1
|
Portillo W, Ortiz G, Paredes RG. Repeated Paced Mating Increases the Survival of New Neurons in the Accessory Olfactory Bulb. Front Neurosci 2020; 14:249. [PMID: 32265646 PMCID: PMC7105896 DOI: 10.3389/fnins.2020.00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/05/2020] [Indexed: 11/13/2022] Open
Abstract
In female rats, the first sexual experience under paced mating conditions increases the number of newborn cells that migrate into the granular layer of the accessory olfactory bulb (AOB). Repeated paced mating has a potentiating effect on the number of new neurons that migrate to the AOB compared with a single session 15 days after paced mating. On the other hand, one paced mating session does no increases the survival of new cells 45 days after mating. In the present study, we evaluated if four paced mating sessions could increase the survival of new neurons in the AOB and main olfactory bulb (MOB) 45 days after females mated. Sexually naive female rats were ovariectomized, hormonally supplemented and randomly assigned to one of five groups: (1) Control, no sexual contact (C); (2) Four sessions in which females were exposed, without mating, to a sexually experience male rat (SE); (3) One session of paced mating (PM1); (4) Four sessions of paced mating (PM4); and (5) Four sessions of non-paced mating (NPM4). In the first behavioral test, females received the DNA synthesis marker 5-bromo-2'deoxyuridine and were euthanized 45 days later. Our data showed that the number of new cells that survived in the mitral cell layer of the AOB decreased when females were exposed to a sexually active male, in comparison to females that mated once pacing the sexual interaction. Repeated sexual behavior in pacing conditions did not increase the survival of new cells in other layers of the MOB and AOB. However, a significant increase in the percentage of new neurons in the granular and glomerular layers of the AOB and granular layer of the MOB was observed in females that mated in four sessions pacing the sexual interaction. In the group that paced the sexual interaction for one session, a significant increase in the percentage of neurons was observed in the glomerular layer of the AOB. Our data suggest that repeated paced mating increases the percentage of new neurons that survive in the olfactory bulb of female rats.
Collapse
Affiliation(s)
- Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), sQuerétaro, Mexico
| | - Georgina Ortiz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), sQuerétaro, Mexico
| | - Raúl G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), sQuerétaro, Mexico.,Escuela Nacional de Estudios Superiores, Unidad Juriquilla Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
2
|
Bedos M, Portillo W, Paredes RG. Neurogenesis and sexual behavior. Front Neuroendocrinol 2018; 51:68-79. [PMID: 29438737 DOI: 10.1016/j.yfrne.2018.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/16/2022]
Abstract
Different conditions induce proliferation, migration and integration of new neurons in the adult brain. This process of neurogenesis is a clear example of long lasting plastic changes in the brain of different species. Sexual behavior is a motivated behavior that is crucial for the survival of the species, but an individual can spend all his life without displaying sexual behavior. In the present review, we briefly describe some of the effects of pheromones on neurogenesis. We review in detail studies describing the effects of sexual behavior in both males and females on proliferation, migration and integration of new cells and neurons. It will become evident that most of the studies have been done in rodents, assessing the effects of this behavior on neurogenesis within the dentate gyrus of the hippocampus and in the subventricular zone - rostral migratory stream - olfactory bulb system.
Collapse
Affiliation(s)
- M Bedos
- CONACYT - Instituto de Neurobiología - Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, Campus UNAM-Juriquilla, 76230 Querétaro, QRO, México
| | - W Portillo
- Instituto de Neurobiología - Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, Campus UNAM-Juriquilla, 76230 Querétaro, QRO, México
| | - R G Paredes
- Instituto de Neurobiología - Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, Campus UNAM-Juriquilla, 76230 Querétaro, QRO, México.
| |
Collapse
|
3
|
Koyama S, Soini HA, Wager-Miller J, Alley WR, Pizzo MJ, Rodda C, Alberts J, Crystal JD, Lai C, Foley J, Novotny MV. Cross-generational impact of a male murine pheromone 2-sec-butyl-4,5- dihydrothiazole in female mice. Proc Biol Sci 2015; 282:rspb.2015.1074. [PMID: 26136453 PMCID: PMC4528559 DOI: 10.1098/rspb.2015.1074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/29/2015] [Indexed: 12/27/2022] Open
Abstract
The current understanding of the activity of mammalian pheromones is that endocrine and behavioural effects are limited to the exposed individuals. Here, we demonstrate that the nasal exposure of female mice to a male murine pheromone stimulates expansion of mammary glands, leading to prolonged nursing of pups. Subsequent behavioural testing of the pups from pheromone-exposed dams exhibited enhanced learning. Sialic acid components in the milk are known to be involved in brain development. We hypothesized that the offspring might have received more of this key nutrient that promotes brain development. The mRNA for polysialyltransferase, which produces polysialylated neural cell adhesion molecules related to brain development,was increased in the brain of offspring of pheromone-exposed dams at post-natal day 10, while it was not different at embryonic stages, indicating possible differential brain development during early post-natal life.
Collapse
Affiliation(s)
- Sachiko Koyama
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Helena A. Soini
- Department of Chemistry and Institute for Pheromone Research, Indiana University, Bloomington, IN 47405, USA
| | - James Wager-Miller
- The Linda and Jack Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - William R. Alley
- Department of Chemistry and Institute for Pheromone Research, Indiana University, Bloomington, IN 47405, USA
| | - Matthew J. Pizzo
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Cathleen Rodda
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Jeffrey Alberts
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Jonathon D. Crystal
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Cary Lai
- The Linda and Jack Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - John Foley
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Milos V. Novotny
- Department of Chemistry and Institute for Pheromone Research, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|