxidation between the two end-points of the curve: physical inactivity and overtraining. We propose a more intricate approach to explain this relationship: a multi-dimensional model, to develop a better understanding of the complexity of the relationship between DNA integrity and exercise.
Collapse
Affiliation(s)
- Despoina V Tryfidou
- Sport and Exercise Sciences Research Institute, Ulster University, Shore Road, Newtownabbey, Northern Ireland, UK
| | - Conor McClean
- Sport and Exercise Sciences Research Institute, Ulster University, Shore Road, Newtownabbey, Northern Ireland, UK
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Gareth W Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Shore Road, Newtownabbey, Northern Ireland, UK.
| |
Collapse
|
6
|
Moreno-Villanueva M, Kramer A, Hammes T, Venegas-Carro M, Thumm P, Bürkle A, Gruber M. Influence of Acute Exercise on DNA Repair and PARP Activity before and after Irradiation in Lymphocytes from Trained and Untrained Individuals. Int J Mol Sci 2019; 20:E2999. [PMID: 31248182 PMCID: PMC6628277 DOI: 10.3390/ijms20122999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023] Open
Abstract
Several studies indicate that acute exercise induces DNA damage, whereas regular exercise increases DNA repair kinetics. Although the molecular mechanisms are not completely understood, the induction of endogenous reactive oxygen species (ROS) during acute exhaustive exercise due to metabolic processes might be responsible for the observed DNA damage, while an adaptive increase in antioxidant capacity due to regular physical activity seems to play an important protective role. However, the protective effect of physical activity on exogenously induced DNA damage in human immune cells has been poorly investigated. We asked the question whether individuals with a high aerobic capacity would have an enhanced response to radiation-induced DNA damage. Immune cells are highly sensitive to radiation and exercise affects lymphocyte dynamics and immune function. Therefore, we measured endogenous and radiation-induced DNA strand breaks and poly (ADP-ribose) polymerase-1 (PARP1) activity in peripheral blood mononuclear cells (PBMCs) from endurance-trained (maximum rate of oxygen consumption measured during incremental exercise V'O2max > 55 mL/min/kg) and untrained (V'O2max < 45 mL/min/kg) young healthy male volunteers before and after exhaustive exercise. Our results indicate that: (i) acute exercise induces DNA strand breaks in lymphocytes only in untrained individuals, (ii) following acute exercise, trained individuals repaired radiation-induced DNA strand breaks faster than untrained individuals, and (iii) trained subjects retained a higher level of radiation-induced PARP1 activity after acute exercise. The results of the present study indicate that increased aerobic fitness can protect immune cells against radiation-induced DNA strand breaks.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany.
| | - Andreas Kramer
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany.
| | - Tabea Hammes
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Maria Venegas-Carro
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany.
| | - Patrick Thumm
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
7
|
Cury-Boaventura MF, Gorjão R, de Moura NR, Santos VC, Bortolon JR, Murata GM, Borges LDS, Momesso CM, Dermargos A, Pithon-Curi TC, Hatanaka E. The Effect of a Competitive Futsal Match on T Lymphocyte Surface Receptor Signaling and Functions. Front Physiol 2018; 9:202. [PMID: 29599721 PMCID: PMC5862818 DOI: 10.3389/fphys.2018.00202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/23/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, the lymphocyte activation status (surface expression of CD95, CD28, CD25, and CTLA-4), lymphocyte number, lymphocyte subpopulations, lymphocyte necrosis and/or apoptosis, and lymphocyte release of reactive oxygen species (ROS) were investigated in blood samples from 16 futsal athletes before and immediately following a competitive match. Lymphocytes were isolated from the blood samples, and the cellular parameters were assessed by flow cytometry. The futsal match induced lymphocytosis and lymphocyte apoptosis, as indicated by phosphatidylserine externalization, CD95 expression, and DNA fragmentation. Additionally, the competitive match induced the necrotic death of lymphocytes. No differences in the percentage of CD4+ and CD8+ T cells or in the T-helper/suppressor profile between before and immediately after the match were observed. Additionally, after the futsal match, the CD95 and CD28 expression levels were decreased, and the lymphocytes spontaneously released higher levels of ROS. Regardless of the origin, the situation-specific knowledge of lymphocyte behavior obtained herein may facilitate the design of strategies to control the processes that result in infection and tissue injury and that subsequently decrease athletic performance.
Collapse
Affiliation(s)
- Maria F Cury-Boaventura
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Renata Gorjão
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Nivaldo R de Moura
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Vinicius C Santos
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - José R Bortolon
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Gilson M Murata
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Leandro da Silva Borges
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - César M Momesso
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | | | - Tania C Pithon-Curi
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Elaine Hatanaka
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
8
|
Asimakos A, Toumpanakis D, Karatza MH, Vasileiou S, Katsaounou P, Mastora Z, Vassilakopoulos T. Immune cell response to strenuous resistive breathing: comparison with whole body exercise and the effects of antioxidants. Int J Chron Obstruct Pulmon Dis 2018; 13:529-545. [PMID: 29445271 PMCID: PMC5808692 DOI: 10.2147/copd.s154533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background/hypothesis Whole body exercise (WBE) changes lymphocyte subset percentages in peripheral blood. Resistive breathing, a hallmark of diseases of airway obstruction, is a form of exercise for the inspiratory muscles. Strenuous muscle contractions induce oxidative stress that may mediate immune alterations following exercise. We hypothesized that inspiratory resistive breathing (IRB) alters peripheral blood lymphocyte subsets and that oxidative stress mediates lymphocyte subpopulation alterations following both WBE and IRB. Patients and methods Six healthy nonathletes performed two WBE and two IRB sessions for 45 minutes at 70% of VO2 maximum and 70% of maximum inspiratory pressure (Pimax), respectively, before and after the administration of antioxidants (vitamins E, A, and C for 75 days, allopurinol for 30 days, and N-acetylcysteine for 3 days). Blood was drawn at baseline, at the end of each session, and 2 hours into recovery. Lymphocyte subsets were determined by flow cytometry. Results Before antioxidant supplementation at both WBE end and IRB end, the natural killer cell percentage increased, the T helper cell (CD3+ CD4+) percentage was reduced, and the CD4/CD8 ratio was depressed, a response which was abolished by antioxidants only after IRB. Furthermore, at IRB end, antioxidants promoted CD8+ CD38+ and blunted cytotoxic T-cell percentage increase. CD8+ CD45RA+ cell percentage changes were blunted after antioxidant supplementation in both WBE and IRB. Conclusion We conclude that IRB produces (as WBE) changes in peripheral blood lymphocyte subsets and that oxidative stress is a major stimulus predominantly for IRB-induced lymphocyte subset alterations.
Collapse
Affiliation(s)
- Andreas Asimakos
- GP Livanos and M Simou Laboratories, Thorax Foundation.,Critical Care Department and Pulmonary Unit, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens
| | - Dimitrios Toumpanakis
- GP Livanos and M Simou Laboratories, Thorax Foundation.,Critical Care Department and Pulmonary Unit, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens
| | | | | | - Paraskevi Katsaounou
- GP Livanos and M Simou Laboratories, Thorax Foundation.,Critical Care Department and Pulmonary Unit, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens
| | - Zafeiria Mastora
- GP Livanos and M Simou Laboratories, Thorax Foundation.,Critical Care Department and Pulmonary Unit, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens
| | - Theodoros Vassilakopoulos
- GP Livanos and M Simou Laboratories, Thorax Foundation.,Critical Care Department and Pulmonary Unit, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens.,3rd Department of Critical Care Medicine, Evgenideion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Morabito C, Lanuti P, Caprara GA, Guarnieri S, Verratti V, Ricci G, Catizone A, Marchisio M, Fanò-Illic G, Mariggiò MA. Responses of peripheral blood mononuclear cells to moderate exercise and hypoxia. Scand J Med Sci Sports 2015; 26:1188-99. [PMID: 26432186 DOI: 10.1111/sms.12557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to analyze the physiological features of peripheral blood mononuclear cells (PBMCs) isolated from healthy female trekkers before and after physical activity carried out under both normoxia (low altitude, < 2000 m a.s.l.) and hypobaric hypoxia (high altitude, > 3700 m a.s.l.). The experimental design was to differentiate effects induced by exercise and those related to external environmental conditions. PBMCs were isolated from seven female subjects before and after each training period. The PBMCs were phenotypically and functionally characterized using fluorimetric and densitometric analyses, to determine cellular activation, and their intracellular Ca(2+) levels and oxidative status. After a period of normoxic physical exercise, the PBMCs showed an increase in fully activated T lymphocytes (CD3(+) CD69(+) ) and a reduction in intracellular Ca(2+) levels. On the other hand, with physical exercise performed under hypobaric hypoxia, there was a reduction in T lymphocytes and an increase in nonactivated B lymphocytes, accompanied by a reduction in O2 (-) levels in the mitochondria. These outcomes reveal that in women, low- to moderate-intensity aerobic trekking induces CD69 T cell activation and promotes anti-stress effects on the high-altitude-induced impairment of the immune responses and the oxidative balance.
Collapse
Affiliation(s)
- C Morabito
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - P Lanuti
- Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - G A Caprara
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - S Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - V Verratti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - G Ricci
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - A Catizone
- Section of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic and Orthopaedic Medicine, "Sapienza" University of Rome, Rome, Italy
| | - M Marchisio
- Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - G Fanò-Illic
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - M A Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. .,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy.
| |
Collapse
|
10
|
An active lifestyle induces positive antioxidant enzyme modulation in peripheral blood mononuclear cells of overweight/obese postmenopausal women. Life Sci 2014; 121:152-7. [PMID: 25497076 DOI: 10.1016/j.lfs.2014.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 01/28/2023]
Abstract
AIMS The aim of this study was to investigate the effects of an active lifestyle on mitochondrial functioning, viability, bioenergetics, and redox status markers in peripheral blood mononuclear cells (PBMC) of overweight/ obese postmenopausal women. MATERIALS AND METHODS We performed a cross-sectional study with postmenopausal women aged 45–64 years and body mass index N 25 kg/m2, divided into physically active (n = 23) and sedentary (n = 12) groups. Mitochondria functioning and viability, bioenergetics and redox status parameters were assessed in PBMC with spectrophotometric and fluorometric assays. KEY FINDINGS No differences were found in the enzyme activity of complexes I and II of the electron transport chain (ETC), mitochondrial superoxide dismutase (MnSOD) activity, methyl-tetrazolium reduction levels and reduced glutathione and oxidized glutathione levels between the groups. However, the physically active group presented higher levels of reactive oxygen species (ROS) (P= 0.04) and increased catalase (CAT) (P= 0.029), total (P= 0.011) and cytosolic SOD (CuZnSOD) (P= 0.009) activities. SIGNIFICANCE An active lifestyle that includes aerobic exercise for at least 30 min, three times per week may improve antioxidant enzyme activities in PBMC in overweight/obese postmenopausal women, without changes in the activity of the ETC enzymes. However, this low intensity physical activity is not able to induce relevant mitochondrial adaptations.
Collapse
|
11
|
Development of an Antioxidant Phytoextract of Lantana grisebachii with Lymphoprotective Activity against In Vitro Arsenic Toxicity. Adv Pharmacol Sci 2014; 2014:416761. [PMID: 25002868 PMCID: PMC4070537 DOI: 10.1155/2014/416761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/05/2014] [Accepted: 05/16/2014] [Indexed: 12/02/2022] Open
Abstract
Phytochemicals have been presumed to possess prophylactic and curative properties in several pathologies, such as arsenic- (As-) induced immunosuppression. Our aim was to discover a lymphoprotective extract from Lantana grisebachii Stuck. (Verbenaceae) (LG). We assessed its bioactivity and chemical composition using cell-based assays. Fractions produced from a hexane extract acutely induced nitrite formation in T-activated cell cultures (P < 0.0001). Water extraction released a fraction lacking nitrite inducing activity in both lymphocyte types. Aqueous LG was found to be safe in proliferated and proliferating cells. The infusion-derived extract presented better antioxidant capacity in proportion to phenolic amount in lymphocytes (infusive LG-1i at 100 μg/mL), which protected them against in vitro As-induced lymphotoxicity (P < 0.0001). This infusive LG phytoextract contained 10.23 ± 0.43 mg/g of phenolics, with 58.46% being flavonoids. Among the phenolics, the only predominant compound was 0.723 mg of chlorogenic acid per gram of dry plant, in addition to 10 unknown minor compounds. A fatty acid profile was assessed. It contained one-third of saturated fatty acids, one-third of ω9, followed by ω6 (~24%) and ω3 (~4%), and scarce ω7. Summing up, L. grisebachii was a source of bioactive and lymphoprotective compounds, which could counteract As-toxicity. This supports its phytomedical use and research in order to reduce As-related dysfunctions.
Collapse
|
12
|
Simpson RJ, Lowder TW, Spielmann G, Bigley AB, LaVoy EC, Kunz H. Exercise and the aging immune system. Ageing Res Rev 2012; 11:404-20. [PMID: 22465452 DOI: 10.1016/j.arr.2012.03.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/26/2012] [Accepted: 03/01/2012] [Indexed: 02/07/2023]
Abstract
Aging is associated with a decline in the normal functioning of the immune system that is described by the canopy term "immunosenescence". This contributes to poorer vaccine responses and the increased incidence of infection and malignancy seen in the elderly. Regular exercise has been associated with enhanced vaccination responses, lower numbers of exhausted/senescent T-cells, increased T-cell proliferative capacity, lower circulatory levels of inflammatory cytokines ("inflamm-aging"), increased neutrophil phagocytic activity, lowered inflammatory response to bacterial challenge, greater NK-cell cytotoxic activity and longer leukocyte telomere lengths in aging humans, all of which indicate that habitual exercise is capable of regulating the immune system and delaying the onset of immunosenescence. This contention is supported by the majority of animal studies that report improved immune responses and outcomes to viral infections and malignancies due to exercise training. However, whether or not exercise can reverse, as well as prevent, immunosenescence is a contentious issue, particularly because most longitudinal exercise training studies do not report the same positive effects of exercise on immunity that have been widely reported in studies with a cross-sectional design. In this review, we summarize some of the known effects of exercise on immunosenescence, discuss avenues for future research, and provide potential mechanisms by which exercise may help rejuvinate the aging immune system.
Collapse
|
13
|
Schild L, Cotte T, Keilhoff G, Brödemann R. Preconditioning of brain slices against hypoxia induced injury by a Gynostemma pentaphyllum extract--stimulation of anti-oxidative enzyme expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:812-818. [PMID: 22516894 DOI: 10.1016/j.phymed.2012.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/01/2012] [Accepted: 03/10/2012] [Indexed: 05/31/2023]
Abstract
A short period of hypoxia/hypoglycaemia (oxygen and glucose deprivation, OGD) induced by perfusion with O(2)/glucose-free medium caused immediate loss and incomplete restoration of evoked field potentials in the CA1 region of transverse hippocampus slices. OGD-dependent decrease in evoked field potentials can be prevented by a proceeding short OGD event (preconditioning). We report about a study investigating the effect of an ethanolic Gynostemma pentaphyllum extract on evoked field potentials when administered before the OGD episode. Using this procedure, the extract completely protected the cells of the slices from functional injury. In an astroglia rich cell culture the ethanolic Gynostemma pentaphyllum extract caused within 48 h of cultivation increased protein and activity levels of the anti-oxidative enzymes manganese superoxide dismutase (Mn-SOD) and glutathione peroxidase (GPx). Consequently, the cellular H(2)O(2) concentration remained at a low level. These data suggest that the Gynostemma pentaphyllum-mediated increase in antioxidative enzyme activities may contribute to the protection of transverse hippocampus slices from OGD induced functional injury. Our results demonstrate that the prophylactic administration of the ethanolic extract from Gynostemma pentaphyllum has a high potential to protect from ischemia/reperfusion injury.
Collapse
Affiliation(s)
- L Schild
- Department of Pathological Biochemistry, Otto-von-Guericke-University, Magdeburg D-39120, Germany.
| | | | | | | |
Collapse
|
14
|
Analysis of radicals and radical reaction products in cell signalling and biomolecular damage: the long hard road to gold-standard measures. Biochem Soc Trans 2012; 39:1217-20. [PMID: 21936792 DOI: 10.1042/bst0391217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The field of free radical biology and medicine continues to move at a tremendous pace, with a constant flow of ground-breaking discoveries. The following collection of papers in this issue of Biochemical Society Transactions highlights several key areas of topical interest, including the crucial role of validated measurements of radicals and reactive oxygen species in underpinning nearly all research in the field, the important advances being made as a result of the overlap of free radical research with the reinvigorated field of lipidomics (driven in part by innovations in MS-based analysis), the acceleration of new insights into the role of oxidative protein modifications (particularly to cysteine residues) in modulating cell signalling, and the effects of free radicals on the functions of mitochondria, extracellular matrix and the immune system. In the present article, we provide a brief overview of these research areas, but, throughout this discussion, it must be remembered that it is the availability of reliable analytical methodologies that will be a key factor in facilitating continuing developments in this exciting research area.
Collapse
|