1
|
Sun X, Li Y, He Y, Cheng L, Wang L, Wei J, Chen J, Du L, Shen Z, Xie Y, Midgley AC, Jiang W, Yoshida S. Aberrant expression of GTPase-activating protein ARAP1 triggers circular dorsal ruffles associated with malignancy in hepatocellular carcinoma Hep3B cells. Cell Commun Signal 2025; 23:75. [PMID: 39934854 PMCID: PMC11816549 DOI: 10.1186/s12964-025-02084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Circular dorsal ruffles (CDRs) are large and rounded membrane ruffles that function as precursors of macropinocytosis. We recently reported that CDRs form in Hep3B hepatocellular carcinoma (HCC) cells, but not in Huh7 and HepG2 HCC cells or LO2 cells, suggesting that an unknown molecular mechanism implicates CDRs in Hep3B malignancy through macropinocytosis uptake of excessive extracellular nutrients. In this study, we investigated the cellular role and the mechanism of CDRs in Hep3B cells by focusing on the GTPase-activating protein ARAP1. METHODS ARAP1 knock-out (KO) cells were generated. Confocal microscopy and high-resolution scanning electron microscopy (SEM) were used for identification of the target proteins and structure analysis, respectively. Proteasome inhibitor MG132, mitochondrial function inhibitor CCCP, ARF1 inhibitor Golgicide A, and macropinocytosis inhibitor EIPA were used to investigate the molecular mechanism. Cell proliferation and Transwell migration/invasion assays were used to investigate the role of ARAP1 in cellular malignancy. RESULTS ARAP1 was localized to CDRs, which had reduced size following ARAP1 KO. CDRs comprised small vertical lamellipodia, the expression pattern of which was disrupted in ARAP1 KO cells. Extracellular solute uptake, rate of cell growth, and malignant potential were attenuated in KO cells. ARAP1 was also localized to mitochondria in Hep3B cells but not in the control cell lines. Mitochondrial fission protein was increased in KO cells. CCCP treatment blocked CDRs in Hep3B cells but not in controls. Surprisingly, ARAP1 expression level in Hep3B cells was lower than in Huh7, HepG2, and LO2 cells. MG132 treatment increased the ARAP1 levels in Hep3B cells, but not in Huh7 cells, revealing that ARAP1 is actively degraded in Hep3B cells. CONCLUSIONS These results strongly suggest that the aberrant expression of ARAP1 in Hep3B cells modulates CDRs via mitochondrial function, thereby resulting in excess uptake of nutrients as an initial event in cancer development. Based on these findings, we propose that the molecular mechanisms underlying the formation of CDRs, focusing on ARAP1, may serve as an effective therapeutic target in some types of HCC and cancers.
Collapse
Affiliation(s)
- Xiaowei Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yanan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yuxin He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Longjiao Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Li Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Jinzi Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Jianan Chen
- Organ Transplant Department, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Linxuan Du
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Organ Transplant Department, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| | - Yan Xie
- Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300384, China.
- Liver Transplantation Department, Tianjin First Center Hospital, Tianjin, China.
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Wentao Jiang
- Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300384, China.
- Liver Transplantation Department, Tianjin First Center Hospital, Tianjin, China.
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China.
- Nankai International Advanced Research Institute, Shenzhen, China.
- Nankai University College of Life Sciences, Tianjin, 300071, China.
| |
Collapse
|
2
|
Sun X, Li Y, He Y, Cheng L, Wei J, Du L, Shen Z, Yoshida S. GTPase-activating protein ARAP1 regulates circular dorsal ruffles as a nutrient uptake mechanism in the Hep3B hepatocellular carcinoma cell line. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573800. [PMID: 38260345 PMCID: PMC10802275 DOI: 10.1101/2023.12.31.573800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Circular dorsal ruffles (CDRs), large-scale rounded membrane ruffles, function as precursors of macropinocytosis. We recently reported that CDRs are exposed in the Hep3B hepatocellular carcinoma cell line, while not in other hepatocellular carcinoma cell lines, indicating that the CDRs in Hep3B are associated with malignant potential. In this study, we investigated the cellular function of CDRs in Hep3B cells by focusing on the molecular mechanisms of the GTPase-activating protein ARAP1. ARAP1 was localized to the CDRs, the sizes of which were reduced by deletion of this protein. High-resolution scanning electron micrographs revealed that CDRs comprise small vertical lamellipodia, the expression pattern of which was disrupted in ARAP1 KO cells. Extracellular solute uptake, rate of cell growth, and malignant potential were attenuated in the KO cells. ARAP1 is also localized in Hep3B cell mitochondria, although not in those of the Huh7 hepatocellular carcinoma cell line. On the basis of these findings, we propose that the aberrant expression of ARAP1 in Hep3B cells modulates CDRs, thereby resulting in an excess uptake of nutrients as an initial event in cancer development. SUMMARY STATEMENT ARAP1 regulates circular dorsal ruffles (CDRs) in the Hep3B HCC cell line and deletion of this protein attenuates malignant potential, thereby indicating the involvement of CDRs in cancer development.
Collapse
|
3
|
Ramos-Miguel A, Barakauskas V, Alamri J, Miyauchi M, Barr AM, Beasley CL, Rosoklija G, Mann JJ, Dwork AJ, Moradian A, Morin GB, Honer WG. The SNAP25 Interactome in Ventromedial Caudate in Schizophrenia Includes the Mitochondrial Protein ARF1. Neuroscience 2019; 420:97-111. [PMID: 30610939 DOI: 10.1016/j.neuroscience.2018.12.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
Abnormalities of SNAP25 (synaptosome-associated protein 25) amount and protein-protein interactions occur in schizophrenia, and may contribute to abnormalities of neurotransmitter release in patients. However, presynaptic terminal function depends on multiple subcellular mechanisms, including energy provided by mitochondria. To explore the SNAP25 interactome in schizophrenia, we immunoprecipitated SNAP25 along with interacting proteins from the ventromedial caudate of 15 cases of schizophrenia and 13 controls. Proteins were identified with mass spectrometry-based proteomics. As well as 15 SNARE- (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) associated proteins, we identified 17 mitochondria-associated and four other proteins. The mitochondrial small GTPase ARF1 (ADP-ribosylation factor 1) was identified in eight schizophrenia SNAP25 immunoprecipitates and none from controls (P = 0.004). Although the ARF1-SNAP25 interaction may be increased, immunoblotting demonstrated 21% lower ARF1-21 (21 kiloDaltons) in schizophrenia samples (P = 0.04). In contrast, the mitochondrial protein UQCRC1 (ubiquinol-cytochrome c reductase core protein 1) did not differ. Lower ARF1-21 levels were associated with the previously reported increased SNAP25-syntaxin interaction in schizophrenia (r = -0.39, P = 0.04). Additional immunoprecipitation studies confirmed the ARF1-21-SNAP25 interaction, independent of UQCRC1. Both ARF1 and SNAP25 were localized to synaptosomes. Confocal microscopy demonstrated co-localization of ARF1 and SNAP25, and further suggested fivefold enrichment of ARF1 in synaptosomes containing an excitatory marker (vesicular glutamate transporter) compared with synaptosomes containing an inhibitory marker (vesicular GABA transporter). The present findings suggest an association between abnormalities of SNARE proteins involved with vesicular neurotransmission and the mitochondrial protein ARF1 that may contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Alfredo Ramos-Miguel
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada; Department of Pharmacology, University of the Basque Country, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barrio Sarriena, s/n, 48940 Leioa, Biscay, Spain
| | - Vilte Barakauskas
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, 2J9-4500 Oak St., Vancouver, BC V6H 3B1, Canada
| | - Jehan Alamri
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Masatoshi Miyauchi
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Alasdair M Barr
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Anesthesiology, Pharmacology, & Therapeutics, University of British Columbia, 2176 Health Sciences Mall Vancouver, BC V6T 1Z3, Canada
| | - Clare L Beasley
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Annie Moradian
- Department of Medical Genetics, University of British Columbia, C234-4500 Oak St., Vancouver, BC V6H 3B1, Canada
| | - Gregg B Morin
- Department of Medical Genetics, University of British Columbia, C234-4500 Oak St., Vancouver, BC V6H 3B1, Canada
| | - William G Honer
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada.
| |
Collapse
|
4
|
Zhang SM, Buddenborg SK, Adema CM, Sullivan JT, Loker ES. Altered Gene Expression in the Schistosome-Transmitting Snail Biomphalaria glabrata following Exposure to Niclosamide, the Active Ingredient in the Widely Used Molluscicide Bayluscide. PLoS Negl Trop Dis 2015; 9:e0004131. [PMID: 26452273 PMCID: PMC4599737 DOI: 10.1371/journal.pntd.0004131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/09/2015] [Indexed: 11/18/2022] Open
Abstract
In view of the call by the World Health Organization (WHO) for elimination of schistosomiasis as a public health problem by 2025, use of molluscicides in snail control to supplement chemotherapy–based control efforts is likely to increase in the coming years. The mechanisms of action of niclosamide, the active ingredient in the most widely used molluscicides, remain largely unknown. A better understanding of its toxicology at the molecular level will both improve our knowledge of snail biology and may offer valuable insights into the development of better chemical control methods for snails. We used a recently developed Biomphalaria glabrata oligonucleotide microarray (31K features) to investigate the effect of sublethal exposure to niclosamide on the transcriptional responses of the snail B. glabrata relative to untreated snails. Most of the genes highly upregulated following exposure of snails to niclosamide are involved in biotransformation of xenobiotics, including genes encoding cytochrome P450s (CYP), glutathione S-transferases (GST), and drug transporters, notably multi-drug resistance protein (efflux transporter) and solute linked carrier (influx transporter). Niclosamide also induced stress responses. Specifically, six heat shock protein (HSP) genes from three super-families (HSP20, HSP40 and HSP70) were upregulated. Genes encoding ADP-ribosylation factor (ARF), cAMP response element-binding protein (CREB) and coatomer, all of which are involved in vesicle trafficking in the Golgi of mammalian cells, were also upregulated. Lastly, a hemoglobin gene was downregulated, suggesting niclosamide may affect oxygen transport. Our results show that snails mount substantial responses to sublethal concentrations of niclosamide, at least some of which appear to be protective. The topic of how niclosamide’s lethality at higher concentrations is determined requires further study. Given that niclosamide has also been used as an anthelmintic drug for decades and has been found to have activity against several types of cancer, our findings may be of relevance in understanding how both parasites and neoplastic cells respond to this compound. Schistosomes are snail-transmitted parasites that continue to infect over 230 million people worldwide and cause the disease schistosomiasis. Currently there is no effective vaccine against the disease. Control programs have relied primarily on use of chemotherapy with praziquantel to eliminate adult worms from infected people. An increasing body of evidence, however, suggests that praziquantel-based control programs are not likely to be sufficient to achieve sustainable transmission control. Snail control achieved by focal use of molluscicides, especially in combination with other methods like chemotherapy, sanitation and health education, offers considerable promise for reduction of disease transmission. Consequently, use of molluscicides in snail control is likely to increase in the coming years. We undertook a microarray study to assess transcriptional responses to niclosamide, the active ingredient in commonly-used molluscicides, in the schistosome-transmitting snail Biomphalaria glabrata. We show that niclosamide activates components in snails’ pathways known to be involved in biotransformation of xenobiotics and stress responses. We suggest that major alterations in vesicle trafficking and interference with oxygen transport also follow niclosamide exposure. The results contribute to our understanding of molecular impacts of niclosamide exposure on snails, and provide a basis for further studies to define the mode of action of niclosamide and other molluscicides in the future.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology, Department of Biology, The University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| | - Sarah K. Buddenborg
- Center for Evolutionary and Theoretical Immunology, Department of Biology, The University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Coen M. Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, The University of New Mexico, Albuquerque, New Mexico, United States of America
| | - John T. Sullivan
- Department of Biology, University of San Francisco, San Francisco, California, United States of America
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, The University of New Mexico, Albuquerque, New Mexico, United States of America
- Parasite Division, Museum of Southwestern Biology, Department of Biology, The University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|