1
|
Terrar DA. Calcium flux balance across cell membranes in the heart: important unanswered questions with implications for the role of ryanodine receptors. J Physiol 2024; 602:4687-4691. [PMID: 39097828 DOI: 10.1113/jp287223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024] Open
Affiliation(s)
- Derek A Terrar
- Department of Pharmacology, University of Oxford, Oxford, UK
- UCL Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
2
|
Wu Y, Zhao W, Ye F, Huang S, Chen H, Zhou R, Jiang W. Tetrandrine attenuates left ventricular dysfunction in rats with myocardial infarction. Exp Ther Med 2020; 21:119. [PMID: 33335582 PMCID: PMC7739846 DOI: 10.3892/etm.2020.9551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/16/2020] [Indexed: 12/01/2022] Open
Abstract
The present study aimed to determine whether tetrandrine could attenuate left ventricular dysfunction and remodeling in rats with myocardial infarction. Sprague-Dawley rats were randomly divided into six groups (n=5/group) as follows: i) Healthy control group; ii) sham operation group; iii) myocardial infarction model group; iv) myocardial infarction + low-dose tetrandrine group (10 mg/kg); v) myocardial infarction + medium-dose tetrandrine group (50 mg/kg); and vi) myocardial infarction + high-dose tetrandrine group (80 mg/kg). Left ventricular end-diastolic diameter (LVIDd), left ventricular end-systolic diameter (LVIDs), ejection fraction (EF%) and left ventricular fractional shortening rate (FS%) were measured using ultrasonography. The pathological changes were observed by hematoxylin and eosin (H&E) staining. Left ventricular tissue section TUNEL staining was also performed. Furthermore, the triglyceride (TG), total cholesterol (TC), high density lipoprotein (HDL) and low-density lipoprotein (LDL) in the arterial blood were examined by biochemical testing. Expression levels of intracellular Ca2+ homeostasis-related proteins including ryanodine receptor calmodulin, CaM-dependent protein kinase IIδ, protein kinase A, FK506 binding protein 12.6 were measured using western blot analysis. Ultrasonography results showed that in the myocardial infarction model rats, the levels of LVIDd and LVIDs were significantly higher; however, the levels of EF% and FS% were lower compared with those in the sham operation group, which was alleviated by tetrandrine. H&E results showed that tetrandrine alleviated the pathological characteristics of myocardial infarction model rats. Furthermore, tetrandrine significantly inhibited myocardial cell apoptosis in rats with myocardial infarction. Tetrandrine significantly inhibited the levels of TG, TC and LDL and increased the levels of HDL in the arterial blood of rats with myocardial infarction. These findings revealed that tetrandrine could attenuate left ventricular dysfunction in rats with myocardial infarction, which might be associated with intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Youyang Wu
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wei Zhao
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fanhao Ye
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shiwei Huang
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hao Chen
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Rui Zhou
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenbing Jiang
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
3
|
Chen J, Xu S, Zhou W, Wu L, Wang L, Li W. Exendin-4 Reduces Ventricular Arrhythmia Activity and Calcium Sparks-Mediated Sarcoplasmic Reticulum Ca Leak in Rats with Heart Failure. Int Heart J 2020; 61:145-152. [DOI: 10.1536/ihj.19-327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jingjing Chen
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University
| | - Shunen Xu
- Department of Orthopedic, The Affiliated Hospital of Guizhou Medical University
| | - Wei Zhou
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University
| | - Lirong Wu
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University
| | - Long Wang
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University
| | - Wei Li
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University
| |
Collapse
|
4
|
Abstract
The aim of this chapter is to discuss evidence concerning the many roles of calcium ions, Ca2+, in cell signaling pathways that control heart function. Before considering details of these signaling pathways, the control of contraction in ventricular muscle by Ca2+ transients accompanying cardiac action potentials is first summarized, together with a discussion of how myocytes from the atrial and pacemaker regions of the heart diverge from this basic scheme. Cell signaling pathways regulate the size and timing of the Ca2+ transients in the different heart regions to influence function. The simplest Ca2+ signaling elements involve enzymes that are regulated by cytosolic Ca2+. Particularly important examples to be discussed are those that are stimulated by Ca2+, including Ca2+-calmodulin-dependent kinase (CaMKII), Ca2+ stimulated adenylyl cyclases, Ca2+ stimulated phosphatase and NO synthases. Another major aspect of Ca2+ signaling in the heart concerns actions of the Ca2+ mobilizing agents, inositol trisphosphate (IP3), cADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate, (NAADP). Evidence concerning roles of these Ca2+ mobilizing agents in different regions of the heart is discussed in detail. The focus of the review will be on short term regulation of Ca2+ transients and contractile function, although it is recognized that Ca2+ regulation of gene expression has important long term functional consequences which will also be briefly discussed.
Collapse
|
5
|
Fischer TH, Eiringhaus J, Dybkova N, Saadatmand A, Pabel S, Weber S, Wang Y, Köhn M, Tirilomis T, Ljubojevic S, Renner A, Gummert J, Maier LS, Hasenfuß G, El-Armouche A, Sossalla S. Activation of protein phosphatase 1 by a selective phosphatase disrupting peptide reduces sarcoplasmic reticulum Ca 2+ leak in human heart failure. Eur J Heart Fail 2018; 20:1673-1685. [PMID: 30191648 DOI: 10.1002/ejhf.1297] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Disruption of Ca2+ homeostasis is a key pathomechanism in heart failure. CaMKII-dependent hyperphosphorylation of ryanodine receptors in the sarcoplasmic reticulum (SR) increases the arrhythmogenic SR Ca2+ leak and depletes SR Ca2+ stores. The contribution of conversely acting serine/threonine phosphatases [protein phosphatase 1 (PP1) and 2A (PP2A)] is largely unknown. METHODS AND RESULTS Human myocardium from three groups of patients was investigated: (i) healthy controls (non-failing, NF, n = 8), (ii) compensated hypertrophy (Hy, n = 16), and (iii) end-stage heart failure (HF, n = 52). Expression of PP1 was unchanged in Hy but greater in HF compared to NF while its endogenous inhibitor-1 (I-1) was markedly lower expressed in both compared to NF, suggesting increased total PP1 activity. In contrast, PP2A expression was lower in Hy and HF compared to NF. Ca2+ homeostasis was severely disturbed in HF compared to Hy signified by a higher SR Ca2+ leak, lower systolic Ca2+ transients as well as a decreased SR Ca2+ load. Inhibition of PP1/PP2A by okadaic acid increased SR Ca2+ load and systolic Ca2+ transients but severely aggravated diastolic SR Ca2+ leak and cellular arrhythmias in Hy. Conversely, selective activation of PP1 by a PP1-disrupting peptide (PDP3) in HF potently reduced SR Ca2+ leak as well as cellular arrhythmias and, importantly, did not compromise systolic Ca2+ release and SR Ca2+ load. CONCLUSION This study is the first to functionally investigate the role of PP1/PP2A for Ca2+ homeostasis in diseased human myocardium. Our data indicate that a modulation of phosphatase activity potently impacts Ca2+ cycling properties. An activation of PP1 counteracts increased kinase activity in heart failure and successfully seals the arrhythmogenic SR Ca2+ leak. It may thus represent a promising future antiarrhythmic therapeutic approach.
Collapse
Affiliation(s)
- Thomas H Fischer
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany.,Medizinische Klinik II, Kardiologie, Angiologie, Pneumologie, Klinikum Coburg, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany
| | - Jörg Eiringhaus
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany
| | - Nataliya Dybkova
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany
| | - Alireza Saadatmand
- Abt. Molekulare Kardiologie und Epigenetik, Universitätsklinikum Heidelberg, Germany
| | - Steffen Pabel
- Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany.,Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Silvio Weber
- Institut für Pharmakologie, Technische Universität Dresden, Germany
| | - Yansong Wang
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.,Centre for Biological Signalling Studies (BIOSS) and Faculty of Biology, University of Freiburg, Germany
| | - Theodor Tirilomis
- Klinik für Thorax-, Herz-, Gefäßchirurgie, Georg-August-Universität Göttingen, Germany
| | - Senka Ljubojevic
- Abteilung für Kardiologie, Medizinische Universität Graz, Austria
| | - André Renner
- Abteilung für Herz- und Transplantationschirurgie, Herz- und Diabeteszentrum, Bad Oeynhausen, Germany
| | - Jan Gummert
- Abteilung für Herz- und Transplantationschirurgie, Herz- und Diabeteszentrum, Bad Oeynhausen, Germany
| | - Lars S Maier
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Gerd Hasenfuß
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany
| | - Ali El-Armouche
- Institut für Pharmakologie, Technische Universität Dresden, Germany
| | - Samuel Sossalla
- Klinik für Kardiologie und Pneumologie, Georg-August-Universität Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Germany.,Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| |
Collapse
|
6
|
Wang L, Xu M, Li Z, Shi M, Zhou X, Jiang X, Bryant J, Balk S, Ma J, Isaacs W, Xu X. Calcium and CaSR/IP3R in prostate cancer development. Cell Biosci 2018. [DOI: 10.1186/s13578-018-0217-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
7
|
Greiser M. Calcium signalling silencing in atrial fibrillation. J Physiol 2017; 595:4009-4017. [PMID: 28332202 DOI: 10.1113/jp273045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/05/2017] [Indexed: 01/19/2023] Open
Abstract
Subcellular calcium signalling silencing is a novel and distinct cellular and molecular adaptive response to rapid cardiac activation. Calcium signalling silencing develops during short-term sustained rapid atrial activation as seen clinically during paroxysmal atrial fibrillation (AF). It is the first 'anti-arrhythmic' adaptive response in the setting of AF and appears to counteract the maladaptive changes that lead to intracellular Ca2+ signalling instability and Ca2+ -based arrhythmogenicity. Calcium signalling silencing results in a failed propagation of the [Ca2+ ]i signal to the myocyte centre both in patients with AF and in a rabbit model. This adaptive mechanism leads to a substantial reduction in the expression levels of calcium release channels (ryanodine receptors, RyR2) in the sarcoplasmic reticulum, and the frequency of Ca2+ sparks and arrhythmogenic Ca2+ waves remains low. Less Ca2+ release per [Ca2+ ]i transient, increased fast Ca2+ buffering strength, shortened action potentials and reduced L-type Ca2+ current contribute to a substantial reduction of intracellular [Na+ ]. These features of Ca2+ signalling silencing are distinct and in contrast to the changes attributed to Ca2+ -based arrhythmogenicity. Some features of Ca2+ signalling silencing prevail in human AF suggesting that the Ca2+ signalling 'phenotype' in AF is a sum of Ca2+ stabilizing (Ca2+ signalling silencing) and Ca2+ destabilizing (arrhythmogenic unstable Ca2+ signalling) factors. Calcium signalling silencing is a part of the mechanisms that contribute to the natural progression of AF and may limit the role of Ca2+ -based arrhythmogenicity after the onset of AF.
Collapse
Affiliation(s)
- Maura Greiser
- Center for Biomedical Engineering and Technology and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Ding Z, Peng J, Liang Y, Yang C, Jiang G, Ren J, Zou Y. Evolution of Vertebrate Ryanodine Receptors Family in Relation to Functional Divergence and Conservation. Int Heart J 2017; 58:969-977. [DOI: 10.1536/ihj.16-558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
- Institute of Biomedical Sciences, Fudan University
| | - Juan Peng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Yanyan Liang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
- Department of Cardiology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Guoliang Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
- University of Wyoming College of Health Sciences
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University
- Institute of Biomedical Sciences, Fudan University
| |
Collapse
|
10
|
Lubbers ER, Mohler PJ. Roles and regulation of protein phosphatase 2A (PP2A) in the heart. J Mol Cell Cardiol 2016; 101:127-133. [PMID: 27832939 DOI: 10.1016/j.yjmcc.2016.11.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 01/21/2023]
Abstract
Reversible protein phosphorylation is central to a variety of cardiac processes including excitation-contraction coupling, Ca2+ handling, cell metabolism, myofilament regulation, and cell-cell communication. While kinase pathways linked with elevated adrenergic signaling have been a major focus for the cardiovascular field over the past half century, new findings support the critical role of protein phosphatases in both health and disease. Protein phosphatase 2A (PP2A) is a central cardiac phosphatase that regulates diverse myocyte functions through a host of target molecules. Notably, multiple mechanisms have evolved to dynamically tune PP2A function, including modulation of the composition, phosphorylation, methylation, and localization of PP2A holoenzyme populations. Further, aberrations in this regulation of PP2A function may contribute to cardiac pathophysiology. In summary, PP2A is a critical regulatory molecule in both health and disease, with a myriad of targets in heart. Based on their unique structure, localization, and regulatory properties, PP2A subunits represent exciting therapeutic targets to modulate altered adrenergic signaling in cardiovascular disease.
Collapse
Affiliation(s)
- Ellen R Lubbers
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| |
Collapse
|
11
|
Briggs CA, Chakroborty S, Stutzmann GE. Emerging pathways driving early synaptic pathology in Alzheimer's disease. Biochem Biophys Res Commun 2016; 483:988-997. [PMID: 27659710 DOI: 10.1016/j.bbrc.2016.09.088] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/25/2022]
Abstract
The current state of the AD research field is highly dynamic is some respects, while seemingly stagnant in others. Regarding the former, our current lack of understanding of initiating disease mechanisms, the absence of effective treatment options, and the looming escalation of AD patients is energizing new research directions including a much-needed re-focusing on early pathogenic mechanisms, validating novel targets, and investigating relevant biomarkers, among other exciting new efforts to curb disease progression and foremost, preserve memory function. With regard to the latter, the recent disappointing series of failed Phase III clinical trials targeting Aβ and APP processing, in concert with poor association between brain Aβ levels and cognitive function, have led many to call for a re-evaluation of the primacy of the amyloid cascade hypothesis. In this review, we integrate new insights into one of the earliest described signaling abnormalities in AD pathogenesis, namely intracellular Ca2+ signaling disruptions, and focus on its role in driving synaptic deficits - which is the feature that does correlate with AD-associated memory loss. Excess Ca2+release from intracellular stores such as the endoplasmic reticulum (ER) has been well-described in cellular and animal models of AD, as well as human patients, and here we expand upon recent developments in ER-localized release channels such as the IP3R and RyR, and the recent emphasis on RyR2. Consistent with ER Ca2+ mishandling in AD are recent findings implicating aspects of SOCE, such as STIM2 function, and TRPC3 and TRPC6 levels. Other Ca2+-regulated organelles important in signaling and protein handling are brought into the discussion, with new perspectives on lysosomal regulation. These early signaling abnormalities are discussed in the context of synaptic pathophysiology and disruptions in synaptic plasticity with a particular emphasis on short-term plasticity deficits. Overall, we aim to update and expand the list of early neuronal signaling abnormalities implicated in AD pathogenesis, identify specific channels and organelles involved, and link these to proximal synaptic impairments driving the memory loss in AD. This is all within the broader goal of identifying novel therapeutic targets to preserve cognitive function in AD.
Collapse
Affiliation(s)
- Clark A Briggs
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|
12
|
Terentyev D, Hamilton S. Regulation of sarcoplasmic reticulum Ca 2+ release by serine-threonine phosphatases in the heart. J Mol Cell Cardiol 2016; 101:156-164. [PMID: 27585747 DOI: 10.1016/j.yjmcc.2016.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/17/2022]
Abstract
The amount and timing of Ca2+ release from the sarcoplasmic reticulum (SR) during cardiac cycle are the main determinants of cardiac contractility. Reversible phosphorylation of the SR Ca2+ release channel, ryanodine receptor type 2 (RyR2) is the central mechanism of regulation of Ca2+ release in cardiomyocytes. Three major serine-threonine phosphatases including PP1, PP2A and PP2B (calcineurin) have been implicated in modulation of RyR2 function. Changes in expression levels of these phosphatases, their activity and targeting to the RyR2 macromolecular complex were demonstrated in many animal models of cardiac disease and humans and are implicated in cardiac arrhythmia and heart failure. Here we review evidence in support of regulation of RyR2-mediated SR Ca2+ release by serine-threonine phosphatases and the role and mechanisms of dysregulation of phosphatases in various disease states.
Collapse
Affiliation(s)
- Dmitry Terentyev
- The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Department of Medicine, Cardiovascular Research Center, United States.
| | - Shanna Hamilton
- Cardiff University, School of Medicine, Wales Heart Research Institute, United Kingdom
| |
Collapse
|
13
|
Song S, Ayon RJ, Yuan JXJ. Ryanodine receptor-2: a necessity for gating store-operated Ca2+ channels. Cardiovasc Res 2016; 111:13-5. [PMID: 27229459 DOI: 10.1093/cvr/cvw108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Shanshan Song
- Department of Medicine, Division of Translational and Regenerative Medicine, Department of Physiology, The University of Arizona, 1295 North Martin Avenue, PO Box 210202, Tucson, AZ 85721-0202, USA
| | - Ramon J Ayon
- Department of Medicine, Division of Translational and Regenerative Medicine, Department of Physiology, The University of Arizona, 1295 North Martin Avenue, PO Box 210202, Tucson, AZ 85721-0202, USA
| | - Jason X-J Yuan
- Department of Medicine, Division of Translational and Regenerative Medicine, Department of Physiology, The University of Arizona, 1295 North Martin Avenue, PO Box 210202, Tucson, AZ 85721-0202, USA
| |
Collapse
|