1
|
Goto A, Omori K, Yamaguchi-Tomikawa T, Kobayashi H, Shinoda-Ito Y, Hirai K, Ikeda A, Takashiba S. Interleukin-6/soluble IL-6 receptor-induced secretion of cathepsin B and L from human gingival fibroblasts is regulated by caveolin-1 and ERK1/2 pathways. FRONTIERS IN DENTAL MEDICINE 2025; 6:1547222. [PMID: 40135201 PMCID: PMC11933118 DOI: 10.3389/fdmed.2025.1547222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Aims Cathepsins are essential lysosomal enzymes that maintain organismal homeostasis by degrading extracellular substrates. The inflammatory cytokine interleukin-6 (IL-6) increases the production of cathepsins through the caveolin-1 (Cav-1) and c-Jun N-terminal kinase (JNK) signaling pathways, which have been implicated in the destruction of periodontal tissue. This study investigated the effect of the IL-6/soluble IL-6 receptor (sIL-6R) complex on the extracellular secretion of cathepsins in human gingival fibroblasts (HGFs) and examined the function of extracellularly secreted cathepsins B and L under acidic culture conditions in vitro. Methods HGFs were isolated from healthy volunteer donors. The expression of Cav-1 was suppressed via transfection with small interfering RNA (siRNA) targeting Cav-1. The expression levels of cathepsins B and L induced by extracellular IL-6/sIL-6R were measured using western blotting and enzyme-linked immunosorbent assay. Extracellular cathepsin activity following IL-6/sIL-6R stimulation was assessed using a methylcoumarylamide substrate in a fluorescence-based assay. IL-6/sIL-6R-induced expression of cathepsins B and L in HGFs was quantified under inhibitory conditions for extracellular signal-regulated kinase (ERK) 1/2 and/or JNK signaling, both of which are transduction pathways activated by IL-6/sIL-6R. This quantification was also performed in HGFs with suppressed Cav-1 expression using western blotting. Results Cathepsins B and L were secreted in their precursor forms from HGFs, with significantly elevated protein levels observed at 24, 48, and 72 h post-IL-6/sIL-6R stimulation. Under acidic culture conditions, cathepsin B activity increased at 48 and 72 h. Cav-1 suppression inhibited the secretion of cathepsin B regardless of IL-6/sIL-6R stimulation, whereas the secretion of cathepsin L was reduced only after 48 h of IL-6/sIL-6R stimulation. Inhibition of ERK1/2 and JNK pathways decreased the secretion of cathepsin B after 48 h of IL-6/sIL-6R stimulation, and JNK inhibition reduced the secretion of cathepsin L under similar conditions. Conclusion IL-6/sIL-6R stimulation increased the extracellular secretion of cathepsin B and L precursors in HGFs, and these precursors became activated under acidic conditions. Cav-1 and ERK1/2 are involved in regulating the secretion of cathepsin B precursors.
Collapse
Affiliation(s)
- Ayaka Goto
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuhiro Omori
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoko Yamaguchi-Tomikawa
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroya Kobayashi
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuki Shinoda-Ito
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kimito Hirai
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Atsushi Ikeda
- Department of Periodontics & Endodontics, Division of Dentistry, Okayama University Hospital, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Chinnathambi S, Adithyan A, Chandrashekar M. Lipid role in synapse and nuclear envelope-associated endocytic pathways in Tauopathy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:387-409. [PMID: 39843142 DOI: 10.1016/bs.apcsb.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Lipids play an essential role in synaptic function, significantly impacting synaptic physiology through their dynamic nature and signaling capabilities. Membrane lipids, including cholesterol, phospholipids, and gangliosides, are crucial for synaptic organization and function. They act as structural integrators and signaling molecules, guiding vesicle intracellular movement and regulating enzyme activity to support neuronal activity. The lipid compositions of pre-synaptic and post-synaptic membranes influence vesicle generation and receptor mobility, highlighting their active involvement in synaptic processes. Astrocytes also contribute to synaptic health by upholding the blood-brain barrier, regulating ion levels, and providing metabolic support. Lipid-mediated processes control synaptic plasticity and development, with astrocytes playing a crucial role in glutamate homeostasis. Amyloid-beta and Tau proteins are key in Alzheimer's disease (AD), where synaptic disruption leads to cognitive deficits. Clathrin-mediated endocytosis (CME) and caveolin-mediated endocytosis are critical pathways for lipid-mediated synaptic function, with disruptions in these pathways contributing to AD pathogenesis.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Anusree Adithyan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Madhura Chandrashekar
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| |
Collapse
|
3
|
Jiang W, Wang J, Wang J, Chen X, Fang Z, Hu C. A Review of the Role of Caveolin-1 in Acetaminophen-Induced Liver Injury. Pharmacology 2024; 109:194-201. [PMID: 38657589 DOI: 10.1159/000538017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/14/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Acetaminophen (APAP) is commonly used as an antipyretic and analgesic agent. Excessive APAP can induce liver toxicity, known as APAP-induced liver injury (ALI). The metabolism and pathogenesis of APAP have been extensively studied in recent years, and many cellular processes such as autophagy, mitochondrial oxidative stress, mitochondrial dysfunction, and liver regeneration have been identified to be involved in the pathogenesis of ALI. Caveolin-1 (CAV-1) as a scaffold protein has also been shown to be involved in the development of various diseases, especially liver disease and tumorigenesis. The role of CAV-1 in the development of liver disease and the association between them remains a challenging and uncharted territory. SUMMARY In this review, we briefly explore the potential therapeutic effects of CAV-1 on ALI through autophagy, oxidative stress, and lipid metabolism. Further research to better understand the mechanisms by which CAV-1 regulates liver injury will not only enhance our understanding of this important cellular process, but also help develop new therapies for human disease by targeting CAV-1 targets. KEY MESSAGES This review briefly summarizes the potential protective mechanisms of CAV-1 against liver injury caused by APAP.
Collapse
Affiliation(s)
- Wei Jiang
- Pharmacy Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China,
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China,
| | - Junping Wang
- Pharmacy Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Jiarong Wang
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
- Pharmacy Center, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Xueran Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Hefei, China
| | - Zhiyou Fang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Hefei, China
| | - Chengmu Hu
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Mu X, Liu SJ, Zheng LY, Ouyang C, Abdalla AME, Wang XX, Chen K, Yang FF, Meng N. The long coiled-coil protein NECC2 regulates oxLDL-induced endothelial oxidative damage and exacerbates atherosclerosis development in apolipoprotein E -/- mice. Free Radic Biol Med 2024; 216:106-117. [PMID: 38461872 DOI: 10.1016/j.freeradbiomed.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
Oxidized low density lipoprotein (oxLDL)-induced endothelial oxidative damage promotes the development of atherosclerosis. Caveolae play an essential role in maintaining the survival and function of vascular endothelial cell (VEC). It is reported that the long coiled-coil protein NECC2 is localized in caveolae and is associated with neural cell differentiation and adipocyte formation, but its role in VECs needs to be clarified. Our results showed NECC2 expression increased in the endothelium of plaque-loaded aortas and oxLDL-treated HUVECs. Down-regulation of NECC2 by NECC2 siRNA or compound YF-307 significantly inhibited oxLDL-induced VEC apoptosis and the adhesion factors expression. Remarkably, inhibition of NECC2 expression in the endothelium of apoE-/- mice by adeno-associated virus (AAV)-carrying NECC2 shRNA or compound YF-307 alleviated endothelium injury and restricted atherosclerosis development. The immunoprecipitation results confirmed that NECC2 interacted with Tyk2 and caveolin-1(Cav-1) in VECs, and NECC2 further promoted the phosphorylation of Cav-1 at Tyr14 b y activating Tyk2 phosphorylation. On the other hand, inhibiting NECC2 levels suppressed oxLDL-induced phosphorylation of Cav-1, uptake of oxLDL by VECs, accumulation of intracellular reactive oxygen species and activation of NF-κB. Our findings suggest that NECC2 may contribute to oxLDL-induced VEC injury and atherosclerosis via modulating Cav-1 phosphorylation through Tyk2. This work provides a new concept and drug target for treating atherosclerosis.
Collapse
Affiliation(s)
- Xin Mu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China; The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shangdong, 252000, China
| | - Shu-Jun Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Lei-Yin Zheng
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ahmed M E Abdalla
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xin-Xin Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Kai Chen
- New Drug Evaluation Center, Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China; Shandong Innovation Center of Engineered Bacteriophage Therapeutics, Jinan, China.
| | - Fei-Fei Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
5
|
Amor M, Bianco V, Buerger M, Lechleitner M, Vujić N, Dobrijević A, Akhmetshina A, Pirchheim A, Schwarz B, Pessentheiner AR, Baumgartner F, Rampitsch K, Schauer S, Klobučar I, Degoricija V, Pregartner G, Kummer D, Svecla M, Sommer G, Kolb D, Holzapfel GA, Hoefler G, Frank S, Norata GD, Kratky D. Genetic deletion of MMP12 ameliorates cardiometabolic disease by improving insulin sensitivity, systemic inflammation, and atherosclerotic features in mice. Cardiovasc Diabetol 2023; 22:327. [PMID: 38017481 PMCID: PMC10685620 DOI: 10.1186/s12933-023-02064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Matrix metalloproteinase 12 (MMP12) is a macrophage-secreted protein that is massively upregulated as a pro-inflammatory factor in metabolic and vascular tissues of mice and humans suffering from cardiometabolic diseases (CMDs). However, the molecular mechanisms explaining the contributions of MMP12 to CMDs are still unclear. METHODS We investigated the impact of MMP12 deficiency on CMDs in a mouse model that mimics human disease by simultaneously developing adipose tissue inflammation, insulin resistance, and atherosclerosis. To this end, we generated and characterized low-density lipoprotein receptor (Ldlr)/Mmp12-double knockout (DKO) mice fed a high-fat sucrose- and cholesterol-enriched diet for 16-20 weeks. RESULTS DKO mice showed lower cholesterol and plasma glucose concentrations and improved insulin sensitivity compared with LdlrKO mice. Untargeted proteomic analyses of epididymal white adipose tissue revealed that inflammation- and fibrosis-related pathways were downregulated in DKO mice. In addition, genetic deletion of MMP12 led to alterations in immune cell composition and a reduction in plasma monocyte chemoattractant protein-1 in peripheral blood which indicated decreased low-grade systemic inflammation. Aortic en face analyses and staining of aortic valve sections demonstrated reduced atherosclerotic plaque size and collagen content, which was paralleled by an improved relaxation pattern and endothelial function of the aortic rings and more elastic aortic sections in DKO compared to LdlrKO mice. Shotgun proteomics revealed upregulation of anti-inflammatory and atheroprotective markers in the aortas of DKO mice, further supporting our data. In humans, MMP12 serum concentrations were only weakly associated with clinical and laboratory indicators of CMDs. CONCLUSION We conclude that the genetic deletion of MMP12 ameliorates obesity-induced low-grade inflammation, white adipose tissue dysfunction, biomechanical properties of the aorta, and the development of atherosclerosis. Therefore, therapeutic strategies targeting MMP12 may represent a promising approach to combat CMDs.
Collapse
Affiliation(s)
- Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Martin Buerger
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Anja Dobrijević
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alena Akhmetshina
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Birgit Schwarz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Ariane R Pessentheiner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Institute for Molecular Biosciences, University of Graz, Graz, Austria
| | | | | | - Silvia Schauer
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iva Klobučar
- Sisters of Charity, University Hospital Centre, Zagreb, Croatia
| | - Vesna Degoricija
- University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Medicine, Sisters of Charity, University Hospital Centre, Zagreb, Croatia
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Daniel Kummer
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Dagmar Kolb
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- Core Facility Ultrastructural Analysis, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gerald Hoefler
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- BioTechMed-Graz, Graz, Austria
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
6
|
Kasahara T, Ogata T, Nakanishi N, Tomita S, Higuchi Y, Maruyama N, Hamaoka T, Matoba S. Cavin-2 loss exacerbates hypoxia-induced pulmonary hypertension with excessive eNOS phosphorylation and protein nitration. Heliyon 2023; 9:e17193. [PMID: 37360100 PMCID: PMC10285171 DOI: 10.1016/j.heliyon.2023.e17193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Pulmonary hypertension (PH) is associated with a poor prognosis even in recent years. Caveolin-1 (CAV1), a caveolae-associated protein, is a causal gene in PH. Cavin-2, one of the other caveolae-associated proteins, forms protein complexes with CAV1 and influences each other's functions. However, the role of Cavin-2 in PH has not been thoroughly investigated. To clarify the role of Cavin-2 in PH, we exposed Cavin-2-deficient (Cavin-2 KO) mice to hypoxia. A part of the analyses was confirmed in human pulmonary endothelial cells (HPAECs). After 4-week 10% O2 hypoxic exposure, we performed physiological, histological, and immunoblotting analyses. Right ventricular (RV) systolic pressure elevation and RV hypertrophy were exacerbated in Cavin-2 KO mice with hypoxia-induced PH (Cavin-2 KO PH mice). The vascular wall thickness of pulmonary arterioles was aggravated in Cavin-2 KO PH mice. Cavin-2 loss reduced CAV1 and induced sustained endothelial nitric oxide synthase (eNOS) hyperphosphorylation in the Cavin-2 KO PH lungs and HPAECs. NOx production associated with eNOS phosphorylation was also increased in the Cavin-2 KO PH lung and HPAECs. Furthermore, the nitration of proteins, including protein kinase G (PKG), was raised in the Cavin-2 KO PH lungs. In conclusion, we revealed that Cavin-2 loss exacerbated hypoxia-induced PH. Our results suggest that Cavin-2 loss leads to sustained eNOS hyperphosphorylation in pulmonary artery endothelial cells via CAV1 reduction, resulting in Nox overproduction-mediated nitration of proteins, including PKG, in smooth muscle cells.
Collapse
Affiliation(s)
- Takeru Kasahara
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shinya Tomita
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Naoki Maruyama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tetsuro Hamaoka
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
7
|
Qifti A, Balaji S, Scarlata S. Deformation of caveolae impacts global transcription and translation processes through relocalization of cavin-1. J Biol Chem 2022; 298:102005. [PMID: 35513070 PMCID: PMC9168624 DOI: 10.1016/j.jbc.2022.102005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Caveolae are invaginated membrane domains that provide mechanical strength to cells in addition to being focal points for the localization of signaling molecules. Caveolae are formed through the aggregation of caveolin-1 or -3 (Cav1/3), membrane proteins that assemble into multifunctional complexes with the help of caveola-associated protein cavin-1. In addition to its role in the formation of caveolae, cavin-1, also called polymerase I and transcript release factor, is further known to promote ribosomal RNA transcription in the nucleus. However, the mechanistic link between these functions is not clear. Here, we found that deforming caveolae by subjecting cells to mild osmotic stress (150–300 mOsm) changes levels of GAPDH, Hsp90, and Ras only when Cav1/cavin-1 levels are reduced, suggesting a link between caveola deformation and global protein expression. We show that this link may be due to relocalization of cavin-1 to the nucleus upon caveola deformation. Cavin-1 relocalization is also seen when Cav1-Gαq contacts change upon stimulation. Furthermore, Cav1 and cavin-1 levels have been shown to have profound effects on cytosolic RNA levels, which in turn impact the ability of cells to form stress granules and RNA-processing bodies (p-bodies) which sequester and degrade mRNAs, respectively. Our studies here using a cavin-1-knockout cell line indicate adaptive changes in cytosolic RNA levels but a reduced ability to form stress granules. Taken together, our findings suggest that caveolae, through release of cavin-1, communicate extracellular cues to the cell interior to impact transcriptional and translational.
Collapse
|
8
|
Erchen Decoction Ameliorates Lipid Metabolism by the Regulation of the Protein CAV-1 and the Receptors VLDLR, LDLR, ABCA1, and SRB1 in a High-Fat Diet Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5309490. [PMID: 30402126 PMCID: PMC6196931 DOI: 10.1155/2018/5309490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/07/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
Abstract
Lipid metabolism disorder is a common metabolic disorder characterized by abnormal lipid levels in blood. Erchen decoction (ECD) is a traditional Chinese medicine prescription, which is used for the treatment of diseases caused by retention of phlegm dampness. It has been reported to ameliorate the disorder of lipid metabolism. The aim of the present study was to investigate the effects and underlying mechanisms of ECD in lipid metabolism disorder induced by a high-fat diet (HFD) in rats. ECD (4.35g/kg/d) and atorvastatin (10mg/kg/d, positive control) were orally administered to HFD-fed rats for four weeks. The parameters, food, water consumption, body weight, body length, liver, and visceral fat weight and the content of serum lipids and lipid transporters were assessed. The effects of ECD on the mRNA and protein expression levels of lipid transport factors were measured by real-time PCR and western blotting. The present study demonstrated that ECD improved the disorders of serum lipid and lipid transporters in HFD-fed rats, TG (0.70±0.08 mmol/L, p<0.01), LDL-C (1.50±0.19 mmol/L, p<0.01), LDL (1.38±0.21 mmol/L, p<0.05), and oxLDL (1.77±0.39 ng/mL, p<0.05) were downregulated, while HDL-C (0.87±0.13 mmol/L, p<0.01), FFA (0.62±0.13 mmol/L, p<0.05), HDL (38.8±4.0 mg/dL, p<0.05), and CETP (903.6±120.0 ng/mL, p<0.05) were upregulated. But ECD obviously had no effects on the indices food/water/energy intake, body/tissue (liver and fat) weight, and BMI (p>0.05). Concomitantly, ECD reversed the abnormal expressions of those lipid transport factors in the liver and visceral fat.
Collapse
|
9
|
Cift T, Begum AM, Aslan Cetin B, Erenel H, Tuten A, Bulut B, Yilmaz N, Ekmekci H, Gezer A. Serum caveolin-1 levels in patients with preeclampsia. J Matern Fetal Neonatal Med 2018; 33:712-717. [PMID: 30249137 DOI: 10.1080/14767058.2018.1500539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aim: The expressions of caveolin-1 have only been examined in the placental tissue of patients with preeclampsia and were reported to be low. Therefore, we decided to investigate the maternal serum levels of caveolin-1 in patients with preeclampsia.Material and methods: This cross-sectional study was conducted including 87 pregnant women; 32 with normal pregnancy and 55 with preeclampsia. Maternal serum levels of caveolin-1 were measured by using enzyme-linked immunosorbent assay kit (ELISA).Results: The mean serum caveolin-1 level was significantly lower in women with preeclampsia (PE) compared with the control group (11.48 ± 0.92 versus 12.94 ± 1.36 ng/ml) and being lowest in the early onset PE group (11.24 ± 0.74 ng/ml). Serum caveolin-1 concentrations did not correlate with maternal age and BMI. However, caveolin-1 concentrations were negatively correlated with systolic blood pressure (r = -0.467, p = .001) and diastolic blood pressure (r = -0.441, p = .001) as well as with umbilical artery resistance index (r = -0.275, p = .01).Conclusion: Maternal serum caveolin-1 levels are significantly lower in patients with PE than controls. The serum caveolin-1 levels inversely correlate with blood pressure and umbilical artery Doppler parameters.
Collapse
Affiliation(s)
- Tayfur Cift
- Department of Obstetrics and Gynecology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Aydogan Mathyk Begum
- Department of Obstetrics and Gynecology, University of North Carolina, Division of Reproductive Endocrinology and Infertility, Chapel Hill, NC, USA
| | - Berna Aslan Cetin
- Department of Obstetrics and Gynecology, Kanuni Sultan Suleyman Research and Training Hospital, Istanbul, Turkey
| | - Hakan Erenel
- Department of Obstetrics and Gynecology, Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Abdullah Tuten
- Department of Obstetrics and Gynecology, Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Berk Bulut
- Department of Obstetrics and Gynecology, Liv Hospital, Istanbul, Turkey
| | - Nevin Yilmaz
- Department of Obstetrics and Gynecology, Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Hakan Ekmekci
- Department of Biochemistry, Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Altay Gezer
- Department of Obstetrics and Gynecology, Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| |
Collapse
|
10
|
Ni Y, Hao J, Hou X, Du W, Yu Y, Chen T, Wei Z, Li Y, Zhu F, Wang S, Liang R, Li D, Lu Y, Liao K, Li B, Shi G. Dephosphorylated Polymerase I and Transcript Release Factor Prevents Allergic Asthma Exacerbations by Limiting IL-33 Release. Front Immunol 2018; 9:1422. [PMID: 29977243 PMCID: PMC6021487 DOI: 10.3389/fimmu.2018.01422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023] Open
Abstract
Background Asthma is a chronic inflammatory disease characterized by airway inflammation and airway hyperresponsiveness (AHR). IL-33 is considered as one of the most critical molecules in asthma pathogenesis. IL-33 is stored in nucleus and passively released during necrosis. But little is known about whether living cells can release IL-33 and how this process is regulated. Objective We sought to investigate the role of polymerase I and transcript release factor (PTRF) in IL-33 release and asthma pathogenesis. Methods Ovalbumin (OVA)-induced asthma model in PTRF+/- mice were employed to dissect the role of PTRF in vivo. Then, further in vitro experiments were carried out to unwind the potential mechanism involved. Results In OVA asthma model with challenge phase, PTRF+/- mice showed a greater airway hyper-reaction, with an intense airway inflammation and more eosinophils in bronchoalveolar lavage fluid (BALF). Consistently, more acute type 2 immune response in lung and a higher IL-33 level in BALF were found in PTRF+/- mice. In OVA asthma model without challenge phase, airway inflammation and local type 2 immune responses were comparable between control mice and PTRF+/- mice. Knockdown of PTRF in 16HBE led to a significantly increased level of IL-33 in cell culture supernatants in response to LPS or HDM. Immunoprecipitation assay clarified Y158 as the major phosphorylation site of PTRF, which was also critical for the interaction of IL-33 and PTRF. Overexpression of dephosphorylated mutant Y158F of PTRF sequestered IL-33 in nucleus together with PTRF and limited IL-33 extracellular secretion. Conclusion Partial loss of PTRF led to a greater AHR and potent type 2 immune responses during challenge phase of asthma model, without influencing the sensitization phase. PTRF phosphorylation status determined subcellular location of PTRF and, therefore, regulated IL-33 release.
Collapse
Affiliation(s)
- Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jimin Hao
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Hou
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Du
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youchao Yu
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Chen
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuang Wei
- Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yangyang Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fuxiang Zhu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuaiwei Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Liang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kan Liao
- Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Almohanna AM, Wray S. Hypoxic conditioning in blood vessels and smooth muscle tissues: effects on function, mechanisms, and unknowns. Am J Physiol Heart Circ Physiol 2018; 315:H756-H770. [PMID: 29702009 DOI: 10.1152/ajpheart.00725.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxic preconditioning, the protective effect of brief, intermittent hypoxic or ischemic episodes on subsequent more severe hypoxic episodes, has been known for 30 yr from studies on cardiac muscle. The concept of hypoxic preconditioning has expanded; excitingly, organs beyond the heart, including the brain, liver, and kidney, also benefit. Preconditioning of vascular and visceral smooth muscles has received less attention despite their obvious importance to health. In addition, there has been no attempt to synthesize the literature in this field. Therefore, in addition to overviewing the current understanding of hypoxic conditioning, in the present review, we consider the role of blood vessels in conditioning and explore evidence for conditioning in other smooth muscles. Where possible, we have distinguished effects on myocytes from other cell types in the visceral organs. We found evidence of a pivotal role for blood vessels in conditioning and for conditioning in other smooth muscle, including the bladder, vascular myocytes, and gastrointestinal tract, and a novel response in the uterus of a hypoxic-induced force increase, which helps maintain contractions during labor. To date, however, there are insufficient data to provide a comprehensive or unifying mechanism for smooth muscles or visceral organs and the effects of conditioning on their function. This also means that no firm conclusions can be drawn as to how differences between smooth muscles in metabolic and contractile activity may contribute to conditioning. Therefore, we have suggested what may be general mechanisms of conditioning occurring in all smooth muscles and tabulated tissue-specific mechanistic findings and suggested ideas for further progress.
Collapse
Affiliation(s)
- Asmaa M Almohanna
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom.,Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Susan Wray
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| |
Collapse
|
12
|
Wu D, Xie F, Xiao L, Feng F, Huang S, He L, Liu M, Zhou Q, Li L, Chen L. Caveolin-1-Autophagy Pathway Mediated Cardiomyocyte Hypertrophy Induced by Apelin-13. DNA Cell Biol 2017; 36:611-618. [DOI: 10.1089/dna.2016.3574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Di Wu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Feng Xie
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Ling Xiao
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Fen Feng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Shifang Huang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lu He
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Meiqing Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Qun Zhou
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|
13
|
Chen YH, Lin WW, Liu CS, Hsu LS, Lin YM, Su SL. Caveolin-1 Expression Ameliorates Nephrotic Damage in a Rabbit Model of Cholesterol-Induced Hypercholesterolemia. PLoS One 2016; 11:e0154210. [PMID: 27124120 PMCID: PMC4849769 DOI: 10.1371/journal.pone.0154210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/10/2016] [Indexed: 01/14/2023] Open
Abstract
Caveolin-1 (CAV-1) participates in regulating vesicular transport, signal transduction, tumor progression, and cholesterol homeostasis. In the present study, we tested the hypothesis that CAV-1 improves dyslipidemia, inhibits cyclophilin A (CypA)- mediated ROS production, prevents mitochondrial compensatory action and attenuates oxidative stress responses in cholesterol-induced hypercholesterolemia. To determine the role of CAV-1 in mediating oxidative and antioxidative as well as cholesterol homeostasis, hypercholesterolemic rabbits were intravenously administered antenapedia-CAV-1 (AP-CAV-1) peptide for 2 wk. AP-CAV-1 enhanced CAV-1 expression by ˃15%, inhibited CypA expression by ˃50% (P < 0.05) and significantly improved dyslipidemia, thus reducing neutral lipid peroxidation. Moreover, CAV-1 attenuated hypercholesterolemia-induced changes in mitochondrial morphology and biogenesis and preserved mitochondrial respiratory function. In addition, CAV-1 protected against hypercholesterol-induced oxidative stress responses by reducing the degree of oxidative damage and enhancing the expression of antioxidant enzymes. CAV-1 treatment significantly suppressed apoptotic cell death, as evidenced by the reduction in the number of terminal deoxynucleotidyl transferase dUTP nick end-labeling-positive cells. We concluded that CAV-1 plays a critical role in inhibiting CypA-mediated ROS production, improving dyslipidemia, maintaining mitochondrial function, and suppressing oxidative stress responses that are vital for cell survival in hypercholesterol-affected renal organs.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Wen Lin
- Department of Internal Medicine, Division of Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Integrative Medicine, China Medical University, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Shih-Li Su
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Kovtun O, Tillu VA, Ariotti N, Parton RG, Collins BM. Cavin family proteins and the assembly of caveolae. J Cell Sci 2016; 128:1269-78. [PMID: 25829513 DOI: 10.1242/jcs.167866] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Caveolae are an abundant feature of the plasma membrane in many cells. Until recently, they were generally considered to be membrane invaginations whose formation primarily driven by integral membrane proteins called caveolins. However, the past decade has seen the emergence of the cavin family of peripheral membrane proteins as essential coat components and regulators of caveola biogenesis. In this Commentary, we summarise recent data on the role of cavins in caveola formation, highlighting structural studies that provide new insights into cavin coat assembly. In mammals, there are four cavin family members that associate through homo- and hetero-oligomerisation to form distinct subcomplexes on caveolae, which can be released into the cell in response to stimuli. Studies from several labs have provided a better understanding of cavin stoichiometry and the molecular basis for their oligomerisation, as well as identifying interactions with membrane phospholipids that may be important for caveola function. We propose a model in which coincident, low-affinity electrostatically controlled protein-protein and protein-lipid interactions allow the formation of caveolae, generating a meta-stable structure that can respond to plasma membrane stress by release of cavins.
Collapse
Affiliation(s)
- Oleksiy Kovtun
- The University of Queensland, Institute for Molecular Bioscience, Brisbane St Lucia, QLD, 4072, Australia
| | - Vikas A Tillu
- The University of Queensland, Institute for Molecular Bioscience, Brisbane St Lucia, QLD, 4072, Australia
| | - Nicholas Ariotti
- The University of Queensland, Institute for Molecular Bioscience, Brisbane St Lucia, QLD, 4072, Australia
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, Brisbane St Lucia, QLD, 4072, Australia Centre for Microscopy and Microanalysis, St. Lucia, QLD, 4072, Australia
| | - Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, Brisbane St Lucia, QLD, 4072, Australia
| |
Collapse
|
15
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
16
|
Nusshold C, Üllen A, Kogelnik N, Bernhart E, Reicher H, Plastira I, Glasnov T, Zangger K, Rechberger G, Kollroser M, Fauler G, Wolinski H, Weksler BB, Romero IA, Kohlwein SD, Couraud PO, Malle E, Sattler W. Assessment of electrophile damage in a human brain endothelial cell line utilizing a clickable alkyne analog of 2-chlorohexadecanal. Free Radic Biol Med 2016; 90:59-74. [PMID: 26577177 PMCID: PMC6392177 DOI: 10.1016/j.freeradbiomed.2015.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 11/19/2022]
Abstract
Peripheral leukocytes aggravate brain damage by releasing cytotoxic mediators that compromise blood-brain barrier function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H2O2-chloride system. The reaction of HOCl with the endogenous plasmalogen pool of brain endothelial cells results in the generation of 2-chlorohexadecanal (2-ClHDA), a toxic, lipid-derived electrophile that induces blood-brain barrier dysfunction in vivo. Here, we synthesized an alkynyl-analog of 2-ClHDA, 2-chlorohexadec-15-yn-1-al (2-ClHDyA) to identify potential protein targets in the human brain endothelial cell line hCMEC/D3. Similar to 2-ClHDA, 2-ClHDyA administration reduced cell viability/metabolic activity, induced processing of pro-caspase-3 and PARP, and led to endothelial barrier dysfunction at low micromolar concentrations. Protein-2-ClHDyA adducts were fluorescently labeled with tetramethylrhodamine azide (N3-TAMRA) by 1,3-dipolar cycloaddition in situ, which unveiled a preferential accumulation of 2-ClHDyA adducts in mitochondria, the Golgi, endoplasmic reticulum, and endosomes. Thirty-three proteins that are subject to 2-ClHDyA-modification in hCMEC/D3 cells were identified by mass spectrometry. Identified proteins include cytoskeletal components that are central to tight junction patterning, metabolic enzymes, induction of the oxidative stress response, and electrophile damage to the caveolar/endosomal Rab machinery. A subset of the targets was validated by a combination of N3-TAMRA click chemistry and specific antibodies by fluorescence microscopy. This novel alkyne analog is a valuable chemical tool to identify cellular organelles and protein targets of 2-ClHDA-mediated damage in settings where myeloperoxidase-derived oxidants may play a disease-propagating role.
Collapse
Affiliation(s)
- Christoph Nusshold
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria
| | - Andreas Üllen
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Nora Kogelnik
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Ioanna Plastira
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Toma Glasnov
- Christian Doppler Laboratory for Flow Chemistry, Institute of Chemistry, University of Graz, Austria
| | | | - Gerald Rechberger
- BioTechMed Graz, Austria; Institute of Molecular Biosciences, NAWI-Graz, University of Graz, Austria; OMICS-Center Graz, BioTechMed Graz, Austria
| | | | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Heimo Wolinski
- BioTechMed Graz, Austria; Institute of Molecular Biosciences, NAWI-Graz, University of Graz, Austria
| | - Babette B Weksler
- Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Ignacio A Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes MK7 6BJ, UK
| | - Sepp D Kohlwein
- BioTechMed Graz, Austria; Institute of Molecular Biosciences, NAWI-Graz, University of Graz, Austria
| | - Pierre-Olivier Couraud
- Institut Cochin, Inserm, U1016, CNRS UMR 8104, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria; BioTechMed Graz, Austria.
| |
Collapse
|
17
|
Xie F, Zhang SH, Cheng J, Wang HW, Fei X, Jiao ZY, Tang J, Luo YK. Evaluation of hepatic vascular endothelial injury during liver storage by molecular detection and targeted contrast-enhanced ultrasound imaging. IUBMB Life 2015; 68:51-7. [PMID: 26662566 DOI: 10.1002/iub.1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/16/2015] [Indexed: 11/12/2022]
Abstract
We hypothesized that lack of the high-energy phosphates during liver storage may potentially cause persistent injury to the vascular endothelium. Biopsies were obtained from livers obtained from beating heart human donors, stored either in the standard storage solution, that is, University of Wisconsin solution (UWS) or Celsior, and examined for various markers related to progressive endothelial injury. The expression of P2Y1 receptor, the major signal transduction machinery for adenosine triphosphate/adenosine diphosphate, decreased in hepatic vascular endothelial cells over time. Despite unaltered endothelial nitric oxide synthase (eNOS) levels, serine1177-phosphorylated eNOS, the active form of eNOS, progressively decreased with time. The production of nitric oxide enzyme decreased with time when liver tissues were examined in vitro. This also coincided with decreased interaction of eNOS with actin nucleating proteins like myristoylated alanine-rich C kinase substrate and Rac1, which plays a role in modulating the cytoskeleton and helps position eNOS in a favorable cytosolic position for active enzymatic activity. Conversely, the interaction of eNOS with caveolin1 was significantly increased 6 H after ex vivo storage. Finally, we demonstrated by targeted contrast-enhanced ultrasound that membrane-bound vascular cell adhesion molecule-1 in the hepatic vascular endothelial cell increased after 6 H of ex vivo storage. Overall, the results of this study provide evidence of a progressive hepatic vascular endothelial injury during the ex vivo storage. This may be a causative factor for ischemic cholangiopathy and delayed graft function post liver transplantation. © 2015 IUBMB Life, 68(1):51-57, 2015.
Collapse
Affiliation(s)
- Fang Xie
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China.,Department of Ultrasound, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Shu-Hua Zhang
- Department of Ultrasound, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Jia Cheng
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Hong-Wei Wang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Xiang Fei
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Zi-Yu Jiao
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Jie Tang
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yu-Kun Luo
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Zanetti M, Grillo A, Losurdo P, Panizon E, Mearelli F, Cattin L, Barazzoni R, Carretta R. Omega-3 Polyunsaturated Fatty Acids: Structural and Functional Effects on the Vascular Wall. BIOMED RESEARCH INTERNATIONAL 2015; 2015:791978. [PMID: 26301252 PMCID: PMC4537737 DOI: 10.1155/2015/791978] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/26/2015] [Indexed: 01/24/2023]
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFA) consumption is associated with reduced cardiovascular disease risk. Increasing evidence demonstrating a beneficial effect of n-3 PUFA on arterial wall properties is progressively emerging. We reviewed the recent available evidence for the cardiovascular effects of n-3 PUFA focusing on structural and functional properties of the vascular wall. In experimental studies and clinical trials n-3 PUFA have shown the ability to improve arterial hemodynamics by reducing arterial stiffness, thus explaining some of its cardioprotective properties. Recent studies suggest beneficial effects of n-3 PUFA on endothelial activation, which are likely to improve vascular function. Several molecular, cellular, and physiological pathways influenced by n-3 PUFA can affect arterial wall properties and therefore interfere with the atherosclerotic process. Although the relative weight of different physiological and molecular mechanisms and the dose-response on arterial wall properties have yet to be determined, n-3 PUFA have the potential to beneficially impact arterial wall remodeling and cardiovascular outcomes by targeting arterial wall stiffening and endothelial dysfunction.
Collapse
Affiliation(s)
- Michela Zanetti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Andrea Grillo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Pasquale Losurdo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Emiliano Panizon
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Filippo Mearelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Luigi Cattin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Rocco Barazzoni
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Renzo Carretta
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| |
Collapse
|
19
|
Roedersheimer M. Solving the Measurement Problem and then Steppin' Out over the Line Riding the Rarest Italian: Crossing the Streams to Retrieve Stable Bioactivity in Majorana Bound States of Dialy zed Human Platelet Lysates. Open Neurol J 2015; 9:32-44. [PMID: 26191092 PMCID: PMC4503829 DOI: 10.2174/1874205x01509010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/22/2022] Open
Abstract
Exhaustive dialysis (ED) of lysed human platelets against dilute HCl yields stable angiogenic activity. Dialysis against a constrained external volume, with subsequent relaxation of the separation upon opening the dialysis bag, produces material able to maintain phenotypes and viability of human cells in culture better than ED material. Significant graded changes in MTT viability measurement tracked with external volume. The presence of elements smaller than the MW cutoff, capable of setting up cycling currents initiated by oriented flow of HCl across the membrane, suggests that maturation of bioactivity occurred through establishment of a novel type of geometric phase. These information-rich bound states fit recent descriptions of topological order and Majorana fermions, suggesting relevance in testing Penrose and Hameroff's theory of Orchestrated Objective Reduction, under conditions more general, and on finer scales, than those dependent on tubulin protein. The Berry curvature appears to be a good tool for building a general field theory of physiologic stress dependent on the quantum Hall effect. A new form of geometric phase, and an associated "geometric" quantum Hall effect underlying memory retrieval, dependent on the rate of path traversal and reduction from more than two initial field influences is described.
Collapse
|
20
|
|
21
|
Flotillin-1 facilitates toll-like receptor 3 signaling in human endothelial cells. Basic Res Cardiol 2014; 109:439. [PMID: 25204797 PMCID: PMC4330457 DOI: 10.1007/s00395-014-0439-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/22/2014] [Accepted: 09/03/2014] [Indexed: 12/23/2022]
Abstract
Endothelial cells are important elements in the vascular response to danger-associated molecules signaling through toll-like receptors (TLRs). Flotillin-1 and -2 are markers of membrane rafts but their true endothelial function is unknown. We hypothesized that flotillins are required for TLR signaling in human umbilical vein endothelial cells (HUVECs). Knockdown of flotillin-1 by shRNA decreased the TLR3-mediated poly-I:C-induced but not the TLR4-mediated LPS-induced inflammatory activation of HUVEC. As TLR3 but not TLR4 signals through the endosomal compartment, flotillin-1 might be involved in the transport of poly-I:C to its receptor. Consistently, uptake of poly-I:C was attenuated by flotillin-1 knockdown and probably involved the scavenger receptor SCARA4 as revealed by knockdown of this receptor. To determine the underlying mechanism, SILAC proteomics was performed. Down-regulation of flotillin-1 led to a reduction of the structural caveolae proteins caveolin-1, cavin-1 and -2, suggesting a role of flotillin-1 in caveolae formation. Flotillin-1 and caveolin-1 colocalized within the cell, and knockdown of flotillin-1 decreased caveolin-1 expression in an endoplasmic reticulum stress-dependent manner. Importantly, downregulation of caveolin-1 also attenuated TLR3-induced signaling. To demonstrate the importance of this finding, cell adhesion was studied. Flotillin-1 shRNA attenuated the poly-I:C-mediated induction of the adhesion molecules VCAM-1 and ICAM-1. As a consequence, the poly-I:C-induced adhesion of peripheral blood mononuclear cells onto HUVECs was significantly attenuated by flotillin-1 shRNA. Collectively, these data suggest that interaction between flotillin-1 and caveolin-1 may facilitate the transport of TLR3-ligands to its intracellular receptor and enables inflammatory TLR3 signaling.
Collapse
|
22
|
Emerging role of polymerase-1 and transcript release factor (PTRF/ Cavin-1) in health and disease. Cell Tissue Res 2014; 357:505-13. [PMID: 25107607 DOI: 10.1007/s00441-014-1964-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/04/2014] [Indexed: 01/06/2023]
Abstract
Polymerase-1 and release transcript factor (PTRF) was initially reported to be involved in the termination of the transcription process. More recently, it has been implicated in the formation of caveolae, cave-like structures in the plasma membrane. The effects of PTRF related to caveolae suggest that this protein may play important roles in health and disease. PTRF is highly expressed in various cells, including adipocytes, osteoblasts and muscle (cardiac, skeletal and smooth) cells. The role of PTRF in prostate cancer has been recently reviewed but there is growing evidence that PTRF is involved in other physiological processes such as cell repair and the regulation of glucose and lipid metabolism and, furthermore, altered expression of PTRF may be associated with disease. This review discusses the emerging role of PTRF in health and disease.
Collapse
|