1
|
Penn DJ, Zala SM, Luzynski KC. Regulation of Sexually Dimorphic Expression of Major Urinary Proteins. Front Physiol 2022; 13:822073. [PMID: 35431992 PMCID: PMC9008510 DOI: 10.3389/fphys.2022.822073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Male house mice excrete large amounts of protein in their urinary scent marks, mainly composed of Major Urinary Proteins (MUPs), and these lipocalins function as pheromones and pheromone carriers. Here, we review studies on sexually dimorphic MUP expression in house mice, including the proximate mechanisms controlling MUP gene expression and their adaptive functions. Males excrete 2 to 8 times more urinary protein than females, though there is enormous variation in gene expression across loci in both sexes. MUP expression is dynamically regulated depending upon a variety of factors. Males regulate MUP expression according to social status, whereas females do not, and males regulate expression depending upon health and condition. Male-biased MUP expression is regulated by pituitary secretion of growth hormone (GH), which binds receptors in the liver, activating the JAK2-STAT5 signaling pathway, chromatin accessibility, and MUP gene transcription. Pulsatile male GH secretion is feminized by several factors, including caloric restriction, microbiota depletion, and aging, which helps explain condition-dependent MUP expression. If MUP production has sex-specific fitness optima, then this should generate sexual antagonism over allelic expression (intra-locus sexual conflict) selectively favoring sexually dimorphic expression. MUPs influence the sexual attractiveness of male urinary odor and increased urinary protein excretion is correlated with the reproductive success of males but not females. This finding could explain the selective maintenance of sexually dimorphic MUP expression. Producing MUPs entails energetic costs, but increased excretion may reduce the net energetic costs and predation risks from male scent marking as well as prolong the release of chemical signals. MUPs may also provide physiological benefits, including regulating metabolic rate and toxin removal, which may have sex-specific effects on survival. A phylogenetic analysis on the origins of male-biased MUP gene expression in Mus musculus suggests that this sexual dimorphism evolved by increasing male MUP expression rather than reducing female expression.
Collapse
Affiliation(s)
- Dustin J. Penn
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | |
Collapse
|
2
|
Stopková R, Otčenášková T, Matějková T, Kuntová B, Stopka P. Biological Roles of Lipocalins in Chemical Communication, Reproduction, and Regulation of Microbiota. Front Physiol 2021; 12:740006. [PMID: 34594242 PMCID: PMC8476925 DOI: 10.3389/fphys.2021.740006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
Major evolutionary transitions were always accompanied by genetic remodelling of phenotypic traits. For example, the vertebrate transition from water to land was accompanied by rapid evolution of olfactory receptors and by the expansion of genes encoding lipocalins, which - due to their transporting functions - represent an important interface between the external and internal organic world of an individual and also within an individual. Similarly, some lipocalin genes were lost along other genes when this transition went in the opposite direction leading, for example, to cetaceans. In terrestrial vertebrates, lipocalins are involved in the transport of lipophilic substances, chemical signalling, odour reception, antimicrobial defence and background odour clearance during ventilation. Many ancestral lipocalins have clear physiological functions across the vertebrate taxa while many other have - due to pleiotropic effects of their genes - multiple or complementary functions within the body homeostasis and development. The aim of this review is to deconstruct the physiological functions of lipocalins in light of current OMICs techniques. We concentrated on major findings in the house mouse in comparison to other model taxa (e.g., voles, humans, and birds) in which all or most coding genes within their genomes were repeatedly sequenced and their annotations are sufficiently informative.
Collapse
Affiliation(s)
- Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Tereza Otčenášková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Tereza Matějková
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Barbora Kuntová
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Prague, Czechia
| |
Collapse
|
3
|
Janssenswillen S, Roelants K, Carpentier S, de Rooster H, Metzemaekers M, Vanschoenwinkel B, Proost P, Bossuyt F. Odorant-binding proteins in canine anal sac glands indicate an evolutionarily conserved role in mammalian chemical communication. BMC Ecol Evol 2021; 21:182. [PMID: 34565329 PMCID: PMC8474896 DOI: 10.1186/s12862-021-01910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/10/2021] [Indexed: 11/29/2022] Open
Abstract
Background Chemical communication is an important aspect of the behavioural ecology of a wide range of mammals. In dogs and other carnivores, anal sac glands are thought to convey information to conspecifics by secreting a pallet of small volatile molecules produced by symbiotic bacteria. Because these glands are unique to carnivores, it is unclear how their secretions relate to those of other placental mammals that make use of different tissues and secretions for chemical communication. Here we analyse the anal sac glands of domestic dogs to verify the secretion of proteins and infer their evolutionary relationship to those involved in the chemical communication of non-carnivoran mammals. Results Proteomic analysis of anal sac gland secretions of 17 dogs revealed the consistently abundant presence of three related proteins. Homology searches against online databases indicate that these proteins are evolutionary related to ‘odorant binding proteins’ (OBPs) found in a wide range of mammalian secretions and known to contribute to chemical communication. Screening of the dog’s genome sequence show that the newly discovered OBPs are encoded by a single cluster of three genes in the pseudoautosomal region of the X-chromosome. Comparative genomic screening indicates that the same locus is shared by a wide range of placental mammals and that it originated at least before the radiation of extant placental orders. Phylogenetic analyses suggest a dynamic evolution of gene duplication and loss, resulting in large gene clusters in some placental taxa and recurrent loss of this locus in others. The homology of OBPs in canid anal sac glands and those found in other mammalian secretions implies that these proteins maintained a function in chemical communication throughout mammalian evolutionary history by multiple shifts in expression between secretory tissues involved in signal release and nasal mucosa involved in signal reception. Conclusions Our study elucidates a poorly understood part of the biology of a species that lives in close association with humans. In addition, it shows that the protein repertoire underlying chemical communication in mammals is more evolutionarily stable than the variation of involved glands and tissues would suggest. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01910-w.
Collapse
Affiliation(s)
- Sunita Janssenswillen
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Sebastien Carpentier
- Proteomics Core - SyBioMa, Katholieke Universiteit Leuven, Herestraat 49 - 03.313, 3000, Leuven, Belgium
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Mieke Metzemaekers
- Rega Institute, Molecular Immunology, Katholieke Universiteit Leuven, Herestraat 49 - Bus1042, 3000, Leuven, Belgium
| | - Bram Vanschoenwinkel
- Community Ecology Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,Center for Environmental Management, University of the Free State, Bloemfontein, 9030, South Africa
| | - Paul Proost
- Rega Institute, Molecular Immunology, Katholieke Universiteit Leuven, Herestraat 49 - Bus1042, 3000, Leuven, Belgium
| | - Franky Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
4
|
Poitras T, Piragasam RS, Joy T, Jackson J, Chandrasekhar A, Fahlman R, Zochodne DW. Major urinary protein excreted in rodent hindpaw sweat. J Anat 2021; 239:529-535. [PMID: 33686663 PMCID: PMC8273588 DOI: 10.1111/joa.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
Alternative roles for sweat production beyond thermoregulation, considered less frequently, include chemical signaling. We identified the presence of a well-established rodent urinary pheromone, major urinary protein (MUP) in sweat ductules of the footpad dermal skin of mice. A hindpaw sweat proteomic analysis in hindpaw sweat samples collected in rats and generated by unmyelinated axon activation, identified seven lipocalin family members including MUP and 19 additional unique proteins. Behavioural responses to sniffing male mouse foot protein lysates suggested avoidance in a subset of male mice, but were not definitive. Rodent hindpaw sweat glands secrete a repertoire of proteins that include MUPs known to have roles in olfactory communication.
Collapse
Affiliation(s)
- Trevor Poitras
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | | | - Twinkle Joy
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Jesse Jackson
- Department of Physiology and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Ambika Chandrasekhar
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Richard Fahlman
- Department of BiochemistryUniversity of AlbertaEdmontonABCanada
| | - Douglas W. Zochodne
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
5
|
Kuntová B, Stopková R, Stopka P. Transcriptomic and Proteomic Profiling Revealed High Proportions of Odorant Binding and Antimicrobial Defense Proteins in Olfactory Tissues of the House Mouse. Front Genet 2018; 9:26. [PMID: 29459883 PMCID: PMC5807349 DOI: 10.3389/fgene.2018.00026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/22/2018] [Indexed: 12/31/2022] Open
Abstract
Mammalian olfaction depends on chemosensory neurons of the main olfactory epithelia (MOE), and/or of the accessory olfactory epithelia in the vomeronasal organ (VNO). Thus, we have generated the VNO and MOE transcriptomes and the nasal cavity proteome of the house mouse, Mus musculus musculus. Both transcriptomes had low levels of sexual dimorphisms, while the soluble proteome of the nasal cavity revealed high levels of sexual dimorphism similar to that previously reported in tears and saliva. Due to low levels of sexual dimorphism in the olfactory receptors in MOE and VNO, the sex-specific sensing seems less likely to be dependent on receptor repertoires. However, olfaction may also depend on a continuous removal of background compounds from the sites of detection. Odorant binding proteins (OBPs) are thought to be involved in this process and in our study Obp transcripts were most expressed along other lipocalins (e.g., Lcn13, Lcn14) and antimicrobial proteins. At the level of proteome, OBPs were highly abundant with only few being sexually dimorphic. We have, however, detected the major urinary proteins MUP4 and MUP5 in males and females and the male-biased central/group-B MUPs that were thought to be abundant mainly in the urine. The exocrine gland-secreted peptides ESP1 and ESP22 were male-biased but not male-specific in the nose. For the first time, we demonstrate that the expression of nasal lipocalins correlates with antimicrobial proteins thus suggesting that their individual variation may be linked to evolvable mechanisms that regulate natural microbiota and pathogens that regularly enter the body along the ‘eyes-nose-oral cavity’ axis.
Collapse
Affiliation(s)
- Barbora Kuntová
- BIOCEV Group, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Romana Stopková
- BIOCEV Group, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Pavel Stopka
- BIOCEV Group, Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
6
|
Černá M, Kuntová B, Talacko P, Stopková R, Stopka P. Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse. Sci Rep 2017; 7:11674. [PMID: 28916783 PMCID: PMC5601457 DOI: 10.1038/s41598-017-12021-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/01/2017] [Indexed: 01/08/2023] Open
Abstract
Female house mice produce pheromone-carrying major urinary proteins (MUPs) in a cycling manner, thus reaching the maximum urinary production just before ovulation. This is thought to occur to advertise the time of ovulation via deposited urine marks. This study aimed to characterize the protein content from the house mouse vaginal flushes to detect putative vaginal-advertising molecules for a direct identification of reproductive states. Here we show that the mouse vaginal discharge contains lipocalins including those from the odorant binding (OBP) and major urinary (MUP) protein families. OBPs were highly expressed but only slightly varied throughout the cycle, whilst several MUPs were differentially abundant. MUP20 or 'darcin', was thought to be expressed only by males. However, in females it was significantly up-regulated during estrus similarly as the recently duplicated central/group-B MUPs (sMUP17 and highly expressed sMUP9), which in the mouse urine are male biased. MUPs rise between proestrus and estrus, remain steady throughout metestrus, and are co-expressed with antimicrobial proteins. Thus, we suggest that MUPs and potentially also OBPs are important components of female vaginal advertising of the house mouse.
Collapse
Affiliation(s)
- Martina Černá
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Barbora Kuntová
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Pavel Talacko
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Romana Stopková
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, CZ 12844, Czech Republic.
| |
Collapse
|
7
|
Stopkova R, Klempt P, Kuntova B, Stopka P. On the tear proteome of the house mouse ( Mus musculus musculus) in relation to chemical signalling. PeerJ 2017; 5:e3541. [PMID: 28698824 PMCID: PMC5502090 DOI: 10.7717/peerj.3541] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/14/2017] [Indexed: 12/29/2022] Open
Abstract
Mammalian tears are produced by lacrimal glands to protect eyes and may function in chemical communication and immunity. Recent studies on the house mouse chemical signalling revealed that major urinary proteins (MUPs) are not individually unique in Mus musculus musculus. This fact stimulated us to look for other sexually dimorphic proteins that may—in combination with MUPs—contribute to a pool of chemical signals in tears. MUPs and other lipocalins including odorant binding proteins (OBPs) have the capacity to selectively transport volatile organic compounds (VOCs) in their eight-stranded beta barrel, thus we have generated the tear proteome of the house mouse to detect a wider pool of proteins that may be involved in chemical signalling. We have detected significant male-biased (7.8%) and female-biased (7%) proteins in tears. Those proteins that showed the most elevated sexual dimorphisms were highly expressed and belong to MUP, OBP, ESP (i.e., exocrine gland-secreted peptides), and SCGB/ABP (i.e., secretoglobin) families. Thus, tears may have the potential to elicit sex-specific signals in combination by different proteins. Some tear lipocalins are not sexually dimorphic—with MUP20/darcin and OBP6 being good examples—and because all proteins may flow with tears through nasolacrimal ducts to nasal and oral cavities we suggest that their roles are wider than originally thought. Also, we have also detected several sexually dimorphic bactericidal proteins, thus further supporting an idea that males and females may have adopted alternative strategies in controlling microbiota thus yielding different VOC profiles.
Collapse
Affiliation(s)
- Romana Stopkova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Klempt
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Kuntova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
On the saliva proteome of the Eastern European house mouse (Mus musculus musculus) focusing on sexual signalling and immunity. Sci Rep 2016; 6:32481. [PMID: 27577013 PMCID: PMC5006050 DOI: 10.1038/srep32481] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
Chemical communication is mediated by sex-biased signals abundantly present in the urine, saliva and tears. Because most studies concentrated on the urinary signals, we aimed to determine the saliva proteome in wild Mus musculus musculus, to extend the knowledge on potential roles of saliva in chemical communication. We performed the gel-free quantitative LC-MS/MS analyses of saliva and identified 633 proteins with 134 (21%) of them being sexually dimorphic. They include proteins that protect and transport volatile organic compounds in their beta barrel including LCN lipocalins, major urinary proteins (MUPs), and odorant binding proteins (OBPs). To our surprise, the saliva proteome contains one MUP that is female biased (MUP8) and the two protein pheromones MUP20 (or 'Darcin') and ESP1 in individuals of both sex. Thus, contrary to previous assumptions, our findings reveal that these proteins cannot function as male-unique signals. Our study also demonstrates that many olfactory proteins (e.g. LCNs, and OBPs) are not expressed by submandibular glands but are produced elsewhere-in nasal and lacrimal tissues, and potentially also in other oro-facial glands. We have also detected abundant proteins that are involved in wound healing, immune and non-immune responses to pathogens, thus corroborating that saliva has important protective roles.
Collapse
|
9
|
Ferrer I, Garcia-Esparcia P, Carmona M, Carro E, Aronica E, Kovacs GG, Grison A, Gustincich S. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease. Front Aging Neurosci 2016; 8:163. [PMID: 27458372 PMCID: PMC4932117 DOI: 10.3389/fnagi.2016.00163] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Paula Garcia-Esparcia
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Margarita Carmona
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Eva Carro
- Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Neuroscience Group, Research Institute HospitalMadrid, Spain
| | - Eleonora Aronica
- Department of Neuropathology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna Vienna, Austria
| | - Alice Grison
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience Trieste, Italy
| | - Stefano Gustincich
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience Trieste, Italy
| |
Collapse
|
10
|
Stopková R, Vinkler D, Kuntová B, Šedo O, Albrecht T, Suchan J, Dvořáková-Hortová K, Zdráhal Z, Stopka P. Mouse Lipocalins (MUP, OBP, LCN) Are Co-expressed in Tissues Involved in Chemical Communication. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
11
|
Nazarova GG, Proskurniak LP, Yuzhik EI. The Presence Of Strange Males' Odor Induces Behavioral Responses And Elevated Levels Of Low Molecular Weight Proteins Excreted In The Urine Of Mature Water Vole Males (Arvicola amphibius L). J Chem Ecol 2016; 42:270-6. [PMID: 26994612 DOI: 10.1007/s10886-016-0683-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/15/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
We hypothesized that low molecular weight urinary proteins play a role in male-male chemical communication in the water vole, Arvicola ampibius L. We studied the effect of placing soiled litter from strange males into the cage of another sexually mature male on the intensity of its digging and scattering, urination on the litter, and alteration in the levels of low molecular weight proteins (15-25 kDa) excreted in the urine before and after 4 days of exposure as determined by chip electrophoresis. The intensity of digging and scattering was positively correlated with levels of testosterone in serum of males exposed to strange male odors (r = 0.56; P < 0.01), as well as with the concentration of low molecular weight proteins in the donor's urine (r = 0.52, P < 0.05). At the end of the experiment, the level of low molecular weight protein in excreted urine was elevated in the males exposed to the strange male's litter. These results highlight the importance of quantitative inter-individual variation of low molecular weight urinary proteins in the modulation of the physiology and behavior of conspecifics.
Collapse
Affiliation(s)
- Galina G Nazarova
- Institute of Systematics and Ecology of Animals, Siberian Branch RAS, Frunze 11, Novosibirsk, 630091, Russia.
| | - Lyudmila P Proskurniak
- Institute of Systematics and Ecology of Animals, Siberian Branch RAS, Frunze 11, Novosibirsk, 630091, Russia
| | - Ekaterina I Yuzhik
- Institute of Systematics and Ecology of Animals, Siberian Branch RAS, Frunze 11, Novosibirsk, 630091, Russia.,Institute of Molecular Pathology and Pathomorphology, Timakova 2, Novosibirsk, 630117, Russia
| |
Collapse
|
12
|
Kwak J, Strasser E, Luzynski K, Thoß M, Penn DJ. Are MUPs a Toxic Waste Disposal System? PLoS One 2016; 11:e0151474. [PMID: 26966901 PMCID: PMC4788440 DOI: 10.1371/journal.pone.0151474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/28/2016] [Indexed: 11/18/2022] Open
Abstract
Male house mice produce large quantities of major urinary proteins (MUPs), which function to bind and transport volatile pheromones, though they may also function as scavengers that bind and excrete toxic compounds (‘toxic waste hypothesis’). In this study, we demonstrate the presence of an industrial chemical, 2,4-di-tert-butylphenol (DTBP), in the urine of wild-derived house mice (Mus musculus musculus). Addition of guanidine hydrochloride to male and female urine resulted in an increased release of DTBP. This increase was only observed in the high molecular weight fractions (HMWF; > 3 kDa) separated from male or female urine, suggesting that the increased release of DTBP was likely due to the denaturation of MUPs and the subsequent release of MUP-bound DTBP. Furthermore, when DTBP was added to a HMWF isolated from male urine, an increase in 2-sec-butyl-4,5-dihydrothiazole (SBT), the major ligand of MUPs and a male-specific pheromone, was observed, indicating that DTBP was bound to MUPs and displaced SBT. These results suggest that DTBP is a MUP ligand. Moreover, we found evidence for competitive ligand binding between DTBP and SBT, suggesting that males potentially face a tradeoff between eliminating toxic wastes versus transporting pheromones. Our findings support the hypothesis that MUPs bind and eliminate toxic wastes, which may provide the most important fitness benefits of excreting large quantities of these proteins.
Collapse
Affiliation(s)
- Jae Kwak
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| | - Eva Strasser
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ken Luzynski
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michaela Thoß
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dustin J. Penn
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
13
|
Jensen-Jarolim E, Pacios LF, Bianchini R, Hofstetter G, Roth-Walter F. Structural similarities of human and mammalian lipocalins, and their function in innate immunity and allergy. Allergy 2016; 71:286-94. [PMID: 26497994 PMCID: PMC4949658 DOI: 10.1111/all.12797] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2015] [Indexed: 01/08/2023]
Abstract
Owners and their domestic animals via skin shedding and secretions, mutually exchange microbiomes, potential pathogens and innate immune molecules. Among the latter especially lipocalins are multifaceted: they may have an immunomodulatory function and, furthermore, they represent one of the most important animal allergen families. The amino acid identities, as well as their structures by superposition modeling were compared among human lipocalins, hLCN1 and hLCN2, and most important animal lipocalin allergens, such as Can f 1, Can f 2 and Can f 4 from dog, Fel d 4 from cats, Bos d 5 from cow's milk, Equ c 1 from horses, and Mus m 1 from mice, all of them representing major allergens. The β-barrel fold with a central molecular pocket is similar among human and animal lipocalins. Thereby, lipocalins are able to transport a variety of biological ligands in their highly conserved calyx-like cavity, among them siderophores with the strongest known capability to complex iron (Fe(3+) ). Levels of human lipocalins are elevated in nonallergic inflammation and cancer, associated with innate immunoregulatory functions that critically depend on ligand load. Accordingly, deficient loading of lipocalin allergens establishes their capacity to induce Th2 hypersensitivity. Our similarity analysis of human and mammalian lipocalins highlights their function in innate immunity and allergy.
Collapse
Affiliation(s)
- E Jensen-Jarolim
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - L F Pacios
- Biotechnology Department, Center for Plant Biotechnology and Genomics, ETSI Montes, Technical University of Madrid, Madrid, Spain
- Department of Natural Systems and Resources, ETSI Montes, Technical University of Madrid, Madrid, Spain
| | - R Bianchini
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| | - G Hofstetter
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| | - F Roth-Walter
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| |
Collapse
|
14
|
Nagnan-Le Meillour P, Vercoutter-Edouart AS, Hilliou F, Le Danvic C, Lévy F. Proteomic Analysis of Pig (Sus scrofa) Olfactory Soluble Proteome Reveals O-Linked-N-Acetylglucosaminylation of Secreted Odorant-Binding Proteins. Front Endocrinol (Lausanne) 2014; 5:202. [PMID: 25538681 PMCID: PMC4257092 DOI: 10.3389/fendo.2014.00202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 11/13/2014] [Indexed: 11/13/2022] Open
Abstract
The diversity of olfactory binding proteins (OBPs) is a key point to understand their role in molecular olfaction. Since only few different sequences were characterized in each mammalian species, they have been considered as passive carriers of odors and pheromones. We have explored the soluble proteome of pig nasal mucus, taking benefit of the powerful tools of proteomics. Combining two-dimensional electrophoresis, mass spectrometry, and western-blot with specific antibodies, our analyses revealed for the first time that the pig nasal mucus is mainly composed of secreted OBP isoforms, some of them being potentially modified by O-GlcNAcylation. An ortholog gene of the glycosyltransferase responsible of the O-GlcNAc linking on extracellular proteins in Drosophila and Mouse (EOGT) was amplified from tissues of pigs of different ages and sex. The sequence was used in a phylogenetic analysis, which evidenced conservation of EOGT in insect and mammalian models studied in molecular olfaction. Extracellular O-GlcNAcylation of secreted OBPs could finely modulate their binding specificities to odors and pheromones. This constitutes a new mechanism for extracellular signaling by OBPs, suggesting that they act as the first step of odor discrimination.
Collapse
Affiliation(s)
- Patricia Nagnan-Le Meillour
- UMR 8576, USC-Unité de Glycobiologie Structurale et Fonctionnelle, INRA, CNRS, Université de Lille 1 , Villeneuve d'Ascq , France
| | | | - Frédérique Hilliou
- UMR 7254, UMR 1355 Institut Sophia Agrobiotech, INRA, CNRS, Université de Nice Sophia Antipolis , Sophia Antipolis , France
| | - Chrystelle Le Danvic
- Unité de Glycobiologie Structurale et Fonctionnelle, Union Nationale des Coopératives Agricoles d'Elevage et d'Insémination Animale (UNCEIA) , Villeneuve d'Ascq , France
| | - Frédéric Lévy
- UMR 7247, UMR 85 Unité de Physiologie de la Reproduction et des Comportements, INRA, CNRS, Université François Rabelais, Haras Nationaux , Nouzilly , France
| |
Collapse
|