1
|
Liu Z, Curtis D. Analysis of Rare Coding Variants in 470,000 UK Biobank Participants Reveals Genetic Associations With Childhood Asthma Predisposition. Int J Immunogenet 2025; 52:155-161. [PMID: 40342259 DOI: 10.1111/iji.12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Previous studies of genetic contributions to risk of childhood asthma have implicated common variants with small effect sizes. Some studies using exome sequence data have reported associations with rare coding variants having larger effects on risk, notably an analysis of 145,000 subjects which found association with loss of function (LOF) variants in FLG, the gene coding for filaggrin. Here, we report the results of an analysis of rare nonsynonymous and LOF variants, carried out on the full UK Biobank cohort of 470,000 exome-sequenced participants. The phenotype of childhood asthma was defined as reporting asthma with onset before 18. Regression analysis was applied to gene-wise tests for association of LOF and nonsynonymous variants. Forty-five tests using different pathogenicity predictors were applied to the first cohort of 200,000 participants. Subsequently, the 100 genes showing strongest evidence for association were analysed in the second cohort of 270,000 participants, using only the best-performing predictor for each gene. For FLG, separate analyses were carried out for participants with atopic dermatitis. Three genes achieved statistical significance after correction for testing these 100 genes: FLG, IL33 and PRKCQ. The effects on asthma risk and frequencies of variants in different functional categories were characterised for these genes. Damaging coding variants were associated with increased risk of asthma in FLG and IL33 but reduced risk in PRKCQ. FLG LOF variants were also associated with the risk of atopic dermatitis, and their effect on asthma risk was higher in people who reported a diagnosis of atopic dermatitis. Rare coding variants in a small number of genes have important effects on asthma risk. Further study of individual variant effects might elucidate mechanisms of pathogenesis. This research has been conducted using the UK Biobank Resource.
Collapse
Affiliation(s)
- Zhenzhen Liu
- UCL Genetics Institute, University College London, London, UK
| | - David Curtis
- UCL Genetics Institute, University College London, London, UK
| |
Collapse
|
2
|
Crosignani S, Campos S, Bouix-Peter C, Harris C, Talbot E, Hu H, Wang S, Maclean J, Zanelli U, Taylor S, Foote K, Hacini-Rachinel F, Nicodeme E, Julia V. Discovery of a novel series of selective macrocyclic PKCTheta inhibitors. Bioorg Med Chem Lett 2024; 100:129630. [PMID: 38307441 DOI: 10.1016/j.bmcl.2024.129630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/20/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
A series of macrocyclic PKCθ inhibitors based on a 1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one hinge binder has been studied. Different aromatic and heteroaromatic substituents have been explored in order to optimize potency, isoform selectivity as well as DMPK properties. The importance of the length of the macrocyclic linker has also been analyzed. In particular, it has been found that methyl substitutions on the linker can have a profound influence on both potency and metabolic stability. Several compounds showing very good profiles, suitable for in vivo testing, are disclosed.
Collapse
Affiliation(s)
| | - Sebastien Campos
- Pharmaron Discovery & Early Development, West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire EN11 9FH, UK
| | | | - Craig Harris
- Galderma SA, Av. d'Ouchy 4, 1006 Lausanne, Switzerland
| | - Eric Talbot
- Pharmaron Discovery & Early Development, West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire EN11 9FH, UK
| | - Haiyang Hu
- Pharmaron Discovery & Early Development, West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire EN11 9FH, UK
| | - Shun Wang
- Pharmaron Discovery & Early Development, West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire EN11 9FH, UK
| | - John Maclean
- Pharmaron Discovery & Early Development, West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire EN11 9FH, UK
| | - Ugo Zanelli
- Galderma SA, Av. d'Ouchy 4, 1006 Lausanne, Switzerland
| | - Simon Taylor
- Pharmaron Discovery & Early Development, West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire EN11 9FH, UK
| | - Kevin Foote
- Pharmaron Discovery & Early Development, West Hill Innovation Park, Hertford Road, Hoddesdon, Hertfordshire EN11 9FH, UK
| | | | | | - Valerie Julia
- Galderma SA, Av. d'Ouchy 4, 1006 Lausanne, Switzerland
| |
Collapse
|
3
|
Rodolfi S, Davidson C, Vecellio M. Regulatory T cells in spondyloarthropathies: genetic evidence, functional role, and therapeutic possibilities. Front Immunol 2024; 14:1303640. [PMID: 38288110 PMCID: PMC10822883 DOI: 10.3389/fimmu.2023.1303640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Regulatory T cells (Tregs) are a very specialized subset of T lymphocytes: their main function is controlling immune responses during inflammation. T-regs involvement in autoimmune and immune-mediated rheumatic diseases is well-described. Here, we critically review the up-to-date literature findings on the role of Tregs in spondyloarthropathies, particularly in ankylosing spondylitis (AS), a polygenic inflammatory rheumatic disease that preferentially affects the spine and the sacroiliac joints. Genetics discoveries helped in elucidating pathogenic T-regs gene modules and functional involvement. We highlight T-regs tissue specificity as crucial point, as T-regs might have a distinct epigenomic and molecular profiling depending on the different site of tissue inflammation. Furthermore, we speculate about possible therapeutic interventions targeting, or enhancing, Treg cells in spondyloarthropathies.
Collapse
Affiliation(s)
- Stefano Rodolfi
- Department of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Connor Davidson
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matteo Vecellio
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Centro Ricerche Fondazione Italiana Ricerca Sull'Artrite (FIRA), Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| |
Collapse
|
4
|
Ben-Shmuel A, Sabag B, Puthenveetil A, Biber G, Levy M, Jubany T, Awwad F, Roy RK, Joseph N, Matalon O, Kivelevitz J, Barda-Saad M. Inhibition of SHP-1 activity by PKC-θ regulates NK cell activation threshold and cytotoxicity. eLife 2022; 11:73282. [PMID: 35258455 PMCID: PMC8903836 DOI: 10.7554/elife.73282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/23/2022] [Indexed: 12/26/2022] Open
Abstract
Natural killer (NK) cells play a crucial role in immunity, killing virally infected and cancerous cells. The balance of signals initiated upon engagement of activating and inhibitory NK receptors with cognate ligands determines killing or tolerance. Nevertheless, the molecular mechanisms regulating rapid NK cell discrimination between healthy and malignant cells in a heterogeneous tissue environment are incompletely understood. The SHP-1 tyrosine phosphatase is the central negative NK cell regulator that dephosphorylates key activating signaling proteins. Though the mechanism by which SHP-1 mediates NK cell inhibition has been partially elucidated, the pathways by which SHP-1 is itself regulated remain unclear. Here, we show that phosphorylation of SHP-1 in NK cells on the S591 residue by PKC-θ promotes the inhibited SHP-1 ‘folded’ state. Silencing PKC-θ maintains SHP-1 in the active conformation, reduces NK cell activation and cytotoxicity, and promotes tumor progression in vivo. This study reveals a molecular pathway that sustains the NK cell activation threshold through suppression of SHP-1 activity.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Abhishek Puthenveetil
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Moria Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tammir Jubany
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Fatima Awwad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Roshan Kumar Roy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Jessica Kivelevitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
5
|
Morroni J, Schirone L, Valenti V, Zwergel C, Riera CS, Valente S, Vecchio D, Schiavon S, Ragno R, Mai A, Sciarretta S, Lozanoska-Ochser B, Bouchè M. Inhibition of PKCθ Improves Dystrophic Heart Phenotype and Function in a Novel Model of DMD Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23042256. [PMID: 35216371 PMCID: PMC8880527 DOI: 10.3390/ijms23042256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic cardiac muscle inflammation and subsequent fibrotic tissue deposition are key features in Duchenne Muscular Dystrophy (DMD). The treatment of choice for delaying DMD progression both in skeletal and cardiac muscle are corticosteroids, supporting the notion that chronic inflammation in the heart plays a pivotal role in fibrosis deposition and subsequent cardiac dysfunction. Nevertheless, considering the adverse effects associated with long-term corticosteroid treatments, there is a need for novel anti-inflammatory therapies. In this study, we used our recently described exercised mdx (ex mdx) mouse model characterised by accelerated heart pathology, and the specific PKCθ inhibitor Compound 20 (C20), to show that inhibition of this kinase leads to a significant reduction in the number of immune cells infiltrating the heart, as well as necrosis and fibrosis. Functionally, C20 treatment also prevented the reduction in left ventricle fractional shortening, which was typically observed in the vehicle-treated ex mdx mice. Based on these findings, we propose that PKCθ pharmacological inhibition could be an attractive therapeutic approach to treating dystrophic cardiomyopathy
Collapse
Affiliation(s)
- Jacopo Morroni
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
| | - Valentina Valenti
- Department of Cardiology, Ospedale Santa Maria Goretti, 04100 Latina, Italy;
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Carles Sánchez Riera
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Daniele Vecchio
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
| | - Sonia Schiavon
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
| | - Rino Ragno
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (C.Z.); (S.V.); (R.R.); (A.M.)
| | - Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (D.V.); (S.S.); (S.S.)
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
| | - Marina Bouchè
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy; (J.M.); (C.S.R.); (B.L.-O.)
- Correspondence:
| |
Collapse
|
6
|
Levy O, Rothhammer V, Mascanfroni I, Tong Z, Kuai R, De Biasio M, Wang Q, Majid T, Perrault C, Yeste A, Kenison JE, Safaee H, Musabeyezu J, Heinelt M, Milton Y, Kuang H, Lan H, Siders W, Multon MC, Rothblatt J, Massadeh S, Alaamery M, Alhasan AH, Quintana FJ, Karp JM. A cell-based drug delivery platform for treating central nervous system inflammation. J Mol Med (Berl) 2021; 99:663-671. [PMID: 33398468 DOI: 10.1007/s00109-020-02003-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for the development of cell-based drug delivery systems for autoimmune inflammatory diseases, such as multiple sclerosis (MS). Here, we investigated the effect of Ro-31-8425, an ATP-competitive kinase inhibitor, on the therapeutic properties of MSCs. Upon a simple pretreatment procedure, MSCs spontaneously took up and then gradually released significant amounts of Ro-31-8425. Ro-31-8425 (free or released by MSCs) suppressed the proliferation of CD4+ T cells in vitro following polyclonal and antigen-specific stimulation. Systemic administration of Ro-31-8425-loaded MSCs ameliorated the clinical course of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, displaying a stronger suppressive effect on EAE than control MSCs or free Ro-31-8425. Ro-31-8425-MSC administration resulted in sustained levels of Ro-31-8425 in the serum of EAE mice, modulating immune cell trafficking and the autoimmune response during EAE. Collectively, these results identify MSC-based drug delivery as a potential therapeutic strategy for the treatment of autoimmune diseases. KEY MESSAGES: MSCs can spontaneously take up the ATP-competitive kinase inhibitor Ro-31-8425. Ro-31-8425-loaded MSCs gradually release Ro-31-8425 and exhibit sustained suppression of T cells. Ro-31-8425-loaded MSCs have more sustained serum levels of Ro-31-8425 than free Ro-31-8425. Ro-31-8425-loaded MSCs are more effective than MSCs and free Ro-31-8425 for EAE therapy.
Collapse
Affiliation(s)
- Oren Levy
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Veit Rothhammer
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivan Mascanfroni
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhixiang Tong
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Rui Kuai
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
- Centre of Excellence for Biomedicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael De Biasio
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Qingping Wang
- Department of Drug Metabolism and Pharmacokinetics, Sanofi R&D, Waltham, MA, USA
| | - Tahir Majid
- Global Research Program and Portfolio Management, Sanofi-Genzyme, Cambridge, MA, USA
| | - Christelle Perrault
- Sanofi R&D, In Vitro Pharmacology, Integrated Drug Discovery, Centre de Recherche Vitry-Alfortville, Vitry-Sur-Seine, France
| | - Ada Yeste
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica E Kenison
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Helia Safaee
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Juliet Musabeyezu
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Martina Heinelt
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Yuka Milton
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Heidi Kuang
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Haoyue Lan
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - William Siders
- Genzyme R&D, Neuroimmunology Research, Framingham, MA, USA
| | - Marie-Christine Multon
- Sanofi R&D, Translational Sciences, Centre de Recherche Vitry-Alfortville, Vitry-Sur-Seine, France
| | | | - Salam Massadeh
- Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ali H Alhasan
- Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Centre of Excellence for Biomedicine, Brigham and Women's Hospital, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Jeffrey M Karp
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA.
- Centre of Excellence for Biomedicine, Brigham and Women's Hospital, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
7
|
Hu Z, Li L, Zhu B, Huang Y, Wang X, Lin X, Li M, Xu P, Zhang X, Zhang J, Hua Z. Annexin A5 is essential for PKCθ translocation during T-cell activation. J Biol Chem 2020; 295:14214-14221. [PMID: 32796034 DOI: 10.1074/jbc.ra120.015143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell activation is a critical part of the adaptive immune system, enabling responses to foreign cells and external stimulus. In this process, T-cell antigen receptor (TCR) activation stimulates translocation of the downstream kinase PKCθ to the membrane, leading to NF-κB activation and thus transcription of relevant genes. However, the details of how PKCθ is recruited to the membrane remain enigmatic. It is known that annexin A5 (ANXA5), a calcium-dependent membrane-binding protein, has been reported to mediate PKCδ activation by interaction with PKCδ, a homologue of PKCθ, which implicates a potential role of ANXA5 involved in PKCθ signaling. Here we demonstrate that ANXA5 does play a critical role in the recruitment of PKCθ to the membrane during T-cell activation. ANXA5 knockout in Jurkat T cells substantially inhibited the membrane translocation of PKCθ upon TCR engagement and blocked the recruitment of CARMA1-BCL10-MALT1 signalosome, which provides a platform for the catalytic activation of IKKs and subsequent activation of canonical NF-κB signaling in activated T cells. As a result, NF-κB activation was impaired in ANXA5-KO T cells. T-cell activation was also suppressed by ANAX5 knockdown in primary T cells. These results demonstrated a novel role of ANXA5 in PKC translocation and PKC signaling during T-cell activation.
Collapse
Affiliation(s)
- Zhaoqing Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Banghui Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yi Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinran Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaolei Lin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Maoxia Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Peipei Xu
- Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xuerui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China .,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China
| | - Jing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zichun Hua
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China .,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China.,Shenzhen Research Institute of Nanjing University, Shenzhen, China
| |
Collapse
|
8
|
Cheng X, Ferino E, Hull H, Jickling GC, Ander BP, Stamova B, Sharp FR. Smoking affects gene expression in blood of patients with ischemic stroke. Ann Clin Transl Neurol 2019; 6:1748-1756. [PMID: 31436916 PMCID: PMC6764500 DOI: 10.1002/acn3.50876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 07/27/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Though cigarette smoking (CS) is a well-known risk factor for ischemic stroke (IS), there is no data on how CS affects the blood transcriptome in IS patients. METHODS We recruited IS-current smokers (IS-SM), IS-never smokers (IS-NSM), control-smokers (C-SM), and control-never smokers (C-NSM). mRNA expression was assessed on HTA-2.0 microarrays and unique as well as commonly expressed genes identified for IS-SM versus IS-NSM and C-SM versus C-NSM. RESULTS One hundred and fifty-eight genes were differentially expressed in IS-SM versus IS-NSM; 100 genes were differentially expressed in C-SM versus C-NSM; and 10 genes were common to both IS-SM and C-SM (P < 0.01; |fold change| ≥ 1.2). Functional pathway analysis showed the 158 IS-SM-regulated genes were associated with T-cell receptor, cytokine-cytokine receptor, chemokine, adipocytokine, tight junction, Jak-STAT, ubiquitin-mediated proteolysis, and adherens junction signaling. IS-SM showed more altered genes and functional networks than C-SM. INTERPRETATION We propose some of the 10 genes that are elevated in both IS-SM and C-SM (GRP15, LRRN3, CLDND1, ICOS, GCNT4, VPS13A, DAP3, SNORA54, HIST1H1D, and SCARNA6) might contribute to increased risk of stroke in current smokers, and some genes expressed by blood leukocytes and platelets after stroke in smokers might contribute to worse stroke outcomes that occur in smokers.
Collapse
Affiliation(s)
- Xiyuan Cheng
- Department of Neurology, University of California at Davis, Sacramento, California.,Toxicology and Pharmacology Graduate Program, University of California at Davis, Davis, California
| | - Eva Ferino
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Heather Hull
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Glen C Jickling
- Department of Neurology, University of California at Davis, Sacramento, California.,Department of Neurology, University of Alberta, Edmonton, California
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, Sacramento, California.,Toxicology and Pharmacology Graduate Program, University of California at Davis, Davis, California
| |
Collapse
|
9
|
Collier PN, Twin HC, Knegtel RMA, Boyall D, Brenchley G, Davis CJ, Keily S, Mak C, Miller A, Pierard F, Settimo L, Bolton CM, Chiu P, Curnock A, Doyle E, Tanner AJ, Jimenez JM. Discovery of Selective, Orally Bioavailable Pyrazolopyridine Inhibitors of Protein Kinase Cθ (PKCθ) That Ameliorate Symptoms of Experimental Autoimmune Encephalomyelitis. ACS Med Chem Lett 2019; 10:1134-1139. [PMID: 31417666 DOI: 10.1021/acsmedchemlett.9b00134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/27/2019] [Indexed: 11/28/2022] Open
Abstract
PKCθ plays an important role in T cell biology and is a validated target for a number of disease states. A series of potent and selective PKCθ inhibitors were designed and synthesized starting from a HTS hit compound. Cell activity, while initially a challenge to achieve, was built into the series by transforming the nitrile unit of the scaffold into a primary amine, the latter predicted to form a new hydrogen bond to Asp508 near the entrance of the ATP binding site of PKCθ. Significant improvements in physiochemical parameters were observed on introduction of an oxetane group proximal to a primary amine leading to compound 22, which demonstrated a reduction of symptoms in a mouse model of multiple sclerosis.
Collapse
Affiliation(s)
- Philip N. Collier
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Elisabeth Doyle
- Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, Massachusetts 02210, United States
| | | | | |
Collapse
|
10
|
van Eis MJ, Evenou J, Schuler W, Zenke G, Vangrevelinghe E, Wagner J, von Matt P. Indolyl-naphthyl-maleimides as potent and selective inhibitors of protein kinase C-α/β. Bioorg Med Chem Lett 2017; 27:781-786. [DOI: 10.1016/j.bmcl.2017.01.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/11/2022]
|
11
|
Pharmacological Inhibition of PKCθ Counteracts Muscle Disease in a Mouse Model of Duchenne Muscular Dystrophy. EBioMedicine 2017; 16:150-161. [PMID: 28089792 PMCID: PMC5474428 DOI: 10.1016/j.ebiom.2017.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 01/22/2023] Open
Abstract
Inflammation plays a considerable role in the progression of Duchenne Muscular Dystrophy (DMD), a severe muscle disease caused by a mutation in the dystrophin gene. We previously showed that genetic ablation of Protein Kinase C θ (PKCθ) in mdx, the mouse model of DMD, improves muscle healing and regeneration, preventing massive inflammation. To establish whether pharmacological targeting of PKCθ in DMD can be proposed as a therapeutic option, in this study we treated young mdx mice with the PKCθ inhibitor Compound 20 (C20). We show that C20 treatment led to a significant reduction in muscle damage associated with reduced immune cells infiltration, reduced inflammatory pathways activation, and maintained muscle regeneration. Importantly, C20 treatment is efficient in recovering muscle performance in mdx mice, by preserving muscle integrity. Together, these results provide proof of principle that pharmacological inhibition of PKCθ in DMD can be considered an attractive strategy to modulate immune response and prevent the progression of the disease. Research in context Duchenne muscular dystrophy (DMD) is a severe muscle disease affecting 1:3500 male births. DMD is caused by a mutation in dystrophin gene, coding for a protein required for skeletal and cardiac muscle integrity. Lack of a functional dystrophin is primarily responsible for the muscle eccentric contraction-induced muscle damage, observed in dystrophic muscle. However, inflammation plays a considerable role in the progression of DMD. Glucocorticoids, which have anti-inflammatory properties, are being used to treat DMD with some success; however, long term treatment with these drugs induces muscle atrophy and wasting, outweighing their benefit. The identification of specific targets for anti-inflammatory therapies is one of the ongoing therapeutic options. Although blunting inflammation would not be a “cure” for the disease, the emerging clue is that multiple strategies, addressing different aspects of the pathology, which may eventually converge, may be successful. In this context, we previously showed that genetic ablation of Protein Kinase C θ (PKCθ), an enzyme known to be involved in immune response, in mdx, the mouse model of DMD, improves muscle healing and regeneration, preventing massive inflammation. To establish whether pharmacological targeting of PKCθ in DMD can be proposed as a therapeutic option, in this study we treated young mdx mice with the PKCθ inhibitor Compound 20 (C20). We show that C20 treatment led to a significant reduction in muscle damage associated with reduced immune cells infiltration, reduced inflammatory pathways activation, and maintained muscle regeneration. Importantly, C20 treatment is efficient in recovering muscle performance in mdx mice, by preserving muscle integrity. Together, these results provide proof of principle that pharmacological inhibition of PKCθ in DMD can be considered an attractive strategy to modulate immune response and prevent the progression of the disease. Immune-cell intrinsic PKCθ activity might play a hitherto unrecognized role of in the development of DMD. Mdx dystrophic mice were treated with the PKCθ inhibitor C20. C20 treatment prevents damage and inflammation in dystrophic muscle, while improving muscle regeneration. C20 treatment prevents drop in force and ameliorates fatigue resistance in dystrophic mice.
Collapse
|
12
|
Lim PS, Sutton CR, Rao S. Protein kinase C in the immune system: from signalling to chromatin regulation. Immunology 2015; 146:508-22. [PMID: 26194700 DOI: 10.1111/imm.12510] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/29/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022] Open
Abstract
Protein kinase C (PKC) form a key family of enzymes involved in signalling pathways that specifically phosphorylates substrates at serine/threonine residues. Phosphorylation by PKC is important in regulating a variety of cellular events such as cell proliferation and the regulation of gene expression. In the immune system, PKCs are involved in regulating signal transduction pathways important for both innate and adaptive immunity, ultimately resulting in the expression of key immune genes. PKCs act as mediators during immune cell signalling through the immunological synapse. PKCs are traditionally known to be cytoplasmic signal transducers and are well embedded in the signalling pathways of cells to mediate the cells' response to a stimulus from the plasma membrane to the nucleus. PKCs are also found to transduce signals within the nucleus, a process that is distinct from the cytoplasmic signalling pathway. There is now growing evidence suggesting that PKC can directly regulate gene expression programmes through a non-traditional role as nuclear kinases. In this review, we will focus on the role of PKCs as key cytoplasmic signal transducers in immune cell signalling, as well as its role in nuclear signal transduction. We will also highlight recent evidence for its newly discovered regulatory role in the nucleus as a chromatin-associated kinase.
Collapse
Affiliation(s)
- Pek Siew Lim
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| | - Christopher Ray Sutton
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| | - Sudha Rao
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|