1
|
Hendershot LM, Buck TM, Brodsky JL. The Essential Functions of Molecular Chaperones and Folding Enzymes in Maintaining Endoplasmic Reticulum Homeostasis. J Mol Biol 2024; 436:168418. [PMID: 38143019 PMCID: PMC12015986 DOI: 10.1016/j.jmb.2023.168418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
It has been estimated that up to one-third of the proteins encoded by the human genome enter the endoplasmic reticulum (ER) as extended polypeptide chains where they undergo covalent modifications, fold into their native structures, and assemble into oligomeric protein complexes. The fidelity of these processes is critical to support organellar, cellular, and organismal health, and is perhaps best underscored by the growing number of disease-causing mutations that reduce the fidelity of protein biogenesis in the ER. To meet demands encountered by the diverse protein clientele that mature in the ER, this organelle is populated with a cadre of molecular chaperones that prevent protein aggregation, facilitate protein disulfide isomerization, and lower the activation energy barrier of cis-trans prolyl isomerization. Components of the lectin (glycan-binding) chaperone system also reside within the ER and play numerous roles during protein biogenesis. In addition, the ER houses multiple homologs of select chaperones that can recognize and act upon diverse peptide signatures. Moreover, redundancy helps ensure that folding-compromised substrates are unable to overwhelm essential ER-resident chaperones and enzymes. In contrast, the ER in higher eukaryotic cells possesses a single member of the Hsp70, Hsp90, and Hsp110 chaperone families, even though several homologs of these molecules reside in the cytoplasm. In this review, we discuss specific functions of the many factors that maintain ER quality control, highlight some of their interactions, and describe the vulnerabilities that arise from the absence of multiple members of some chaperone families.
Collapse
Affiliation(s)
- Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
2
|
Rohli KE, Boyer CK, Bearrows SC, Moyer MR, Elison WS, Bauchle CJ, Blom SE, Zhang J, Wang Y, Stephens SB. ER Redox Homeostasis Regulates Proinsulin Trafficking and Insulin Granule Formation in the Pancreatic Islet β-Cell. FUNCTION 2022; 3:zqac051. [PMID: 36325514 PMCID: PMC9614934 DOI: 10.1093/function/zqac051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023] Open
Abstract
Defects in the pancreatic β-cell's secretion system are well-described in type 2 diabetes (T2D) and include impaired proinsulin processing and a deficit in mature insulin-containing secretory granules; however, the cellular mechanisms underlying these defects remain poorly understood. To address this, we used an in situ fluorescent pulse-chase strategy to study proinsulin trafficking. We show that insulin granule formation and the appearance of nascent granules at the plasma membrane are decreased in rodent and cell culture models of prediabetes and hyperglycemia. Moreover, we link the defect in insulin granule formation to an early trafficking delay in endoplasmic reticulum (ER) export of proinsulin, which is independent of overt ER stress. Using a ratiometric redox sensor, we show that the ER becomes hyperoxidized in β-cells from a dietary model of rodent prediabetes and that addition of reducing equivalents restores ER export of proinsulin and insulin granule formation and partially restores β-cell function. Together, these data identify a critical role for the regulation of ER redox homeostasis in proinsulin trafficking and suggest that alterations in ER redox poise directly contribute to the decline in insulin granule production in T2D. This model highlights a critical link between alterations in ER redox and ER function with defects in proinsulin trafficking in T2D. Hyperoxidation of the ER lumen, shown as hydrogen peroxide, impairs proinsulin folding and disulfide bond formation that prevents efficient exit of proinsulin from the ER to the Golgi. This trafficking defect limits available proinsulin for the formation of insulin secretory granules during the development of T2D.
Collapse
Affiliation(s)
- Kristen E Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Shelby C Bearrows
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Marshall R Moyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Weston S Elison
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Casey J Bauchle
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48103, USA
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Fujii J. Ascorbate is a multifunctional micronutrient whose synthesis is lacking in primates. J Clin Biochem Nutr 2021; 69:1-15. [PMID: 34376908 PMCID: PMC8325764 DOI: 10.3164/jcbn.20-181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Ascorbate (vitamin C) is an essential micronutrient in primates, and exhibits multiple physiological functions. In addition to antioxidative action, ascorbate provides reducing power to α-ketoglutarate-dependent non-heme iron dioxygenases, such as prolyl hydroxylases. Demethylation of histones and DNA with the aid of ascorbate results in the reactivation of epigenetically silenced genes. Ascorbate and its oxidized form, dehydroascorbate, have attracted interest in terms of their roles in cancer therapy. The last step in the biosynthesis of ascorbate is catalyzed by l-gulono-γ-lactone oxidase whose gene Gulo is commonly mutated in all animals that do not synthesize ascorbate. One common explanation for this deficiency is based on the increased availability of ascorbate from foods. In fact, pathways for ascorbate synthesis and the detoxification of xenobiotics by glucuronate conjugation share the metabolic processes up to UDP-glucuronate, which prompts another hypothesis, namely, that ascorbate-incompetent animals might have developed stronger detoxification systems in return for their lack of ability to produce ascorbate, which would allow them to cope with their situation. Here, we overview recent advances in ascorbate research and propose that an enhanced glucuronate conjugation reaction may have applied positive selection pressure on ascorbate-incompetent animals, thus allowing them to dominate the animal kingdom.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
4
|
Jain P, Dvorkin-Gheva A, Mollen E, Malbeteau L, Xie M, Jessa F, Dhavarasa P, Chung S, Brown KR, Jang GH, Vora P, Notta F, Moffat J, Hedley D, Boutros PC, Wouters BG, Koritzinsky M. NOX4 links metabolic regulation in pancreatic cancer to endoplasmic reticulum redox vulnerability and dependence on PRDX4. SCIENCE ADVANCES 2021; 7:7/19/eabf7114. [PMID: 33962950 PMCID: PMC8104867 DOI: 10.1126/sciadv.abf7114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/18/2021] [Indexed: 05/02/2023]
Abstract
There is an urgent need to identify vulnerabilities in pancreatic ductal adenocarcinoma (PDAC). PDAC cells acquire metabolic changes that augment NADPH production and cytosolic redox homeostasis. Here, we show that high NADPH levels drive activity of NADPH oxidase 4 (NOX4) expressed in the endoplasmic reticulum (ER) membrane. NOX4 produces H2O2 metabolized by peroxiredoxin 4 (PRDX4) in the ER lumen. Using functional genomics and subsequent in vitro and in vivo validations, we find that PDAC cell lines with high NADPH levels are dependent on PRDX4 for their growth and survival. PRDX4 addiction is associated with increased reactive oxygen species, a DNA-PKcs-governed DNA damage response and radiosensitivity, which can be rescued by depletion of NOX4 or NADPH. Hence, this study has identified NOX4 as a protein that paradoxically converts the reducing power of the cytosol to an ER-specific oxidative stress vulnerability in PDAC that may be therapeutically exploited by targeting PRDX4.
Collapse
Affiliation(s)
- Pallavi Jain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anna Dvorkin-Gheva
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Erik Mollen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- University of Maastricht, Maastricht, Netherlands
| | - Lucie Malbeteau
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Fatima Jessa
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Piriththiv Dhavarasa
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephen Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kevin R Brown
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada
| | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Parth Vora
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Faiyaz Notta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David Hedley
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Departments of Human Genetics and Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bradly G Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Large yellow croaker peroxiredoxin IV protect cells against oxidative damage and apoptosis. Mol Immunol 2020; 127:150-156. [PMID: 32971402 DOI: 10.1016/j.molimm.2020.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/23/2022]
Abstract
Oxidative stress and inflammation lead to cell damage and are implicated in many disease states. High concentrations of hydrogen peroxide (H2O2) may mediate cells apoptosis by increasing intracellular reactive oxygen species (ROS) levels. In this study, we established a LYCK-PrxIV cell line (large yellow croaker head kidney cell line stably expressing peroxiredoxin IV). The level of nitric oxide (NO), superoxide anion and hydrogen peroxide (H2O2) in this LYCK-PrxIV cells were significantly lower than those in control cells of LYCK-pcDNA3.1 (LYCK cell line stably transfected by pcDNA3.1 vector). Additionally, when exposed to H2O2, cell apoptosis was significantly alleviated in LYCK-PrxIV than in control cells. Meanwhile, the ROS level and ATP content were maintained more stable in LYCK-PrxIV than in LYCK-pcDNA3.1. The over-expression of LcPrxIV in LYCK-PrxIV cells induced a declined mRNA expression of LcCXC, LcCC, LcIL-8 and LcTNF-α2, as well as an increase of LcIL-10 mRNA expression, when compared to LYCK-pcDNA3.1. On the other hand, the expression of chemokine LcCXC, LcCC and LcTNF-a2 increased in LYCK-pcDNA3.1 after H2O2 stimulation, while that of LcIL-8 and LcIL-10 decreased. The regualtion of gene expression in LYCK-PrxIV cells was almost the same as that in LYCK-pcDNA3.1, but the change fold was much more moderate. These results suggest that LcPrxIV may be an indispensable ROS scavenger protecting LYCK cells against oxidative damage as well as the subsequent apoptosis and inflammatory response, which provides a clue that LcPrxIV may be an assist in fish immune response.
Collapse
|
6
|
Yao W, Zhao H, Shi R, Li X, Li Y, Ke C, Liu J. Recombinant protein transduction domain-Cu/Zn superoxide dismutase alleviates bone cancer pain via peroxiredoxin 4 modulation and antioxidation. Biochem Biophys Res Commun 2017; 486:1143-1148. [PMID: 28391978 DOI: 10.1016/j.bbrc.2017.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 11/28/2022]
Abstract
Bone cancer pain (BCP) is a serious chronic clinical condition and reactive oxygen species (ROS) were considered to be involved in its development and persistency. Normally, superoxide dismutase (SOD) converts superoxide anions to hydrogen peroxide (H2O2) and H2O2 is then naturalized to be water by peroxiredoxin 4. We reported previously that recombinant protein transduction domain (PTD)-Cu/Zn SOD effectively scavenged excessive ROS and prevented cardiomyocytes from hypoxia-reoxygenation damage. However, whether PTD-Cu/Zn SOD would prevent BCP development is unknown. In the current study, we found that an implanted carcinoma in the rat tibia induced remarkable hyperalgesia, increased H2O2 levels and decreased SOD and peroxiredoxin 4 levels. After administration of recombinant PTD-Cu/Zn SOD to these tumor-burden rats, their hyperalgesia was significantly attenuated and peroxiredoxin 4 expression was significantly increased. In addition, an increased expression of N-methyl-d-aspartic acid (NMDA) receptors and a decreased expression of γ-aminobutyric acid (GABA) receptors in this cancer pain were prevented by PTD-Cu/Zn SOD administration or peroxiredoxin 4 overexpression. Our data suggested that reactive oxygen species, at least in part, play a role in cancer metastatic pain development and persistency which can be attenuated by the adminstration of recombinant PTD-Cu/Zn SOD via the peroxiredoxin 4 modulation from oxidative stress.
Collapse
Affiliation(s)
- Wanjun Yao
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Haiwen Zhao
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ruoshi Shi
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaohui Li
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yang Li
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Changbin Ke
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Juying Liu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
7
|
Kavoosi G, Amirghofran Z. Chemical composition, radical scavenging and anti-oxidant capacity of Ocimum Basilicum essential oil. JOURNAL OF ESSENTIAL OIL RESEARCH 2016. [DOI: 10.1080/10412905.2016.1213667] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gholamreza Kavoosi
- Institute of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Zahra Amirghofran
- Department of Immunology, Autoimmune Disease Research Center and Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Zhang S, Xia L, Ding C, Wen L, Wan W, Chen G. Biocompatible nanocarriers that respond to oxidative environments via interactions between chitosan and multiple metal ions. Int J Nanomedicine 2016; 11:2769-84. [PMID: 27358564 PMCID: PMC4912346 DOI: 10.2147/ijn.s105339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hydrogen peroxide (H2O2) functions as an early damage signal contributing to the oxidative stress response and can act as a trigger in smart oxidation-responsive drug delivery systems that are currently in development. Current H2O2-triggered oxidation-responsive polymeric systems are usually derived from chemical synthesis and rarely include natural polymers. Herein, we report two series of nanoparticle (NP) complexes prepared with the biopolymer chitosan (CS) and four different metal ions (Cu2+, Ca2+, Zn2+, and Fe3+), defined as CSNPs-metal complexes (Series 1) and CS-metal complexes NPs (Series 2), which responded to oxidation by dissolving upon H2O2 exposure. Experiments examining Nile red release and H2O2-triggered degradation confirmed that both series of complexes showed better sensitivity to oxidation than the CSNPs alone. Furthermore, preliminary cytotoxicity and histological observations indicated that the two series exhibited little or no cytotoxicity and generated a mild inflammatory response. Our work provides a novel and promising strategy for developing NPs for use as intelligent oxidation-responsive systems.
Collapse
Affiliation(s)
- Shichang Zhang
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Liye Xia
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Chenchen Ding
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Lu Wen
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Weihua Wan
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Gang Chen
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Tahmasbpour Marzony E, Ghanei M, Panahi Y. Oxidative stress and altered expression of peroxiredoxin genes family (PRDXS) and sulfiredoxin-1 (SRXN1) in human lung tissue following exposure to sulfur mustard. Exp Lung Res 2016; 42:217-26. [DOI: 10.1080/01902148.2016.1194501] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|