1
|
Shin JH, Cuevas LM, Roy R, Bonilla SL, Al-Hashimi H, Greenleaf WJ, Herschlag D. Exploring the energetic and conformational properties of the sequence space connecting naturally occurring RNA tetraloop receptor motifs. RNA (NEW YORK, N.Y.) 2024; 30:1646-1659. [PMID: 39362695 PMCID: PMC11571812 DOI: 10.1261/rna.080039.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Folded RNAs contain tertiary contact motifs whose structures and energetics are conserved across different RNAs. The transferable properties of RNA motifs simplify the RNA folding problem, but measuring energetic and conformational properties of many motifs remains a challenge. Here, we use a high-throughput thermodynamic approach to investigate how sequence changes alter the binding properties of naturally occurring motifs, the GAAA tetraloop • tetraloop receptor (TLR) interactions. We measured the binding energies and conformational preferences of TLR sequences that span mutational pathways from the canonical 11ntR to two other natural TLRs, the IC3R and Vc2R. While the IC3R and Vc2R share highly similar energetic and conformational properties, the landscapes that map the sequence changes for their conversion from the 11ntR to changes in these properties differ dramatically. Differences in the energetic landscapes stem from the mutations needed to convert the 11ntR to the IC3R and Vc2R rather than a difference in the intrinsic energetic architectures of these TLRs. The conformational landscapes feature several nonnative TLR variants with conformational preferences that differ from both the initial and final TLRs; these species represent potential branching points along the multidimensional sequence space to sequences with greater fitness in other RNA contexts with alternative conformational preferences. Our high-throughput, quantitative approach reveals the complex nature of sequence-fitness landscapes and leads to models for their molecular origins. Systematic and quantitative molecular approaches provide critical insights into understanding the evolution of natural RNAs as they traverse complex landscapes in response to selective pressures.
Collapse
Affiliation(s)
- John H Shin
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Lena M Cuevas
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Steve L Bonilla
- Laboratory of RNA Structural Biology and Biophysics, The Rockefeller University, New York, New York 10065, USA
| | - Hashim Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- Chem-H Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
2
|
Wang J, Koduru T, Harish B, McCallum SA, Larsen KP, Patel KS, Peters EV, Gillilan RE, Puglisi EV, Puglisi JD, Makhatadze G, Royer CA. Pressure pushes tRNA Lys3 into excited conformational states. Proc Natl Acad Sci U S A 2023; 120:e2215556120. [PMID: 37339210 PMCID: PMC10293818 DOI: 10.1073/pnas.2215556120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Conformational dynamics play essential roles in RNA function. However, detailed structural characterization of excited states of RNA remains challenging. Here, we apply high hydrostatic pressure (HP) to populate excited conformational states of tRNALys3, and structurally characterize them using a combination of HP 2D-NMR, HP-SAXS (HP-small-angle X-ray scattering), and computational modeling. HP-NMR revealed that pressure disrupts the interactions of the imino protons of the uridine and guanosine U-A and G-C base pairs of tRNALys3. HP-SAXS profiles showed a change in shape, but no change in overall extension of the transfer RNA (tRNA) at HP. Configurations extracted from computational ensemble modeling of HP-SAXS profiles were consistent with the NMR results, exhibiting significant disruptions to the acceptor stem, the anticodon stem, and the D-stem regions at HP. We propose that initiation of reverse transcription of HIV RNA could make use of one or more of these excited states.
Collapse
Affiliation(s)
- Jinqiu Wang
- Graduate Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Tejaswi Koduru
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | | | - Scott A. McCallum
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Kevin P. Larsen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Karishma S. Patel
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Edgar V. Peters
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY12180
| | | | - Elisabetta V. Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Joseph D. Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - George Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| |
Collapse
|
3
|
Shin JH, Bonilla SL, Denny SK, Greenleaf WJ, Herschlag D. Dissecting the energetic architecture within an RNA tertiary structural motif via high-throughput thermodynamic measurements. Proc Natl Acad Sci U S A 2023; 120:e2220485120. [PMID: 36897989 PMCID: PMC10243134 DOI: 10.1073/pnas.2220485120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 03/12/2023] Open
Abstract
Structured RNAs and RNA/protein complexes perform critical cellular functions. They often contain structurally conserved tertiary contact "motifs," whose occurrence simplifies the RNA folding landscape. Prior studies have focused on the conformational and energetic modularity of intact motifs. Here, we turn to the dissection of one common motif, the 11nt receptor (11ntR), using quantitative analysis of RNA on a massively parallel array to measure the binding of all single and double 11ntR mutants to GAAA and GUAA tetraloops, thereby probing the energetic architecture of the motif. While the 11ntR behaves as a motif, its cooperativity is not absolute. Instead, we uncovered a gradient from high cooperativity amongst base-paired and neighboring residues to additivity between distant residues. As expected, substitutions at residues in direct contact with the GAAA tetraloop resulted in the largest decreases to binding, and energetic penalties of mutations were substantially smaller for binding to the alternate GUAA tetraloop, which lacks tertiary contacts present with the canonical GAAA tetraloop. However, we found that the energetic consequences of base partner substitutions are not, in general, simply described by base pair type or isostericity. We also found exceptions to the previously established stability-abundance relationship for 11ntR sequence variants. These findings of "exceptions to the rule" highlight the power of systematic high-throughput approaches to uncover novel variants for future study in addition to providing an energetic map of a functional RNA.
Collapse
Affiliation(s)
- John H. Shin
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| | - Steve L. Bonilla
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Sarah K. Denny
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
- Scribe Therapeutics, Alameda, CA94501
| | - William J. Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
- Department of Applied Physics, Stanford University, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94158
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
| |
Collapse
|
4
|
Henning-Knechtel A, Thirumalai D, Kirmizialtin S. Differences in ion-RNA binding modes due to charge density variations explain the stability of RNA in monovalent salts. SCIENCE ADVANCES 2022; 8:eabo1190. [PMID: 35857829 PMCID: PMC9299541 DOI: 10.1126/sciadv.abo1190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The stability of RNA increases as the charge density of the alkali metal cations increases. The molecular mechanism for this phenomenon remains elusive. To fill this gap, we performed all-atom molecular dynamics pulling simulations of HIV-1 trans-activation response RNA. We first established that the free energy landscape obtained in the simulations is in excellent agreement with the single-molecule optical tweezer experiments. The origin of the stronger stability in sodium compared to potassium is found to be due to the differences in the charge density-related binding modes. The smaller hydrated sodium ion preferentially binds to the highly charged phosphates that have high surface area. In contrast, the larger potassium ions interact with the major grooves. As a result, more cations condense around phosphate groups in the case of sodium ions, leading to the reduction of electrostatic repulsion. Because the proposed mechanism is generic, we predict that the same conclusions are valid for divalent alkaline earth metal cations.
Collapse
Affiliation(s)
| | - D. Thirumalai
- Department of Chemistry, University of Texas, Austin, TX 78712, USA
- Corresponding author. (D.T.); (S.K.)
| | - Serdal Kirmizialtin
- Chemistry Program, Math and Sciences, New York University Abu Dhabi, Abu Dhabi, UAE
- Corresponding author. (D.T.); (S.K.)
| |
Collapse
|
5
|
Harish B, Wang J, Hayden EJ, Grabe B, Hiller W, Winter R, Royer CA. Hidden intermediates in Mango III RNA aptamer folding revealed by pressure perturbation. Biophys J 2022; 121:421-429. [PMID: 34971617 PMCID: PMC8822612 DOI: 10.1016/j.bpj.2021.12.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
Fluorescent RNA aptamers have the potential to enable routine quantitation and localization of RNA molecules and serve as models for understanding biologically active aptamers. In recent years, several fluorescent aptamers have been selected and modified to improve their properties, revealing that small changes to the RNA or the ligands can modify significantly their fluorescent properties. Although structural biology approaches have revealed the bound, ground state of several fluorescent aptamers, characterization of low-abundance, excited states in these systems is crucial to understanding their folding pathways. Here we use pressure as an alternative variable to probe the suboptimal states of the Mango III aptamer with both fluorescence and NMR spectroscopy approaches. At moderate KCl concentrations, increasing pressure disrupted the G-quadruplex structure of the Mango III RNA and led to an intermediate with lower fluorescence. These observations indicate the existence of suboptimal RNA structural states that still bind the TO1-biotin fluorophore and moderately enhance fluorescence. At higher KCl concentration as well, the intermediate fluorescence state was populated at high pressure, but the G-quadruplex remained stable at high pressure, supporting the notion of parallel folding and/or binding pathways. These results demonstrate the usefulness of pressure for characterizing RNA folding intermediates.
Collapse
Affiliation(s)
| | - Jinqiu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy
| | - Eric J Hayden
- Department of Biology, Boise State University, Boise
| | - Bastian Grabe
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy.
| |
Collapse
|
6
|
High-throughput dissection of the thermodynamic and conformational properties of a ubiquitous class of RNA tertiary contact motifs. Proc Natl Acad Sci U S A 2021; 118:2109085118. [PMID: 34373334 DOI: 10.1073/pnas.2109085118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite RNA's diverse secondary and tertiary structures and its complex conformational changes, nature utilizes a limited set of structural "motifs"-helices, junctions, and tertiary contact modules-to build diverse functional RNAs. Thus, in-depth descriptions of a relatively small universe of RNA motifs may lead to predictive models of RNA tertiary conformational landscapes. Motifs may have different properties depending on sequence and secondary structure, giving rise to subclasses that expand the universe of RNA building blocks. Yet we know very little about motif subclasses, given the challenges in mapping conformational properties in high throughput. Previously, we used "RNA on a massively parallel array" (RNA-MaP), a quantitative, high-throughput technique, to study thousands of helices and two-way junctions. Here, we adapt RNA-MaP to study the thermodynamic and conformational properties of tetraloop/tetraloop receptor (TL/TLR) tertiary contact motifs, analyzing 1,493 TLR sequences from different classes. Clustering analyses revealed variability in TL specificity, stability, and conformational behavior. Nevertheless, natural GAAA/11ntR TL/TLRs, while varying in tertiary stability by ∼2.5 kcal/mol, exhibited conserved TL specificity and conformational properties. Thus, RNAs may tune stability without altering the overall structure of these TL/TLRs. Furthermore, their stability correlated with natural frequency, suggesting thermodynamics as the dominant selection pressure. In contrast, other TL/TLRs displayed heterogenous conformational behavior and appear to not be under strong thermodynamic selection. Our results build toward a generalizable model of RNA-folding thermodynamics based on the properties of isolated motifs, and our characterized TL/TLR library can be used to engineer RNAs with predictable thermodynamic and conformational behavior.
Collapse
|
7
|
Qiao Y, Luo Y, Long N, Xing Y, Tu J. Single-Molecular Förster Resonance Energy Transfer Measurement on Structures and Interactions of Biomolecules. MICROMACHINES 2021; 12:492. [PMID: 33925350 PMCID: PMC8145425 DOI: 10.3390/mi12050492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) inherits the strategy of measurement from the effective "spectroscopic ruler" FRET and can be utilized to observe molecular behaviors with relatively high throughput at nanometer scale. The simplicity in principle and configuration of smFRET make it easy to apply and couple with other technologies to comprehensively understand single-molecule dynamics in various application scenarios. Despite its widespread application, smFRET is continuously developing and novel studies based on the advanced platforms have been done. Here, we summarize some representative examples of smFRET research of recent years to exhibit the versatility and note typical strategies to further improve the performance of smFRET measurement on different biomolecules.
Collapse
Affiliation(s)
- Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yuhan Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Naiyun Long
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China;
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.Q.); (Y.L.); (N.L.)
| |
Collapse
|
8
|
Nicholson DA, Sengupta A, Nesbitt DJ. Chirality-Dependent Amino Acid Modulation of RNA Folding. J Phys Chem B 2020; 124:11561-11572. [PMID: 33296203 DOI: 10.1021/acs.jpcb.0c07420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The preponderance of a specific d- or l-chirality in fats, sugars, amino acids, nucleic acids, and so on is ubiquitous in nature, yet the biological origin of such chiral dominance (i.e., with one enantiomer overwhelmingly present) remains an open question. One plausible proposal for the predominance of l-chirality in amino acids could be through evolutionary templating of chiral RNA-folding via chaperone activity. To help evaluate this possibility, single molecule fluorescence experiments have been performed that measure the chiral dependence of chaperone folding dynamics for the simple tetraloop-tetraloop receptor (TL-TLR) tertiary binding motif in the presence of a series of chiral amino acids. Specifically, d- vs l-arginine is found to accelerate the unfolding of this RNA motif in a chirally selective fashion, with temperature-dependent studies of the kinetics performed to extract free energy, enthalpy, and entropy landscapes for the underlying thermodynamics. Furthermore, all-atom molecular dynamics (MD) simulations are pursued to provide additional physical insight into this chiral sensitivity, which reveal enantiomer-specific sampling of nucleic acid surfaces by d- vs l-arginine and support a putative mechanism for chirally specific denaturation of RNA tertiary structure by arginine but not other amino acids.
Collapse
Affiliation(s)
- David A Nicholson
- JILA, National Institute of Standards and Technology and University of Colorado Boulder, Boulder, Colorado 80309 United States.,Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Abhigyan Sengupta
- Department of Physics, Technical University of Munich, Garching, Munich, Germany 85748
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado Boulder, Boulder, Colorado 80309 United States.,Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
9
|
Real-Time 3D Single Particle Tracking: Towards Active Feedback Single Molecule Spectroscopy in Live Cells. Molecules 2019; 24:molecules24152826. [PMID: 31382495 PMCID: PMC6695621 DOI: 10.3390/molecules24152826] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 01/25/2023] Open
Abstract
Single molecule fluorescence spectroscopy has been largely implemented using methods which require tethering of molecules to a substrate in order to make high temporal resolution measurements. However, the act of tethering a molecule requires that the molecule be removed from its environment. This is especially perturbative when measuring biomolecules such as enzymes, which may rely on the non-equilibrium and crowded cellular environment for normal function. A method which may be able to un-tether single molecule fluorescence spectroscopy is real-time 3D single particle tracking (RT-3D-SPT). RT-3D-SPT uses active feedback to effectively lock-on to freely diffusing particles so they can be measured continuously with up to photon-limited temporal resolution over large axial ranges. This review gives an overview of the various active feedback 3D single particle tracking methods, highlighting specialized detection and excitation schemes which enable high-speed real-time tracking. Furthermore, the combination of these active feedback methods with simultaneous live-cell imaging is discussed. Finally, the successes in real-time 3D single molecule tracking (RT-3D-SMT) thus far and the roadmap going forward for this promising family of techniques are discussed.
Collapse
|
10
|
Carr CE, Marky LA. Effect of GCAA stabilizing loops on three- and four-way intramolecular junctions. Phys Chem Chem Phys 2018; 20:5046-5056. [PMID: 29388988 DOI: 10.1039/c7cp08329g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tetraloops are a common way of changing the melting behavior of a DNA or RNA structure without changing the sequence of the stem. Because of the ubiquitous nature of tetraloops, our goal is to understand the effect a GCAA tetraloop, which belongs to the GNRA family of tetraloops, has on the unfolding thermodynamics of intramolecular junctions. Specifically, we have described the melting behavior of intramolecular three-way and four-way junctions where a T5 loop has been replaced with a GCAA tetraloops in different positions. Their thermodynamic profiles, including ΔnNa+ and ΔnW, were analyzed based on the position of the tetraloop. We obtained between -16.7 and -27.5 kcal mol-1 for all junctions studied. The experimental data indicates the influence of the GCAA tetraloop is primarily dictated by the native unfolding of the junction; if the tetraloop is placed on a stem that unfolds as a single domain when the tetraloop is not present, it will unfold as a single domain when the tetraloop is present but with a higher thermal stability. Conversely, if the tetraloop is placed on a stem which unfolds cooperatively with other stems when the tetraloop is not present, the tetraloop will increase the thermal stability of all the stems in the melting domain. The oligonucleotide structure and not the tetraloop itself affects ion uptake; three-way junctions do not gain an increase in ion uptake, but four-way junctions do. This is not the case for water immobilization, where the position of the tetraloop dictates the amount of water immobilized.
Collapse
Affiliation(s)
- Carolyn E Carr
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| | | |
Collapse
|
11
|
Leonard KN, Blose JM. Effects of osmolytes and macromolecular crowders on stable GAAA tetraloops and their preference for a CG closing base pair. PeerJ 2018; 6:e4236. [PMID: 29456882 PMCID: PMC5815330 DOI: 10.7717/peerj.4236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/15/2017] [Indexed: 11/20/2022] Open
Abstract
Osmolytes and macromolecular crowders have the potential to influence the stability of secondary structure motifs and alter preferences for conserved nucleic acid sequences in vivo. To further understand the cellular function of RNA we observed the effects of a model osmolyte, polyethylene glycol (PEG) 200, and a model macromolecular crowding agent, PEG 8000, on the GAAA tetraloop motif. GAAA tetraloops are conserved, stable tetraloops, and are critical participants in RNA tertiary structure. They also have a thermodynamic preference for a CG closing base pair. The thermal denaturation of model hairpins containing GAAA loops was monitored using UV-Vis spectroscopy in the presence and absence of PEG 200 or PEG 8000. Both of the cosolutes tested influenced the thermodynamic preference for a CG base pair by destabilizing the loop with a CG closing base pair relative to the loop with a GC closing base pair. This result also extended to a related DNA triloop, which provides further evidence that the interactions between the loop and closing base pair are identical for the d(GCA) triloop and the GAAA tetraloop. Our results suggest that in the presence of model PEG molecules, loops with a GC closing base pair may retain some preferential interactions with the cosolutes that are lost in the presence of the CG closing base pair. These results reveal that relatively small structural changes could influence how neutral cosolutes tune the stability and function of secondary structure motifs in vivo.
Collapse
Affiliation(s)
- Kaethe N. Leonard
- Department of Chemistry and Biochemistry, State University of New York, The College at Brockport, Brockport, NY, United States of America
| | - Joshua M. Blose
- Department of Chemistry and Biochemistry, State University of New York, The College at Brockport, Brockport, NY, United States of America
| |
Collapse
|
12
|
Lerner E, Cordes T, Ingargiol A, Alhadid Y, Chung S, Michalet X, Weiss S. Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer. Science 2018; 359:eaan1133. [PMID: 29348210 PMCID: PMC6200918 DOI: 10.1126/science.aan1133] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical structural biology can only provide static snapshots of biomacromolecules. Single-molecule Förster resonance energy transfer (smFRET) paved the way for studying dynamics in macromolecular structures under biologically relevant conditions. Since its first implementation in 1996, smFRET experiments have confirmed previously hypothesized mechanisms and provided new insights into many fundamental biological processes, such as DNA maintenance and repair, transcription, translation, and membrane transport. We review 22 years of contributions of smFRET to our understanding of basic mechanisms in biochemistry, molecular biology, and structural biology. Additionally, building on current state-of-the-art implementations of smFRET, we highlight possible future directions for smFRET in applications such as biosensing, high-throughput screening, and molecular diagnostics.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Antonino Ingargiol
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yazan Alhadid
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Xavier Michalet
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Bonilla S, Limouse C, Bisaria N, Gebala M, Mabuchi H, Herschlag D. Single-Molecule Fluorescence Reveals Commonalities and Distinctions among Natural and in Vitro-Selected RNA Tertiary Motifs in a Multistep Folding Pathway. J Am Chem Soc 2017; 139:18576-18589. [PMID: 29185740 PMCID: PMC5748328 DOI: 10.1021/jacs.7b08870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Decades
of study of the RNA folding problem have revealed that
diverse and complex structured RNAs are built from a common set of
recurring structural motifs, leading to the perspective that a generalizable
model of RNA folding may be developed from understanding of the folding
properties of individual structural motifs. We used single-molecule
fluorescence to dissect the kinetic and thermodynamic properties of
a set of variants of a common tertiary structural motif, the tetraloop/tetraloop-receptor
(TL/TLR). Our results revealed a multistep TL/TLR folding pathway
in which preorganization of the ubiquitous AA-platform submotif precedes
the formation of the docking transition state and tertiary A-minor
hydrogen bond interactions form after the docking transition state.
Differences in ion dependences between TL/TLR variants indicated the
occurrence of sequence-dependent conformational rearrangements prior
to and after the formation of the docking transition state. Nevertheless,
varying the junction connecting the TL/TLR produced a common kinetic
and ionic effect for all variants, suggesting that the global conformational
search and compaction electrostatics are energetically independent
from the formation of the tertiary motif contacts. We also found that in vitro-selected variants, despite their similar stability
at high Mg2+ concentrations, are considerably less stable
than natural variants under near-physiological ionic conditions, and
the occurrence of the TL/TLR sequence variants in Nature correlates
with their thermodynamic stability in isolation. Overall, our findings
are consistent with modular but complex energetic properties of RNA
structural motifs and will aid in the eventual quantitative description
of RNA folding from its secondary and tertiary structural elements.
Collapse
Affiliation(s)
- Steve Bonilla
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Charles Limouse
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Namita Bisaria
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Magdalena Gebala
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Hideo Mabuchi
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Daniel Herschlag
- Department of Chemical Engineering, ‡Department of Applied Physics, §Department of Biochemistry, ∥Department of Chemistry, ⊥Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
14
|
Mukherjee D, Bhattacharyya D. Intrinsic structural variability in GNRA-like tetraloops: insight from molecular dynamics simulation. J Mol Model 2017; 23:300. [DOI: 10.1007/s00894-017-3470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
|
15
|
Roy S, Lammert H, Hayes RL, Chen B, LeBlanc R, Dayie TK, Onuchic JN, Sanbonmatsu KY. A magnesium-induced triplex pre-organizes the SAM-II riboswitch. PLoS Comput Biol 2017; 13:e1005406. [PMID: 28248966 PMCID: PMC5352136 DOI: 10.1371/journal.pcbi.1005406] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/15/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022] Open
Abstract
Our 13C- and 1H-chemical exchange saturation transfer (CEST) experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding free energy landscape of the SAM-II riboswitch. We use this analysis to predict that magnesium ions remodel the landscape, shifting the equilibrium away from the extended, partially unfolded state towards a compact, pre-organized conformation that resembles the ligand-bound state. Our CEST and SAXS experiments, at different magnesium ion concentrations, quantitatively confirm our simulation results, demonstrating that magnesium ions induce collapse and pre-organization. Agreement between theory and experiment bolsters microscopic interpretation of our simulations, which shows that triplex formation between helix P2b and loop L1 is highly sensitive to magnesium and plays a key role in pre-organization. Pre-organization of the SAM-II riboswitch allows rapid detection of ligand with high selectivity, which is important for biological function.
Collapse
Affiliation(s)
- Susmita Roy
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Heiko Lammert
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Ryan L. Hayes
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Bin Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Regan LeBlanc
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Departments of Physics and Astronomy, Chemistry, and Biosciences, Rice University, Houston, Texas, United States of America
- * E-mail: (JNO); (KYS)
| | - Karissa Y. Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- New Mexico Consortium, Los Alamos, New Mexico, United States of America
- * E-mail: (JNO); (KYS)
| |
Collapse
|
16
|
Gebala M, Bonilla S, Bisaria N, Herschlag D. Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere? J Am Chem Soc 2016; 138:10925-34. [PMID: 27479701 PMCID: PMC5010015 DOI: 10.1021/jacs.6b04289] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 01/14/2023]
Abstract
Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation. However, the computational models have not been independently tested, and the experimentally observed effects were small. Here, we evaluate a computational model of ion size effects by experimentally testing a blind prediction made from that model, and we present additional experimental results that extend our understanding of the ion atmosphere. Giambasu et al. developed and implemented a three-dimensional reference interaction site (3D-RISM) model for monovalent cations surrounding DNA and RNA helices, and this model predicts that Na(+) would outcompete Cs(+) by 1.8-2.1-fold; i.e., with Cs(+) in 2-fold excess of Na(+) the ion atmosphere would contain an equal number of each cation (Nucleic Acids Res. 2015, 43, 8405). However, our ion counting experiments indicate that there is no significant preference for Na(+) over Cs(+). There is an ∼25% preferential occupancy of Li(+) over larger cations in the ion atmosphere but, counter to general expectations from existing models, no size dependence for the other alkali metal ions. Further, we followed the folding of the P4-P6 RNA and showed that differences in folding with different alkali metal ions observed at high concentration arise from cation-anion interactions and not cation size effects. Overall, our results provide a critical test of a computational prediction, fundamental information about ion atmosphere properties, and parameters that will aid in the development of next-generation nucleic acid computational models.
Collapse
Affiliation(s)
- Magdalena Gebala
- Department
of Biochemistry, Stanford University, Stanford, California 94305, United States
| | - Steve Bonilla
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Namita Bisaria
- Department
of Biochemistry, Stanford University, Stanford, California 94305, United States
| | - Daniel Herschlag
- Department
of Biochemistry, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- ChEM-H
Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
17
|
Abstract
Metal ions are essential cofactors for the structure and functions of nucleic acids. Yet, the early discovery in the 70s of the crucial role of Mg(2+) in stabilizing tRNA structures has occulted for a long time the importance of monovalent cations. Renewed interest in these ions was brought in the late 90s by the discovery of specific potassium metal ions in the core of a group I intron. Their importance in nucleic acid folding and catalytic activity is now well established. However, detection of K(+) and Na(+) ions is notoriously problematic and the question about their specificity is recurrent. Here we review the different methods that can be used to detect K(+) and Na(+) ions in nucleic acid structures such as X-ray crystallography, nuclear magnetic resonance or molecular dynamics simulations. We also discuss specific versus non-specific binding to different structures through various examples.
Collapse
Affiliation(s)
- Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC, CNRS, 15 rue René Descartes, F-67084, Strasbourg, France.
| |
Collapse
|
18
|
Gebala M, Giambasu GM, Lipfert J, Bisaria N, Bonilla S, Li G, York DM, Herschlag D. Cation-Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting. J Am Chem Soc 2015; 137:14705-15. [PMID: 26517731 PMCID: PMC4739826 DOI: 10.1021/jacs.5b08395] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that "count" the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation-anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation-anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4-P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new results leads to a reevaluation of the strengths and limitations of Poisson-Boltzmann theory and highlights the need for next-generation atomic-level models of the ion atmosphere.
Collapse
Affiliation(s)
- Magdalena Gebala
- Department of Biochemistry, Stanford University, Stanford, California 94305, United States
| | - George M. Giambasu
- BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, Ludwig Maximilian University of Munich, 80799 Munich, Germany
| | - Namita Bisaria
- Department of Biochemistry, Stanford University, Stanford, California 94305, United States
| | - Steve Bonilla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Guangchao Li
- School of Earth, Energy and Environment Sciences, Stanford University, Stanford, California 94305, United States
| | - Darrin M. York
- BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|