1
|
Raizada S, Obukhov AG, Bharti S, Wadhonkar K, Baig MS. Pharmacological targeting of adaptor proteins in chronic inflammation. Inflamm Res 2024; 73:1645-1656. [PMID: 39052063 DOI: 10.1007/s00011-024-01921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Inflammation, a biological response of the immune system, can be triggered by various factors such as pathogens, damaged cells, and toxic compounds. These factors can lead to chronic inflammatory responses, potentially causing tissue damage or disease. Both infectious and non-infectious agents, as well as cell damage, activate inflammatory cells and trigger common inflammatory signalling pathways, including NF-κB, MAPK, and JAK-STAT pathways. These pathways are activated through adaptor proteins, which possess distinct protein binding domains that connect corresponding interacting molecules to facilitate downstream signalling. Adaptor molecules have gained widespread attention in recent years due to their key role in chronic inflammatory diseases. METHODS In this review, we explore potential pharmacological agents that can be used to target adaptor molecules in chronic inflammatory responses. A comprehensive analysis of published studies was performed to obtain information on pharmacological agents. CONCLUSION This review highlights the therapeutic strategies involving small molecule inhibitors, antisense oligonucleotide therapy, and traditional medicinal compounds that have been found to inhibit the inflammatory response and pro-inflammatory cytokine production. These strategies primarily block the protein-protein interactions in the inflammatory signaling cascade. Nevertheless, extensive preclinical studies and risk assessment methodologies are necessary to ensure their safety.
Collapse
Affiliation(s)
- Shubhi Raizada
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shreya Bharti
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India
| | - Khandu Wadhonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, 453552, MP, India.
| |
Collapse
|
2
|
Hammond FR, Lewis A, Pollara G, Tomlinson GS, Noursadeghi M, Kiss-Toth E, Elks PM. Tribbles1 is host protective during in vivo mycobacterial infection. eLife 2024; 13:e95980. [PMID: 38896446 PMCID: PMC11186633 DOI: 10.7554/elife.95980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Tuberculosis is a major global health problem and is one of the top 10 causes of death worldwide. There is a pressing need for new treatments that circumvent emerging antibiotic resistance. Mycobacterium tuberculosis parasitises macrophages, reprogramming them to establish a niche in which to proliferate, therefore macrophage manipulation is a potential host-directed therapy if druggable molecular targets could be identified. The pseudokinase Tribbles1 (Trib1) regulates multiple innate immune processes and inflammatory profiles making it a potential drug target in infections. Trib1 controls macrophage function, cytokine production, and macrophage polarisation. Despite wide-ranging effects on leukocyte biology, data exploring the roles of Tribbles in infection in vivo are limited. Here, we identify that human Tribbles1 is expressed in monocytes and is upregulated at the transcript level after stimulation with mycobacterial antigen. To investigate the mechanistic roles of Tribbles in the host response to mycobacteria in vivo, we used a zebrafish Mycobacterium marinum (Mm) infection tuberculosis model. Zebrafish Tribbles family members were characterised and shown to have substantial mRNA and protein sequence homology to their human orthologues. trib1 overexpression was host-protective against Mm infection, reducing burden by approximately 50%. Conversely, trib1 knockdown/knockout exhibited increased infection. Mechanistically, trib1 overexpression significantly increased the levels of proinflammatory factors il-1β and nitric oxide. The host-protective effect of trib1 was found to be dependent on the E3 ubiquitin kinase Cop1. These findings highlight the importance of Trib1 and Cop1 as immune regulators during infection in vivo and suggest that enhancing macrophage TRIB1 levels may provide a tractable therapeutic intervention to improve bacterial infection outcomes in tuberculosis.
Collapse
Affiliation(s)
- Ffion R Hammond
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| | - Amy Lewis
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| | - Gabriele Pollara
- Division of Infection & Immunity, University College LondonLondonUnited Kingdom
| | - Gillian S Tomlinson
- Division of Infection & Immunity, University College LondonLondonUnited Kingdom
| | - Mahdad Noursadeghi
- Division of Infection & Immunity, University College LondonLondonUnited Kingdom
| | - Endre Kiss-Toth
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
3
|
Singh P, Bajpai P, Maheshwari D, Chawla YM, Saini K, Reddy ES, Gottimukkala K, Nayak K, Gunisetty S, Aggarwal C, Jain S, Verma C, Singla P, Soneja M, Wig N, Murali-Krishna K, Chandele A. Functional and transcriptional heterogeneity within the massively expanding HLADR +CD38 + CD8 T cell population in acute febrile dengue patients. J Virol 2023; 97:e0074623. [PMID: 37855600 PMCID: PMC10688317 DOI: 10.1128/jvi.00746-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/17/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE CD8 T cells play a crucial role in protecting against intracellular pathogens such as viruses by eliminating infected cells and releasing anti-viral cytokines such as interferon gamma (IFNγ). Consequently, there is significant interest in comprehensively characterizing CD8 T cell responses in acute dengue febrile patients. Previous studies, including our own, have demonstrated that a discrete population of CD8 T cells with HLADR+ CD38+ phenotype undergoes massive expansion during the acute febrile phase of natural dengue virus infection. Although about a third of these massively expanding HLADR+ CD38+ CD8 T cells were also CD69high when examined ex vivo, only a small fraction of them produced IFNγ upon in vitro peptide stimulation. Therefore, to better understand such functional diversity of CD8 T cells responding to dengue virus infection, it is important to know the cytokines/chemokines expressed by these peptide-stimulated HLADR+CD38+ CD8 T cells and the transcriptional profiles that distinguish the CD69+IFNγ+, CD69+IFNγ-, and CD69-IFNγ- subsets.
Collapse
Affiliation(s)
- Prabhat Singh
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Deepti Maheshwari
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sivaram Gunisetty
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Charu Aggarwal
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shweta Jain
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Chaitanya Verma
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Paras Singla
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Soneja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
4
|
Li Y, Su G, Huang F, Zhu Y, Luo X, Kijlstra A, Yang P. Identification of differently expressed mRNAs by peripheral blood mononuclear cells in Vogt-Koyanagi-Harada disease. Genes Dis 2022; 9:1378-1388. [PMID: 35873021 PMCID: PMC9293694 DOI: 10.1016/j.gendis.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 11/29/2022] Open
Abstract
Vogt-Koyanagi-Harada disease (VKH) is a rare autoimmune disease characterized by diffuse and bilateral uveitis, alopecia, tinnitus, hearing loss, vitiligo and headache. The transcriptional expression pattern of peripheral blood mononuclear cells (PBMC) in VKH remains largely unknown. In this study, mRNA sequencing was conducted in PBMC from VKH patients with active uveitis before treatment (n = 7), the same patients after prednisone combined with cyclosporine treatment (n = 7) and healthy control subjects strictly matched with gender and age (n = 7). We found 118 differentially expressed genes (DEGs) between VKH patients and healthy control subjects, and 21 DEGs between VKH patients before and after treatment. TRIB1 was selected as a potential biomarker to monitor the development of VKH according to the mRNA sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to predict the possible biological functions and signaling pathways of DEGs. Neutrophil degranulation, peptidase regulator activity, secretory granule membrane, cellular response to peptide, growth factor binding and cell projection membrane were enriched as GO annotations of DEGs. Arachidonic acid metabolism and mitogen-activated protein kinase (MAPK) signaling pathway were potential signaling pathways involved in pathogenesis and drug response of VKH. A protein–protein interaction (PPI) network was constructed by STRING, and colony stimulating factor 1 receptor (CSF1R) was identified as the hubgene of all DEGs by Cytoscape. The cell type presumed to contribute to the aberrant expression of DEGs was analyzed with the use of publicly available single-cell sequencing data of PBMC from a healthy donor and single-cell sequencing dataset of monocytes from VKH patients. Our findings may help to decipher the underlying cellular and molecular pathogenesis of VKH and may lead novel therapeutic applications.
Collapse
Affiliation(s)
- Yujing Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, PR China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, PR China
| | - Fanfan Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, PR China
| | - Ying Zhu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, PR China
| | - Xiang Luo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, PR China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht 6211, the Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, PR China
| |
Collapse
|
5
|
Icariin represses the inflammatory responses and survival of rheumatoid arthritis fibroblast-like synoviocytes by regulating the TRIB1/TLR2/NF-kB pathway. Int Immunopharmacol 2022; 110:108991. [DOI: 10.1016/j.intimp.2022.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
|
6
|
Pitale PM, Saltykova IV, Adu-Agyeiwaah Y, Li Calzi S, Satoh T, Akira S, Gorbatyuk O, Boulton ME, Pardue MT, Garvey WT, Athar M, Grant MB, Gorbatyuk MS. Tribbles Homolog 3 Mediates the Development and Progression of Diabetic Retinopathy. Diabetes 2021; 70:1738-1753. [PMID: 33975909 PMCID: PMC8385618 DOI: 10.2337/db20-1268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/04/2021] [Indexed: 11/21/2022]
Abstract
The current understanding of the molecular pathogenesis of diabetic retinopathy does not provide a mechanistic link between early molecular changes and the subsequent progression of the disease. In this study, we found that human diabetic retinas overexpressed TRIB3 and investigated the role of TRIB3 in diabetic retinal pathobiology in mice. We discovered that TRIB3 controlled major molecular events in early diabetic retinas via HIF1α-mediated regulation of retinal glucose flux, reprogramming cellular metabolism, and governing of inflammatory gene expression. These early molecular events further defined the development of neurovascular deficit observed in mice with diabetic retinopathy. TRIB3 ablation in the streptozotocin-induced mouse model led to significant retinal ganglion cell survival and functional restoration accompanied by a dramatic reduction in pericyte loss and acellular capillary formation. Under hypoxic conditions, TRIB3 contributed to advanced proliferative stages by significant upregulation of GFAP and VEGF expression, thus controlling gliosis and aberrant vascularization in oxygen-induced retinopathy mouse retinas. Overall, our data reveal that TRIB3 is a master regulator of diabetic retinal pathophysiology that may accelerate the onset and progression of diabetic retinopathy to proliferative stages in humans and present TRIB3 as a potentially novel therapeutic target for diabetic retinopathy.
Collapse
Affiliation(s)
- Priyamvada M Pitale
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL
| | - Irina V Saltykova
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL
| | - Yvonne Adu-Agyeiwaah
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Takashi Satoh
- Department of Immune Regulation, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shizuo Akira
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Oleg Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL
| | - Michael E Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Machelle T Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology, and Atlanta VA Center of Excellence for Visual and Neurocognitive Rehabilitation
| | - W Timothy Garvey
- Department of Nutrition Sciences and Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Mohammad Athar
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The pseudokinase Tribbles-1 (TRIB1) remains the focus of intense research since genome-wide association studies (GWAS) associated it with multiple cardiometabolic traits in humans, including plasma lipids and atherosclerosis. This review highlights recent advances in understanding the function of TRIB1 and what outstanding questions remain. RECENT FINDINGS Studies performed in a myeloid-specific Trib1 mouse model show that Trib1 contributes to foam cell formation, underscoring the importance of continued research into tissue-specific functions of TRIB1. Investigations of TRIB1 function in a 3D hepatic organoid model demonstrate that hepatic TRIB1 functions elucidated in mouse models are recapitulated in these organoid systems. Lastly, a recent study showed berberine, an existing lipid-lowering drug, to be acting via a TRIB1-dependent mechanism, highlighting both a novel regulator of TRIB1 expression and the potential of studying TRIB1 through existing therapeutics. SUMMARY TRIB1 remains one of the more fascinating loci to arise from cardiometabolic GWAS, given the constellation of traits it associates with. As genetic studies continue to link TRIB1 to metabolic phenotypes, more functional research on tissue-specific TRIB1, regulation of TRIB1 and its function in current therapies, as well as the reproduction of results from mice in human contexts are all necessary to increase our understanding of TRIB1 and its relevance.
Collapse
Affiliation(s)
- Krista Y. Hu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, 10032
| | - Robert C. Bauer
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University, New York, NY, 10032
| |
Collapse
|
8
|
Mayoral-Varo V, Jiménez L, Link W. The Critical Role of TRIB2 in Cancer and Therapy Resistance. Cancers (Basel) 2021; 13:cancers13112701. [PMID: 34070799 PMCID: PMC8198994 DOI: 10.3390/cancers13112701] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The Tribbles proteins are members of CAMK Ser/Thr protein kinase family. They are evolutionary conserved pseudokinases found in most tissues of eukaryotic organisms. This ubiquitously expressed protein family is characterized by containing a catalytically deficient kinase domain which lacks amino acid residues required for the productive interaction with ATP and metal ions. Tribbles proteins exert their biological functions mainly through direct interaction with MAPKK and AKT proteins, therefore regulating important pathways involved in cell proliferation, apoptosis and differentiation. Due to the role of MAPKK and AKT signalling in the context of cancer development, Tribbles proteins have been recently considered as biomarkers of cancer progression. Furthermore, as the atypical pseudokinase domain retains a binding platform for substrates, Tribbles targeting provides an attractive opportunity for drug development. Abstract The Tribbles pseudokinases family consists of TRIB1, TRIB2, TRIB3 and STK40 and, although evolutionarily conserved, they have distinctive characteristics. Tribbles members are expressed in a context and cell compartment-dependent manner. For example, TRIB1 and TRIB2 have potent oncogenic activities in vertebrate cells. Since the identification of Tribbles proteins as modulators of multiple signalling pathways, recent studies have linked their expression with several pathologies, including cancer. Tribbles proteins act as protein adaptors involved in the ubiquitin-proteasome degradation system, as they bridge the gap between substrates and E3 ligases. Between TRIB family members, TRIB2 is the most ancestral member of the family. TRIB2 is involved in protein homeostasis regulation of C/EBPα, β-catenin and TCF4. On the other hand, TRIB2 interacts with MAPKK, AKT and NFkB proteins, involved in cell survival, proliferation and immune response. Here, we review the characteristic features of TRIB2 structure and signalling and its role in many cancer subtypes with an emphasis on TRIB2 function in therapy resistance in melanoma, leukemia and glioblastoma. The strong evidence between TRIB2 expression and chemoresistance provides an attractive opportunity for targeting TRIB2.
Collapse
|
9
|
Fang Y, Zekiy AO, Ghaedrahmati F, Timoshin A, Farzaneh M, Anbiyaiee A, Khoshnam SE. Tribbles homolog 2 (Trib2), a pseudo serine/threonine kinase in tumorigenesis and stem cell fate decisions. Cell Commun Signal 2021; 19:41. [PMID: 33794905 PMCID: PMC8015142 DOI: 10.1186/s12964-021-00725-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 02/08/2023] Open
Abstract
The family of Tribbles proteins play many critical nonenzymatic roles and regulate a wide range of key signaling pathways. Tribbles homolog 2 (Trib2) is a pseudo serine/threonine kinase that functions as a scaffold or adaptor in various physiological and pathological processes. Trib2 can interact with E3 ubiquitin ligases and control protein stability of downstream effectors. This protein is induced by mitogens and enhances the propagation of several cancer cells, including myeloid leukemia, liver, lung, skin, bone, brain, and pancreatic. Thus, Trib2 can be a predictive and valuable biomarker for the diagnosis and treatment of cancer. Recent studies have illustrated that Trib2 plays a major role in cell fate determination of stem cells. Stem cells have the capacity to self-renew and differentiate into specific cell types. Stem cells are important sources for cell-based regenerative medicine and drug screening. Trib2 has been found to increase the self-renewal ability of embryonic stem cells, the reprogramming efficiency of somatic cells, and chondrogenesis. In this review, we will focus on the recent advances of Trib2 function in tumorigenesis and stem cell fate decisions. Video abstract
Collapse
Affiliation(s)
- Yu Fang
- Anyang Center for Chemical and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, Henan, People's Republic of China. .,Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, Henan, People's Republic of China.
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, 61357-15794, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Warma A, Ndiaye K. Functional effects of Tribbles homolog 2 in bovine ovarian granulosa cells†. Biol Reprod 2020; 102:1177-1190. [PMID: 32159216 DOI: 10.1093/biolre/ioaa030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/12/2019] [Accepted: 03/07/2020] [Indexed: 12/19/2022] Open
Abstract
Tribbles homologs (TRIB) 1, 2, and 3 represent atypical members of the serine/threonine kinase superfamily. We previously identified TRIB2 as a differentially expressed gene in granulosa cells (GCs) of bovine preovulatory follicles. The current study aimed to further investigate TRIB2 regulation and study its function in the ovary. GCs were collected from follicles at different developmental stages: small antral follicles (SF), dominant follicles (DF) at day 5 of the estrous cycle, and hCG-induced ovulatory follicles (OFs). RT-qPCR analyses showed greater expression of TRIB2 in GC of DF as compared to OF and a significant downregulation of TRIB2 steady-state mRNA amounts by hCG/LH, starting at 6 h through 24 h post-hCG as compared to 0 h. Specific anti-TRIB2 polyclonal antibodies were generated and western blot analysis confirmed TRIB2 downregulation by hCG at the protein level. In vitro studies showed that FSH stimulates TRIB2 expression in GC. Inhibition of TRIB2 using CRISPR/Cas9 resulted in a significant increase in PCNA expression and an increase in steroidogenic enzyme CYP19A1 expression, while TRIB2 overexpression tended to decrease GC proliferation. TRIB2 inhibition also resulted in a decrease in transcription factors connective tissue growth factor (CTGF) and ankyrin repeat domain-containing protein 1 (ANKRD1) expression, while TRIB2 overexpression increased CTGF and ANKRD1. Additionally, western blot analyses showed reduction in ERK1/2 (MAPK3/1) and p38MAPK (MAPK14) phosphorylation levels following TRIB2 inhibition, while TRIB2 overexpression increased p-ERK1/2 and p-p38MAPK. These results provide evidence that TRIB2 modulates MAPK signaling in GC and that TRIB2 could act as a regulator of GC proliferation and function, which could affect steroidogenesis during follicular development.
Collapse
Affiliation(s)
- Aly Warma
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité (CRRF), Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Kalidou Ndiaye
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité (CRRF), Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
11
|
Richmond L, Keeshan K. Pseudokinases: a tribble-edged sword. FEBS J 2019; 287:4170-4182. [PMID: 31621188 DOI: 10.1111/febs.15096] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
Advances in the understanding of the Tribbles family of pseudokinases (TRIB1, TRIB2 and TRIB3) reveal these proteins as potentially valuable biomarkers of disease diagnosis, prognosis, prediction and clinical strategy. In their role as signalling mediators and scaffolding proteins, TRIBs lead to changes in protein stability and activity, which impact on diverse cellular processes such as proliferation, differentiation, cell cycle and cell death. We review the role of TRIB proteins as promising therapeutic targets, with an emphasis on their role in cancer, and as biomarkers, with potential application across diverse pathological processes.
Collapse
Affiliation(s)
- Laura Richmond
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| | - Karen Keeshan
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| |
Collapse
|
12
|
Ma RJ, Tan YQ, Zhou G. Aberrant IGF1–PI3K/AKT/MTOR signaling pathway regulates the local immunity of oral lichen planus. Immunobiology 2019; 224:455-461. [DOI: 10.1016/j.imbio.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
|
13
|
Trib1 regulates eosinophil lineage commitment and identity by restraining the neutrophil program. Blood 2019; 133:2413-2426. [PMID: 30917956 DOI: 10.1182/blood.2018872218] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/26/2019] [Indexed: 12/14/2022] Open
Abstract
Eosinophils and neutrophils are critical for host defense, yet gaps in understanding how granulocytes differentiate from hematopoietic stem cells (HSCs) into mature effectors remain. The pseudokinase tribbles homolog 1 (Trib1) is an important regulator of granulocytes; knockout mice lack eosinophils and have increased neutrophils. However, how Trib1 regulates cellular identity and function during eosinophilopoiesis is not understood. Trib1 expression markedly increases with eosinophil-lineage commitment in eosinophil progenitors (EoPs), downstream of the granulocyte/macrophage progenitor (GMP). Using hematopoietic- and eosinophil-lineage-specific Trib1 deletion, we found that Trib1 regulates both granulocyte precursor lineage commitment and mature eosinophil identity. Conditional Trib1 deletion in HSCs reduced the size of the EoP pool and increased neutrophils, whereas deletion following eosinophil lineage commitment blunted the decrease in EoPs without increasing neutrophils. In both modes of deletion, Trib1-deficient mice expanded a stable population of Ly6G+ eosinophils with neutrophilic characteristics and functions, and had increased CCAAT/enhancer binding protein α (C/EBPα) p42. Using an ex vivo differentiation assay, we found that interleukin 5 (IL-5) supports the generation of Ly6G+ eosinophils from Trib1-deficient cells, but is not sufficient to restore normal eosinophil differentiation and development. Furthermore, we demonstrated that Trib1 loss blunted eosinophil migration and altered chemokine receptor expression, both in vivo and ex vivo. Finally, we showed that Trib1 controls eosinophil identity by modulating C/EBPα. Together, our findings provide new insights into early events in myelopoiesis, whereby Trib1 functions at 2 distinct stages to guide eosinophil lineage commitment from the GMP and suppress the neutrophil program, promoting eosinophil terminal identity and maintaining lineage fidelity.
Collapse
|
14
|
Highlights of the 2nd International Symposium on Tribbles and Diseases: tribbles tremble in therapeutics for immunity, metabolism, fundamental cell biology and cancer. Acta Pharm Sin B 2019. [DOI: 10.1016/j.apsb.2018.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
15
|
Gurzeler E, Aavik E, Laine A, Valkama T, Niskanen H, Huusko J, Kaikkonen MU, Ylä-Herttuala S. Therapeutic effects of rosuvastatin in hypercholesterolemic prediabetic mice in the absence of low density lipoprotein receptor. Biochim Biophys Acta Gen Subj 2018; 1863:481-490. [PMID: 30508567 DOI: 10.1016/j.bbagen.2018.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/27/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Statins are effective drugs used to prevent and treat cardiovascular diseases but their effects in the absence of low density lipoprotein receptor (LDLR) and on the risk of diabetes are not yet well characterized. The aim of this study was to clarify systemic and pleiotropic effects of rosuvastatin on cardiovascular and diabetic phenotypes. IGF-II/LDLR-/-ApoB100/100 hypercholesterolemic prediabetic mice were used to test the effects of rosuvastatin on plasma glucose, insulin, lipids, atherosclerosis and liver steatosis. To get a more comprehensive view about changes in gene expression RNA-sequencing was done from the liver. Rosuvastatin significantly reduced plasma cholesterol in hypercholesterolemic mice in the absence of LDLR but had no effects on atherosclerosis at aortic sinus level or in coronary arteries. Rosuvastatin also significantly reduced liver steatosis without any harmful effects on glucose or insulin metabolism. RNA-sequencing showed relatively specific effects of rosuvastatin on genes involved in cholesterol metabolism together with a significant anti-inflammatory gene expression profile in the liver. In addition, significant changes were found in the expression of Perilipin 4 and 5 which are involved in lipid droplet formation in the liver. For the first time it could be shown that Tribbles proteins are affected by rosuvastatin treatment in the hyperlipidemic mice. Rosuvastatin had several positive effects on hypercholesterolemic mice showing early signs of diabetes, many of which are unrelated to cholesterol and lipoprotein metabolism. These results increase our understanding about the systemic and pleiotropic effects of rosuvastatin in the absence of LDLR expression.
Collapse
Affiliation(s)
- Erika Gurzeler
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Einari Aavik
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Anssi Laine
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Teemu Valkama
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Henri Niskanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jenni Huusko
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Minna U Kaikkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, 70211 Kuopio, Finland; Heart Center, Kuopio University Hospital, 70211 Kuopio, Finland.
| |
Collapse
|
16
|
Salomé M, Hopcroft L, Keeshan K. Inverse and correlative relationships between TRIBBLES genes indicate non-redundant functions during normal and malignant hemopoiesis. Exp Hematol 2018; 66:63-78.e13. [PMID: 30031847 DOI: 10.1016/j.exphem.2018.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 01/31/2023]
Abstract
TRIBBLES pseudokinases (TRIB1, TRIB2, and TRIB3) are important regulators of normal and malignant hemopoiesis. The relative abundance of each TRIBBLES family member may be important for distinct oncogenic or tumor suppressor functions. We map the expression profiles of TRIB1, TRIB2, and TRIB3 in human and murine hemopoietic stem, progenitor and mature cells, and in human leukemia datasets. Our data show that TRIB1-TRIB2 have an inverse expression relationship in normal hemopoiesis, whereas TRIB1-TRIB3 have a positive correlation. We reveal that TRIB3 expression is high in the dormant hemopoietic stem cell (HSC) population, implicating a novel role for TRIB3 in stem cell quiescence. These analyses support a non-redundant role for each TRIBBLES member during normal hemopoietic differentiation. We show that TRIB1-TRIB2 display a significant negative correlation in myelodysplastic syndrome and acute myeloid leukemia (AML) subtypes, but not in acute lymphoid leukemia. This inverse relationship is specific to certain subtypes of AML. A positive correlation exists in different leukemia subtypes between TRIB1-TRIB3. The TRIB1-TRIB2 and TRIB1-TRIB3 correlations are consistent with a correlative relationship with C/EBP transcription factor family members. Our results have implications for the development of strategies to therapeutically target these genes in different types of leukemia.
Collapse
Affiliation(s)
- Mara Salomé
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Lisa Hopcroft
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Karen Keeshan
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Scotland, UK.
| |
Collapse
|
17
|
Arndt L, Dokas J, Gericke M, Kutzner CE, Müller S, Jeromin F, Thiery J, Burkhardt R. Tribbles homolog 1 deficiency modulates function and polarization of murine bone marrow-derived macrophages. J Biol Chem 2018; 293:11527-11536. [PMID: 29899113 DOI: 10.1074/jbc.ra117.000703] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/23/2018] [Indexed: 01/12/2023] Open
Abstract
Macrophages are essential for innate immunity and inflammatory responses and differentiate into various functional phenotypes. Tribbles homolog 1 (Trib1), a member of the mammalian Tribbles homolog pseudokinase family, has been implicated in regulation of cell differentiation, proliferation, and metabolism, but its role in macrophage biology has not been fully elucidated. Here, we investigated the consequences of Trib1 deficiency on macrophage functions and M1/M2 polarization. Bone marrow-derived macrophages (BMDMs) from Trib1-deficient (Trib1-/-) mice exhibited elevated phagocytic capacity, correlating with up-regulation of several scavenger receptors. Concomitantly, uptake of modified low-density lipoprotein was increased in Trib1-/- BMDMs. Trib1-/- macrophages also exhibited diminished migration in the presence of the chemokine MCP-1, associated with reduced expression of the MCP-1 receptor Ccr2 Furthermore, Trib1 deficiency attenuated the response of BMDMs to both M1 and M2 stimuli; induction of the M1-marker genes Il6, Il1b, and Nos2 upon LPS/IFNγ stimulation and of the M2-marker genes Cd206, Fizz1, and Arg1 upon IL-4 stimulation was reduced. Functionally, Trib1 deficiency decreased secretion of proinflammatory cytokines (IL-6, TNFα, IL-1β, and CXCL1) and reduced nitric oxide and reactive oxygen species production in M1-polarized macrophages. Supporting the attenuated M2 phenotype, IL-4-stimulated Trib1-/- macrophages secreted less IL-10 and TGFβ. Mechanistically, Trib1-/- BMDMs displayed lower levels of Janus kinase 1 (JAK1), resulting in reduced activation of LPS/IFNγ-mediated STAT1 signaling. Likewise, decreased levels of JAK1 along with lower activation of STAT6 and STAT3 were observed in M2-polarized Trib1-/- BMDMs. Our findings suggest that Trib1 extensively controls macrophage M1/M2 polarization via the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Lilli Arndt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Janine Dokas
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, University of Leipzig, 04103 Leipzig, Germany
| | - Carl Elias Kutzner
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Silvana Müller
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Franziska Jeromin
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany
| | - Ralph Burkhardt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
18
|
Ma Y, Bao Y, Wang S, Li T, Chang X, Yang G, Meng X. Anti-Inflammation Effects and Potential Mechanism of Saikosaponins by Regulating Nicotinate and Nicotinamide Metabolism and Arachidonic Acid Metabolism. Inflammation 2017; 39:1453-61. [PMID: 27251379 DOI: 10.1007/s10753-016-0377-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inflammation is an important immune response; however, excessive inflammation causes severe tissue damages and secondary inflammatory injuries. The long-term and ongoing uses of routinely used drugs such as non-steroidal anti-inflammatory drugs (NSAIDS) are associated with serious adverse reactions, and not all patients have a well response to them. Consequently, therapeutic products with more safer and less adverse reaction are constantly being sought. Radix Bupleuri, a well-known traditional Chinese medicine (TCM), has been reported to have anti-inflammatory effects. However, saikosaponins (SS) as the main pharmacodynamic active ingredient, their pharmacological effects and action mechanism in anti-inflammation have not been reported frequently. This study aimed to explore the anti-inflammatory activity of SS and clarify the potential mechanism in acute inflammatory mice induced by subcutaneous injection of formalin in hind paws. Paw edema was detected as an index to evaluate the anti-inflammatory efficacy of SS. Then, a metabolomic method was used to investigate the changed metabolites and potential mechanism of SS. Metabolite profiling was performed by high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). The detection and identification of the changed metabolites were systematically analyzed by multivariate data and pathway analysis. As a result, 12 different potential biomarkers associated with SS in anti-inflammation were identified, including nicotinate, niacinamide, arachidonic acid (AA), and 20-carboxy-leukotriene B4, which are associated with nicotinate and nicotinamide metabolism and arachidonic acid metabolism. The expression levels of biomarkers were effectively modulated towards the normal range by SS. It indicated that SS show their effective anti-inflammatory effects through regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism.
Collapse
Affiliation(s)
- Yu Ma
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No.18 of DD5 Street, Dalian, Liaoning Province, 116600, China
| | - Yongrui Bao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No.18 of DD5 Street, Dalian, Liaoning Province, 116600, China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, 116600, China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China
| | - Shuai Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No.18 of DD5 Street, Dalian, Liaoning Province, 116600, China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, 116600, China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China
| | - Tianjiao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No.18 of DD5 Street, Dalian, Liaoning Province, 116600, China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, 116600, China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China
| | - Xin Chang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No.18 of DD5 Street, Dalian, Liaoning Province, 116600, China
| | - Guanlin Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No.18 of DD5 Street, Dalian, Liaoning Province, 116600, China
| | - Xiansheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No.18 of DD5 Street, Dalian, Liaoning Province, 116600, China. .,Component Medicine Engineering Research Center of Liaoning Province, Dalian, 116600, China. .,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, 116600, China.
| |
Collapse
|
19
|
Abstract
The pseudokinase complement of the human kinase superfamily consists of approximately 60 signaling proteins, which lacks one or more of the amino acids typically required to correctly align ATP and metal ions, and phosphorylate protein substrates. Recent studies in the pseudokinase field have begun to expose the biological relevance of pseudokinases, which are now thought to perform a diverse range of physiological roles and are connected to a multitude of human diseases, including cancer. In this review, we discuss how and why members of the 'pseudokinome' represent important new targets for drug discovery, and describe how knowledge of protein structure and function provides informative clues to help guide the rational chemical design or repurposing of inhibitors to target pseudokinases.
Collapse
|
20
|
Eyers PA, Keeshan K, Kannan N. Tribbles in the 21st Century: The Evolving Roles of Tribbles Pseudokinases in Biology and Disease. Trends Cell Biol 2016; 27:284-298. [PMID: 27908682 PMCID: PMC5382568 DOI: 10.1016/j.tcb.2016.11.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 11/26/2022]
Abstract
The Tribbles (TRIB) pseudokinases control multiple aspects of eukaryotic cell biology and evolved unique features distinguishing them from all other protein kinases. The atypical pseudokinase domain retains a regulated binding platform for substrates, which are ubiquitinated by context-specific E3 ligases. This plastic configuration has also been exploited as a scaffold to support the modulation of canonical MAPK and AKT modules. In this review, we discuss the evolution of TRIBs and their roles in vertebrate cell biology. TRIB2 is the most ancestral member of the family, whereas the emergence of TRIB3 homologs in mammals supports additional biological roles, many of which are currently being dissected. Given their pleiotropic role in diseases, the unusual TRIB pseudokinase conformation provides a highly attractive opportunity for drug design. Pseudoenzymes are inactive counterparts of classical enzymes and have evolved in all kingdoms of life, where they regulate a vast array of biological processes. The pseudokinases are one of the best-studied families of human pseudoenzymes. Eukaryotic TRIB pseudokinases evolved from a common ancestor (the human TRIB2 homolog), and contain a highly atypical pseudokinase domain fused to a unique docking site in an extended C tail that binds to ubiquitin E3 ligases. TRIB evolution has led to the appearance of three mammalian TRIB pseudokinases, termed TRIB1, TRIB2, and TRIB3, which contain both unique and shared features. In cells, TRIB pseudokinases act as modulators of substrate ubiquitination and as molecular scaffolds for the assembly and regulation of signaling modules, including the C/EBPα transcription factor and AKT and ERK networks. TRIB1 and TRIB2 have potent oncogenic activities in vertebrate cells, and recent evidence also suggests that TRIB2 acts as a tumour suppressor, consistent with the requirement for balanced TRIB signaling in the regulation of transcription, differentiation, proliferation, and apoptosis.
Collapse
Affiliation(s)
- Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Karen Keeshan
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 0YN, UK.
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
21
|
Guan H, Shuaib A, Leon DDD, Angyal A, Salazar M, Velasco G, Holcombe M, Dower SK, Kiss-Toth E. Competition between members of the tribbles pseudokinase protein family shapes their interactions with mitogen activated protein kinase pathways. Sci Rep 2016; 6:32667. [PMID: 27600771 PMCID: PMC5013389 DOI: 10.1038/srep32667] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Spatio-temporal regulation of intracellular signalling networks is key to normal cellular physiology; dysregulation of which leads to disease. The family of three mammalian tribbles proteins has emerged as an important controller of signalling via regulating the activity of mitogen activated protein kinases (MAPK), the PI3-kinase induced signalling network and E3 ubiquitin ligases. However, the importance of potential redundancy in the action of tribbles and how the differences in affinities for the various binding partners may influence signalling control is currently unclear. We report that tribbles proteins can bind to an overlapping set of MAPK-kinases (MAPKK) in live cells and dictate the localisation of the complexes. Binding studies in transfected cells reveal common regulatory mechanisms and suggest that tribbles and MAPKs may interact with MAPKKs in a competitive manner. Computational modelling of the impact of tribbles on MAPK activation suggests a high sensitivity of this system to changes in tribbles levels, highlighting that these proteins are ideally placed to control the dynamics and balance of activation of concurrent signalling pathways.
Collapse
Affiliation(s)
- Hongtao Guan
- Department of Infection, Immunity &Cardiovascular Disease, University of Sheffield, Beech Hill road, Sheffield, S10 2RX, United Kingdom
| | - Aban Shuaib
- Department of Infection, Immunity &Cardiovascular Disease, University of Sheffield, Beech Hill road, Sheffield, S10 2RX, United Kingdom
| | - David Davila De Leon
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain
| | - Adrienn Angyal
- Department of Infection, Immunity &Cardiovascular Disease, University of Sheffield, Beech Hill road, Sheffield, S10 2RX, United Kingdom
| | - Maria Salazar
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Mike Holcombe
- Department of Computer Science, University of Sheffield, Beech Hill road, Sheffield, S10 2RX, United Kingdom
| | - Steven K Dower
- Department of Infection, Immunity &Cardiovascular Disease, University of Sheffield, Beech Hill road, Sheffield, S10 2RX, United Kingdom.,Bio21 Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010, Australia.,CSL Limited, 45 Poplar Rd, Parkville, Victoria 3052, Australia
| | - Endre Kiss-Toth
- Department of Infection, Immunity &Cardiovascular Disease, University of Sheffield, Beech Hill road, Sheffield, S10 2RX, United Kingdom
| |
Collapse
|