1
|
Spatial sequestration of misfolded proteins in neurodegenerative diseases. Biochem Soc Trans 2022; 50:759-771. [PMID: 35311889 DOI: 10.1042/bst20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
Abstract
Properly folded, functional proteins are essential for cell health. Cells sustain protein homeostasis, or proteostasis, via protein quality control (PQC) mechanisms. It is currently hypothesized that a breakdown in proteostasis during ageing leads to the accumulation of protein aggregates in the cell and disease. Sequestration of misfolded proteins into PQC compartments represents one branch of the PQC network. In neurodegenerative diseases, certain proteins form abnormal protein deposits. Which PQC compartments house misfolded proteins associated with neurodegenerative diseases is still being investigated. It remains unclear if sequestration of these misfolded proteins is toxic or protective to the cell. Here, we review the current knowledge on various PQC compartments that form in the cell, the kinds of protein aggregates found in neurodegenerative diseases, and what is known about their sequestration. Understanding how protein sequestration occurs can shed light on why aggregates are toxic to the cell and are linked to neurodegenerative diseases like Huntington's, Alzheimer's, and Parkinson's diseases.
Collapse
|
2
|
Gholkar AA, Schmollinger S, Velasquez EF, Lo YC, Cohn W, Capri J, Dharmarajan H, Deardorff WJ, Gao LW, Abdusamad M, Whitelegge JP, Torres JZ. Regulation of Iron Homeostasis through Parkin-Mediated Lactoferrin Ubiquitylation. Biochemistry 2020; 59:2916-2921. [PMID: 32786404 PMCID: PMC7803182 DOI: 10.1021/acs.biochem.0c00504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Somatic mutations that perturb Parkin ubiquitin ligase activity and the misregulation of iron homeostasis have both been linked to Parkinson's disease. Lactotransferrin (LTF) is a member of the family of transferrin iron binding proteins that regulate iron homeostasis, and increased levels of LTF and its receptor have been observed in neurodegenerative disorders like Parkinson's disease. Here, we report that Parkin binds to LTF and ubiquitylates LTF to influence iron homeostasis. Parkin-dependent ubiquitylation of LTF occurred most often on lysines (K) 182 and 649. Substitution of K182 or K649 with alanine (K182A or K649A, respectively) led to a decrease in the level of LTF ubiquitylation, and substitution at both sites led to a major decrease in the level of LTF ubiquitylation. Importantly, Parkin-mediated ubiquitylation of LTF was critical for regulating intracellular iron levels as overexpression of LTF ubiquitylation site point mutants (K649A or K182A/K649A) led to an increase in intracellular iron levels measured by ICP-MS/MS. Consistently, RNAi-mediated depletion of Parkin led to an increase in intracellular iron levels in contrast to overexpression of Parkin that led to a decrease in intracellular iron levels. Together, these results indicate that Parkin binds to and ubiquitylates LTF to regulate intracellular iron levels. These results expand our understanding of the cellular processes that are perturbed when Parkin activity is disrupted and more broadly the mechanisms that contribute to Parkinson's disease.
Collapse
Affiliation(s)
- Ankur A. Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Stefan Schmollinger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Erick F. Velasquez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yu-Chen Lo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, CA 90095, USA
| | - Joseph Capri
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, CA 90095, USA
| | - Harish Dharmarajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - William J. Deardorff
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Lucy W. Gao
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, CA 90095, USA
| | - Mai Abdusamad
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Fruhmann G, Marchal C, Vignaud H, Verduyckt M, Talarek N, De Virgilio C, Winderickx J, Cullin C. The Impact of ESCRT on Aβ 1-42 Induced Membrane Lesions in a Yeast Model for Alzheimer's Disease. Front Mol Neurosci 2018; 11:406. [PMID: 30455629 PMCID: PMC6230623 DOI: 10.3389/fnmol.2018.00406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Aβ metabolism plays a pivotal role in Alzheimer’s disease. Here, we used a yeast model to monitor Aβ42 toxicity when entering the secretory pathway and demonstrate that processing in, and exit from the endoplasmic reticulum (ER) is required to unleash the full Aβ42 toxic potential. Consistent with previously reported data, our data suggests that Aβ42 interacts with mitochondria, thereby enhancing formation of reactive oxygen species and eventually leading to cell demise. We used our model to search for genes that modulate this deleterious effect, either by reducing or enhancing Aβ42 toxicity, based on screening of the yeast knockout collection. This revealed a reduced Aβ42 toxicity not only in strains hampered in ER-Golgi traffic and mitochondrial functioning but also in strains lacking genes connected to the cell cycle and the DNA replication stress response. On the other hand, increased Aβ42 toxicity was observed in strains affected in the actin cytoskeleton organization, endocytosis and the formation of multivesicular bodies, including key factors of the ESCRT machinery. Since the latter was shown to be required for the repair of membrane lesions in mammalian systems, we studied this aspect in more detail in our yeast model. Our data demonstrated that Aβ42 heavily disturbed the plasma membrane integrity in a strain lacking the ESCRT-III accessory factor Bro1, a phenotype that came along with a severe growth defect and enhanced loading of lipid droplets. Thus, it appears that also in yeast ESCRT is required for membrane repair, thereby counteracting one of the deleterious effects induced by the expression of Aβ42. Combined, our studies once more validated the use of yeast as a model to investigate fundamental mechanisms underlying the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Christelle Marchal
- Institut de Chimie et Biologie des Membranes et des Nano-objets, University of Bordeaux, CNRS UMR 5248, Pessac, France
| | - Hélène Vignaud
- Institut de Chimie et Biologie des Membranes et des Nano-objets, University of Bordeaux, CNRS UMR 5248, Pessac, France
| | | | - Nicolas Talarek
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | | | | | - Christophe Cullin
- Institut de Chimie et Biologie des Membranes et des Nano-objets, University of Bordeaux, CNRS UMR 5248, Pessac, France
| |
Collapse
|
4
|
Pouchucq L, Lobos-Ruiz P, Araya G, Valpuesta JM, Monasterio O. The chaperonin CCT promotes the formation of fibrillar aggregates of γ-tubulin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:519-526. [PMID: 29339327 DOI: 10.1016/j.bbapap.2018.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/29/2022]
Abstract
The type II chaperonin CCT is involved in the prevention of the pathogenesis of numerous human misfolding disorders, as it sequesters misfolded proteins, blocks their aggregation and helps them to achieve their native state. In addition, it has been reported that CCT can prevent the toxicity of non-client amyloidogenic proteins by the induction of non-toxic aggregates, leading to new insight in chaperonin function as an aggregate remodeling factor. Here we add experimental evidence to this alternative mechanism by which CCT actively promotes the formation of conformationally different aggregates of γ-tubulin, a non-amyloidogenic CCT client protein, which are mediated by specific CCT-γ-tubulin interactions. The in vitro-induced aggregates were in some cases long fiber polymers, which compete with the amorphous aggregates. Direct injection of unfolded purified γ-tubulin into single-cell zebra fish embryos allowed us to relate this in vitro activity with the in vivo formation of intracellular aggregates. Injection of a CCT-binding deficient γ-tubulin mutant dramatically diminished the size of the intracellular aggregates, increasing the toxicity of the misfolded protein. These results point to CCT having a role in the remodeling of aggregates, constituting one of its many functions in cellular proteostasis.
Collapse
Affiliation(s)
- Luis Pouchucq
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Laboratorio de Biotecnología Vegetal Ambiental, Departamento de Biotecnología, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Pablo Lobos-Ruiz
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gissela Araya
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - José María Valpuesta
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
6
|
Fruhmann G, Seynnaeve D, Zheng J, Ven K, Molenberghs S, Wilms T, Liu B, Winderickx J, Franssens V. Yeast buddies helping to unravel the complexity of neurodegenerative disorders. Mech Ageing Dev 2017; 161:288-305. [DOI: 10.1016/j.mad.2016.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022]
|
7
|
Zhao L, Yang Q, Zheng J, Zhu X, Hao X, Song J, Lebacq T, Franssens V, Winderickx J, Nystrom T, Liu B. A genome-wide imaging-based screening to identify genes involved in synphilin-1 inclusion formation in Saccharomyces cerevisiae. Sci Rep 2016; 6:30134. [PMID: 27440388 PMCID: PMC4954962 DOI: 10.1038/srep30134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022] Open
Abstract
Synphilin-1 is a major component of Parkinson's disease (PD) inclusion bodies implicated in PD pathogenesis. However, the machinery controlling synphilin-1 inclusion formation remains unclear. Here, we investigated synphilin-1 inclusion formation using a systematic genome-wide, high-content imaging based screening approach (HCI) in the yeast Saccharomyces cerevisiae. By combining with a secondary screening for mutants showing significant changes on fluorescence signal intensity, we filtered out hits that significantly decreased the expression level of synphilin-1. We found 133 yeast genes that didn't affect synphilin-1 expression but that were required for the formation of synphilin-1 inclusions. Functional enrichment and physical interaction network analysis revealed these genes to encode for functions involved in cytoskeleton organization, histone modification, sister chromatid segregation, glycolipid biosynthetic process, DNA repair and replication. All hits were confirmed by conventional microscopy. Complementation assays were performed with a selected group of mutants, results indicated that the observed phenotypic changes in synphilin-1 inclusion formation were directly caused by the loss of corresponding genes of the deletion mutants. Further growth assays of these mutants showed a significant synthetic sick effect upon synphilin-1 expression, which supports the hypothesis that matured inclusions represent an end stage of several events meant to protect cells against the synphilin-1 cytotoxicity.
Collapse
Affiliation(s)
- Lei Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ju Zheng
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Xuefeng Zhu
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, S-405 30, Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| | - Jia Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Tom Lebacq
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Vanessa Franssens
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Thomas Nystrom
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| | - Beidong Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.,Department of Chemistry and Molecular Biology, University of Gothenburg, S-413 90, Göteborg, Sweden
| |
Collapse
|
8
|
Abstract
The yeast Saccharomyces cerevisiae, a unicellular eukaryotic model, has enabled major breakthroughs in our understanding of a plethora of cellular and molecular processes. Today, a 're-invention' of its use in fundamental and applied research is paving the way for a better understanding of the mechanisms causing neurodegeneration. The increasing emergence of neurodegenerative disorders is becoming more and more problematic in our ageing society. Most prevalent is Alzheimer's disease (AD), affecting more than 35 million people worldwide (Abbott, Nature 475, S2-S4, 2011) and causing an enormous burden on a personal and communal level. The disease is characterized by two major pathological hallmarks: extracellular amyloid plaques consisting mainly of deposits of amyloid β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs), consisting mainly of aggregates of hyperphosphorylated tau protein. Despite the huge importance of thoroughly understanding the underlying molecular mechanisms of neurodegeneration, progress has been slow. However, multiple complementary research methods are proving their value, particularly with the work done with S. cerevisiae, which combines well-established, fast genetic and molecular techniques with the ability to faithfully capture key molecular aspects of neurodegeneration. In this review chapter, we focus on the considerable progress made using S. cerevisiae as a model system for Alzheimer's disease.
Collapse
|
9
|
Ikonomov OC, Sbrissa D, Compton LM, Kumar R, Tisdale EJ, Chen X, Shisheva A. The Protein Complex of Neurodegeneration-related Phosphoinositide Phosphatase Sac3 and ArPIKfyve Binds the Lewy Body-associated Synphilin-1, Preventing Its Aggregation. J Biol Chem 2015; 290:28515-28529. [PMID: 26405034 DOI: 10.1074/jbc.m115.669929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/14/2022] Open
Abstract
The 5-phosphoinositide phosphatase Sac3, in which loss-of-function mutations are linked to neurodegenerative disorders, forms a stable cytosolic complex with the scaffolding protein ArPIKfyve. The ArPIKfyve-Sac3 heterodimer interacts with the phosphoinositide 5-kinase PIKfyve in a ubiquitous ternary complex that couples PtdIns(3,5)P2 synthesis with turnover at endosomal membranes, thereby regulating the housekeeping endocytic transport in eukaryotes. Neuron-specific associations of the ArPIKfyve-Sac3 heterodimer, which may shed light on the neuropathological mechanisms triggered by Sac3 dysfunction, are unknown. Here we conducted mass spectrometry analysis for brain-derived interactors of ArPIKfyve-Sac3 and unraveled the α-synuclein-interacting protein Synphilin-1 (Sph1) as a new component of the ArPIKfyve-Sac3 complex. Sph1, a predominantly neuronal protein that facilitates aggregation of α-synuclein, is a major component of Lewy body inclusions in neurodegenerative α-synucleinopathies. Modulations in ArPIKfyve/Sac3 protein levels by RNA silencing or overexpression in several mammalian cell lines, including human neuronal SH-SY5Y or primary mouse cortical neurons, revealed that the ArPIKfyve-Sac3 complex specifically altered the aggregation properties of Sph1-GFP. This effect required an active Sac3 phosphatase and proceeded through mechanisms that involved increased Sph1-GFP partitioning into the cytosol and removal of Sph1-GFP aggregates by basal autophagy but not by the proteasomal system. If uncoupled from ArPIKfyve elevation, overexpressed Sac3 readily aggregated, markedly enhancing the aggregation potential of Sph1-GFP. These data identify a novel role of the ArPIKfyve-Sac3 complex in the mechanisms controlling aggregate formation of Sph1 and suggest that Sac3 protein deficiency or overproduction may facilitate aggregation of aggregation-prone proteins, thereby precipitating the onset of multiple neuronal disorders.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Diego Sbrissa
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Lauren M Compton
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Rita Kumar
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201; Departments of Emergency Medicine, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Ellen J Tisdale
- Departments of Pharmacology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Xuequn Chen
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Assia Shisheva
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201.
| |
Collapse
|
10
|
Abstract
Baseline physiological function of the mammalian heart is under the constant threat of environmental or intrinsic pathological insults. Cardiomyocyte proteins are thus subject to unremitting pressure to function optimally, and this depends on them assuming and maintaining proper conformation. This review explores the multiple defenses a cell may use for its proteins to assume and maintain correct protein folding and conformation. There are multiple quality control mechanisms to ensure that nascent polypeptides are properly folded and mature proteins maintain their functional conformation. When proteins do misfold, either in the face of normal or pathological stimuli or because of intrinsic mutations or post-translational modifications, they must either be refolded correctly or recycled. In the absence of these corrective processes, they may become toxic to the cell. Herein, we explore some of the underlying mechanisms that lead to proteotoxicity. The continued presence and chronic accumulation of misfolded or unfolded proteins can be disastrous in cardiomyocytes because these misfolded proteins can lead to aggregation or the formation of soluble peptides that are proteotoxic. This in turn leads to compromised protein quality control and precipitating a downward spiral of the cell's ability to maintain protein homeostasis. Some underlying mechanisms are discussed and the therapeutic potential of interfering with proteotoxicity in the heart is explored.
Collapse
Affiliation(s)
- Patrick M McLendon
- From the Department of Pediatrics, Children's Hospital Research Foundation, Cincinnati, OH
| | - Jeffrey Robbins
- From the Department of Pediatrics, Children's Hospital Research Foundation, Cincinnati, OH.
| |
Collapse
|
11
|
Amen T, Kaganovich D. Dynamic droplets: the role of cytoplasmic inclusions in stress, function, and disease. Cell Mol Life Sci 2015; 72:401-415. [PMID: 25283146 PMCID: PMC11113435 DOI: 10.1007/s00018-014-1740-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases and other proteinopathies constitute a class of several dozen illnesses etiologically linked to pathological protein misfolding and aggregation. Because of this strong association with disease pathology, cell death, and aging, accumulation of proteins in aggregates or aggregation-associated structures (inclusions) has come to be regarded by many as a deleterious process, to be avoided if possible. Recent work has led us to see inclusion structures and disordered aggregate-like protein mixtures (which we call dynamic droplets) in a new light: not necessarily as a result of a pathological breakdown of cellular order, but as an elaborate cellular architecture regulating function and stress response. In this review, we discuss what is currently known about the role of inclusion structures in cellular homeostasis, stress response, toxicity, and disease. We will focus on possible mechanisms of aggregate toxicity, in contrast to the homeostatic function of several inclusion structures.
Collapse
Affiliation(s)
- Triana Amen
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Alexander Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Kaganovich
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
12
|
Mas S, Gassó P, Parellada E, Bernardo M, Lafuente A. Network analysis of gene expression in peripheral blood identifies mTOR and NF-κB pathways involved in antipsychotic-induced extrapyramidal symptoms. THE PHARMACOGENOMICS JOURNAL 2015; 15:452-60. [PMID: 25623440 DOI: 10.1038/tpj.2014.84] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/22/2014] [Accepted: 11/05/2014] [Indexed: 02/06/2023]
Abstract
To identify the candidate genes for pharmacogenetic studies of antipsychotic (AP)-induced extrapyramidal symptoms (EPS), we propose a systems biology analytical approach, based on protein-protein interaction network construction and functional annotation analysis, of changes in gene expression (Human Genome U219 Array Plate) induced by treatment with risperidone or paliperidone in peripheral blood. 12 AP-naïve patients with first-episode psychosis participated in the present study. Our analysis revealed that, in response to AP treatment, constructed networks were enriched for different biological processes in patients without EPS (ubiquitination, protein folding and adenosine triphosphate (ATP) metabolism) compared with those presenting EPS (insulin receptor signaling, lipid modification, regulation of autophagy and immune response). Moreover, the observed differences also involved specific pathways, such as anaphase promoting complex /cdc20, prefoldin/CCT/triC and ATP synthesis in no-EPS patients, and mammalian target of rapamycin and NF-κB kinases in patients with EPS. Our results showing different patterns of gene expression in EPS patients, offer new and valuable markers for pharmacogenetic studies.
Collapse
Affiliation(s)
- S Mas
- Department Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - P Gassó
- Department Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - E Parellada
- Department Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.,Clinic Schizophrenia program, Psychiatry service, Hospital Clínic de Barcelona, Barcelona, Spain
| | - M Bernardo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.,Clinic Schizophrenia program, Psychiatry service, Hospital Clínic de Barcelona, Barcelona, Spain.,Department Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
| | - A Lafuente
- Department Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| |
Collapse
|
13
|
Song J, Yang Q, Yang J, Larsson L, Hao X, Zhu X, Malmgren-Hill S, Cvijovic M, Fernandez-Rodriguez J, Grantham J, Gustafsson CM, Liu B, Nyström T. Essential genetic interactors of SIR2 required for spatial sequestration and asymmetrical inheritance of protein aggregates. PLoS Genet 2014; 10:e1004539. [PMID: 25079602 PMCID: PMC4117435 DOI: 10.1371/journal.pgen.1004539] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/16/2014] [Indexed: 11/19/2022] Open
Abstract
Sir2 is a central regulator of yeast aging and its deficiency increases daughter cell inheritance of stress- and aging-induced misfolded proteins deposited in aggregates and inclusion bodies. Here, by quantifying traits predicted to affect aggregate inheritance in a passive manner, we found that a passive diffusion model cannot explain Sir2-dependent failures in mother-biased segregation of either the small aggregates formed by the misfolded Huntingtin, Htt103Q, disease protein or heat-induced Hsp104-associated aggregates. Instead, we found that the genetic interaction network of SIR2 comprises specific essential genes required for mother-biased segregation including those encoding components of the actin cytoskeleton, the actin-associated myosin V motor protein Myo2, and the actin organization protein calmodulin, Cmd1. Co-staining with Hsp104-GFP demonstrated that misfolded Htt103Q is sequestered into small aggregates, akin to stress foci formed upon heat stress, that fail to coalesce into inclusion bodies. Importantly, these Htt103Q foci, as well as the ATPase-defective Hsp104Y662A-associated structures previously shown to be stable stress foci, co-localized with Cmd1 and Myo2-enriched structures and super-resolution 3-D microscopy demonstrated that they are associated with actin cables. Moreover, we found that Hsp42 is required for formation of heat-induced Hsp104Y662A foci but not Htt103Q foci suggesting that the routes employed for foci formation are not identical. In addition to genes involved in actin-dependent processes, SIR2-interactors required for asymmetrical inheritance of Htt103Q and heat-induced aggregates encode essential sec genes involved in ER-to-Golgi trafficking/ER homeostasis.
Collapse
Affiliation(s)
- Jia Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Junsheng Yang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Lisa Larsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Xuefeng Zhu
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Sandra Malmgren-Hill
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Marija Cvijovic
- Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Claes M. Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
| | - Beidong Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- * E-mail:
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
14
|
Eletr ZM, Wilkinson KD. Regulation of proteolysis by human deubiquitinating enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:114-28. [PMID: 23845989 DOI: 10.1016/j.bbamcr.2013.06.027] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/07/2013] [Accepted: 06/25/2013] [Indexed: 01/26/2023]
Abstract
The post-translational attachment of one or several ubiquitin molecules to a protein generates a variety of targeting signals that are used in many different ways in the cell. Ubiquitination can alter the activity, localization, protein-protein interactions or stability of the targeted protein. Further, a very large number of proteins are subject to regulation by ubiquitin-dependent processes, meaning that virtually all cellular functions are impacted by these pathways. Nearly a hundred enzymes from five different gene families (the deubiquitinating enzymes or DUBs), reverse this modification by hydrolyzing the (iso)peptide bond tethering ubiquitin to itself or the target protein. Four of these families are thiol proteases and one is a metalloprotease. DUBs of the Ubiquitin C-terminal Hydrolase (UCH) family act on small molecule adducts of ubiquitin, process the ubiquitin proprotein, and trim ubiquitin from the distal end of a polyubiquitin chain. Ubiquitin Specific Proteases (USPs) tend to recognize and encounter their substrates by interaction of the variable regions of their sequence with the substrate protein directly, or with scaffolds or substrate adapters in multiprotein complexes. Ovarian Tumor (OTU) domain DUBs show remarkable specificity for different Ub chain linkages and may have evolved to recognize substrates on the basis of those linkages. The Josephin family of DUBs may specialize in distinguishing between polyubiquitin chains of different lengths. Finally, the JAB1/MPN+/MOV34 (JAMM) domain metalloproteases cleave the isopeptide bond near the attachment point of polyubiquitin and substrate, as well as being highly specific for the K63 poly-Ub linkage. These DUBs regulate proteolysis by: directly interacting with and co-regulating E3 ligases; altering the level of substrate ubiquitination; hydrolyzing or remodeling ubiquitinated and poly-ubiquitinated substrates; acting in specific locations in the cell and altering the localization of the target protein; and acting on proteasome bound substrates to facilitate or inhibit proteolysis. Thus, the scope and regulation of the ubiquitin pathway is very similar to that of phosphorylation, with the DUBs serving the same functions as the phosphatase. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Ziad M Eletr
- Department of Biochemistry, Emory University, Atlanta GA 30322, USA
| | | |
Collapse
|
15
|
The benefits of humanized yeast models to study Parkinson's disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:760629. [PMID: 23936613 PMCID: PMC3713309 DOI: 10.1155/2013/760629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/18/2013] [Indexed: 12/21/2022]
Abstract
Over the past decade, the baker's yeast Saccharomyces cerevisiae has proven to be a useful model system to investigate fundamental questions concerning the pathogenic role of human proteins in neurodegenerative diseases such as Parkinson's disease (PD). These so-called humanized yeast models for PD initially focused on α-synuclein, which plays a key role in the etiology of PD. Upon expression of this human protein in the baker's yeast Saccharomyces cerevisiae, the events leading to aggregation and the molecular mechanisms that result in cellular toxicity are faithfully reproduced. More recently, a similar model to study the presumed pathobiology of the α-synuclein interaction partner synphilin-1 has been established. In this review we will discuss recent advances using these humanized yeast models, pointing to new roles for cell wall integrity signaling, Ca2+ homeostasis, mitophagy, and the cytoskeleton.
Collapse
|
16
|
Cohen A, Ross L, Nachman I, Bar-Nun S. Aggregation of polyQ proteins is increased upon yeast aging and affected by Sir2 and Hsf1: novel quantitative biochemical and microscopic assays. PLoS One 2012; 7:e44785. [PMID: 22970306 PMCID: PMC3435303 DOI: 10.1371/journal.pone.0044785] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 08/13/2012] [Indexed: 11/18/2022] Open
Abstract
Aging-related neurodegenerative disorders, such as Parkinson's, Alzheimer's and Huntington's diseases, are characterized by accumulation of protein aggregates in distinct neuronal cells that eventually die. In Huntington's disease, the protein huntingtin forms aggregates, and the age of disease onset is inversely correlated to the length of the protein's poly-glutamine tract. Using quantitative assays to estimate microscopically and capture biochemically protein aggregates, here we study in Saccharomyces cerevisiae aging-related aggregation of GFP-tagged, huntingtin-derived proteins with different polyQ lengths. We find that the short 25Q protein never aggregates whereas the long 103Q version always aggregates. However, the mid-size 47Q protein is soluble in young logarithmically growing yeast but aggregates as the yeast cells enter the stationary phase and age, allowing us to plot an “aggregation timeline”. This aging-dependent aggregation was associated with increased cytotoxicity. We also show that two aging-related genes, SIR2 and HSF1, affect aggregation of the polyQ proteins. In Δsir2 strain the aging-dependent aggregation of the 47Q protein is aggravated, while overexpression of the transcription factor Hsf1 attenuates aggregation. Thus, the mid-size 47Q protein and our quantitative aggregation assays provide valuable tools to unravel the roles of genes and environmental conditions that affect aging-related aggregation.
Collapse
Affiliation(s)
- Aviv Cohen
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Liron Ross
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Iftach Nachman
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|