1
|
Rameh LE, York JD, Blind RD. Inositol phosphates dynamically enhance stability, solubility, and catalytic activity of mTOR. J Biol Chem 2025; 301:108095. [PMID: 39706276 PMCID: PMC11782818 DOI: 10.1016/j.jbc.2024.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
Mechanistic target of rapamycin (mTOR) binds the small metabolite inositol hexakisphosphate (IP6) as shown in structures of mTOR; however, it remains unclear if IP6, or any other inositol phosphate species, function as an integral structural element(s) or catalytic regulator(s) of mTOR. Here, we show that multiple, exogenously added inositol phosphate species can enhance the ability of mTOR and mechanistic target of rapmycin complex 1 (mTORC1) to phosphorylate itself and peptide substrates in in vitro kinase reactions, with the higher order phosphorylated species being more potent (IP6 = IP5 > IP4 >> IP3). IP6 increased the VMAX and decreased the apparent KM of mTOR for ATP. Although IP6 did not affect the apparent KM of mTORC1 for ATP, monitoring kinase activity over longer reaction times showed increased product formation, suggesting inositol phosphates stabilize the active form of mTORC1 in vitro. The effects of IP6 on mTOR were reversible, suggesting IP6 bound to mTOR can be exchanged dynamically with the free solvent. Interestingly, we also observed that IP6 could alter mTOR electrophoretic mobility under denaturing conditions and its solubility in the presence of manganese. Together, these data suggest for the first time that multiple inositol phosphate species (IP6, IP5, IP4, and to a lesser extent IP3) can dynamically regulate mTOR and mTORC1 by promoting a stable, more soluble active state of the kinase. Our data suggest that studies of the dynamics of inositol phosphate regulation of mTOR in cells are well justified.
Collapse
Affiliation(s)
- Lucia E Rameh
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - John D York
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Raymond D Blind
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
2
|
Rameh LE, York JD, Blind RD. Multiple inositol phosphate species enhance stability of active mTOR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592113. [PMID: 38746235 PMCID: PMC11092565 DOI: 10.1101/2024.05.01.592113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Mechanistic Target of Rapamycin (mTOR) binds the small metabolite inositol hexakisphosphate (IP6) as shown in structures of mTOR, however it remains unclear if IP6, or any other inositol phosphate species, can activate mTOR kinase activity. Here, we show that multiple, exogenously added inositol phosphate species (IP6, IP5, IP4 and IP3) can all enhance the ability of mTOR and mTORC1 to auto-phosphorylate and incorporate radiolabeled phosphate into peptide substrates in in vitro kinase reactions. Although IP6 did not affect the apparent KM of mTORC1 for ATP, monitoring kinase activity over longer reaction times showed increased product formation, suggesting inositol phosphates stabilize an active form of mTORC1 in vitro. The effects of IP6 on mTOR were reversible, suggesting IP6 bound to mTOR can be exchanged dynamically with the free solvent. Interestingly, we also observed that IP6 could alter mTOR solubility and electrophoretic mobility in SDS-PAGE in the presence of manganese, suggesting divalent cations may play a role in inositol phosphate regulation of mTOR. Together, these data suggest for the first time that multiple inositol phosphate species (IP4, IP5 and IP6) can dynamically regulate mTOR and mTORC1 by promoting a stable, active state of the kinase. Our data suggest that studies of the dynamics of inositol phosphate regulation of mTOR are well justified.
Collapse
Affiliation(s)
- Lucia E. Rameh
- University of South Alabama, Department of Biochemistry and Molecular Biology, Mobile, AL 36688
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN 37232
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN 37232
| | - John D. York
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN 37232
| | - Raymond D. Blind
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN 37232
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN 37232
| |
Collapse
|
3
|
Sowd GA, Stivison EA, Chapagain P, Hale AT, Poland JC, Rameh LE, Blind RD. IPMK regulates HDAC3 activity and histone H4 acetylation in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591660. [PMID: 38746349 PMCID: PMC11092501 DOI: 10.1101/2024.04.29.591660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Histone deacetylases (HDACs) repress transcription by catalyzing the removal of acetyl groups from histones. Class 1 HDACs are activated by inositol phosphate signaling molecules in vitro , but it is unclear if this regulation occurs in human cells. Inositol Polyphosphate Multikinase (IPMK) is required for production of inositol hexakisphosphate (IP6), pentakisphosphate (IP5) and certain tetrakisphosphate (IP4) species, all known activators of Class 1 HDACs in vitro . Here, we generated IPMK knockout (IKO) human U251 glioblastoma cells, which decreased cellular inositol phosphate levels and increased histone H4-acetylation by mass spectrometry. ChIP-seq showed IKO increased H4-acetylation at IKO-upregulated genes, but H4-acetylation was unchanged at IKO-downregulated genes, suggesting gene-specific responses to IPMK knockout. HDAC deacetylase enzyme activity was decreased in HDAC3 immunoprecipitates from IKO vs . wild-type cells, while deacetylase activity of other Class 1 HDACs had no detectable changes in activity. Wild-type IPMK expression in IKO cells fully rescued HDAC3 deacetylase activity, while kinase-dead IPMK expression had no effect. Further, the deficiency in HDAC3 activity in immunoprecipitates from IKO cells could be fully rescued by addition of synthesized IP4 (Ins(1,4,5,6)P4) to the enzyme assay, while control inositol had no effect. These data suggest that cellular IPMK-dependent inositol phosphates are required for full HDAC3 enzyme activity and proper histone H4-acetylation. Implications for targeting IPMK in HDAC3-dependent diseases are discussed.
Collapse
|
4
|
Gogianu LI, Ruta LL, Farcasanu IC. Kcs1 and Vip1: The Key Enzymes behind Inositol Pyrophosphate Signaling in Saccharomyces cerevisiae. Biomolecules 2024; 14:152. [PMID: 38397389 PMCID: PMC10886477 DOI: 10.3390/biom14020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The inositol pyrophosphate pathway, a complex cell signaling network, plays a pivotal role in orchestrating vital cellular processes in the budding yeast, where it regulates cell cycle progression, growth, endocytosis, exocytosis, apoptosis, telomere elongation, ribosome biogenesis, and stress responses. This pathway has gained significant attention in pharmacology and medicine due to its role in generating inositol pyrophosphates, which serve as crucial signaling molecules not only in yeast, but also in higher eukaryotes. As targets for therapeutic development, genetic modifications within this pathway hold promise for disease treatment strategies, offering practical applications in biotechnology. The model organism Saccharomyces cerevisiae, renowned for its genetic tractability, has been instrumental in various studies related to the inositol pyrophosphate pathway. This review is focused on the Kcs1 and Vip1, the two enzymes involved in the biosynthesis of inositol pyrophosphate in S. cerevisiae, highlighting their roles in various cell processes, and providing an up-to-date overview of their relationship with phosphate homeostasis. Moreover, the review underscores the potential applications of these findings in the realms of medicine and biotechnology, highlighting the profound implications of comprehending this intricate signaling network.
Collapse
Affiliation(s)
- Larisa Ioana Gogianu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae Str. 126A, 077190 Voluntari, Romania
| | - Lavinia Liliana Ruta
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| | - Ileana Cornelia Farcasanu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| |
Collapse
|
5
|
Mukherjee S, Chakraborty M, Haubner J, Ernst G, DePasquale M, Carpenter D, Barrow JC, Chakraborty A. The IP6K Inhibitor LI-2242 Ameliorates Diet-Induced Obesity, Hyperglycemia, and Hepatic Steatosis in Mice by Improving Cell Metabolism and Insulin Signaling. Biomolecules 2023; 13:868. [PMID: 37238737 PMCID: PMC10216446 DOI: 10.3390/biom13050868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity and nonalcoholic fatty liver disease (NAFLD) are global health concerns, and thus, drugs for the long-term treatment of these diseases are urgently needed. We previously discovered that the inositol pyrophosphate biosynthetic enzyme IP6K1 is a target in diet-induced obesity (DIO), insulin resistance, and NAFLD. Moreover, high-throughput screening (HTS) assays and structure-activity relationship (SAR) studies identified LI-2242 as a potent IP6K inhibitor compound. Here, we tested the efficacy of LI-2242 in DIO WT C57/BL6J mice. LI-2242 (20 mg/kg/BW daily, i.p.) reduced body weight in DIO mice by specifically reducing the accumulation of body fat. It also improved glycemic parameters and reduced hyperinsulinemia. LI-2242-treated mice displayed reduced the weight of various adipose tissue depots and an increased expression of metabolism- and mitochondrial-energy-oxidation-inducing genes in these tissues. LI-2242 also ameliorated hepatic steatosis by reducing the expression of genes that enhance lipid uptake, lipid stabilization, and lipogenesis. Furthermore, LI-2242 enhances the mitochondrial oxygen consumption rate (OCR) and insulin signaling in adipocytes and hepatocytes in vitro. In conclusion, the pharmacologic inhibition of the inositol pyrophosphate pathway by LI-2242 has therapeutic potential in obesity and NAFLD.
Collapse
Affiliation(s)
- Sandip Mukherjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Molee Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Jake Haubner
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Glen Ernst
- Lieber Institute for Brain Development and Department of Pharmacology, Johns Hopkins University School of Medicine, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| | - Michael DePasquale
- Lieber Institute for Brain Development and Department of Pharmacology, Johns Hopkins University School of Medicine, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| | - Danielle Carpenter
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - James C. Barrow
- Lieber Institute for Brain Development and Department of Pharmacology, Johns Hopkins University School of Medicine, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| |
Collapse
|
6
|
Ito M, Fujii N, Kohara S, Hori S, Tanaka M, Wittwer C, Kikuchi K, Iijima T, Kakimoto Y, Hirabayashi K, Kurotaki D, Jessen HJ, Saiardi A, Nagata E. Inositol pyrophosphate profiling reveals regulatory roles of IP6K2-dependent enhanced IP 7 metabolism in the enteric nervous system. J Biol Chem 2023; 299:102928. [PMID: 36681123 PMCID: PMC9957762 DOI: 10.1016/j.jbc.2023.102928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/20/2023] Open
Abstract
Inositol pyrophosphates regulate diverse physiological processes; to better understand their functional roles, assessing their tissue-specific distribution is important. Here, we profiled inositol pyrophosphate levels in mammalian organs using an originally designed liquid chromatography-mass spectrometry (LC-MS) protocol and discovered that the gastrointestinal tract (GIT) contained the highest levels of diphosphoinositol pentakisphosphate (IP7) and its precursor inositol hexakisphosphate (IP6). Although their absolute levels in the GIT are diet dependent, elevated IP7 metabolism still exists under dietary regimens devoid of exogenous IP7. Of the major GIT cells, enteric neurons selectively express the IP7-synthesizing enzyme IP6K2. We found that IP6K2-knockout mice exhibited significantly impaired IP7 metabolism in the various organs including the proximal GIT. In addition, our LC-MS analysis displayed that genetic ablation of IP6K2 significantly impaired IP7 metabolism in the gut and duodenal muscularis externa containing myenteric plexus. Whole transcriptome analysis of duodenal muscularis externa further suggested that IP6K2 inhibition significantly altered expression levels of the gene sets associated with mature neurons, neural progenitor/stem cells, and glial cells, as well as of certain genes modulating neuronal differentiation and functioning, implying critical roles of the IP6K2-IP7 axis in developmental and functional regulation of the enteric nervous system. These results collectively reveal an unexpected role of mammalian IP7-a highly active IP6K2-IP7 pathway is conducive to the enteric nervous system.
Collapse
Affiliation(s)
- Masatoshi Ito
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan.
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Saori Kohara
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Shuho Hori
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | | | - Kenta Kikuchi
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatoshi Iijima
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Kenichi Hirabayashi
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan.
| |
Collapse
|
7
|
Abstract
The diphosphoinositol polyphosphate phosphohydrolases are a subset of the Nudix hydrolase family of enzymes. As such, they metabolize a wide range of substrates, including diphosphoinositol polyphosphates (inositol diphosphates, inositol pyrophosphates), dinucleotide phosphates, nucleosides as well as 5-phosphoribosyl 1-pyrophosphate and inorganic polyphosphate. Here, we describe protocols to optimize these enzymes, with consideration to buffer composition and sample preparation and how to analyze the metabolism of these substrates using high-performance liquid chromatography, giving advice where pitfalls are commonly encountered.
Collapse
|
8
|
Riley AM, Wang H, Shears SB, Potter BVL. Synthesis of an α-phosphono-α,α-difluoroacetamide analogue of the diphosphoinositol pentakisphosphate 5-InsP 7. MEDCHEMCOMM 2019; 10:1165-1172. [PMID: 31391889 PMCID: PMC6657673 DOI: 10.1039/c9md00163h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
Abstract
Diphosphoinositol phosphates (PP-InsPs) are an evolutionarily ancient group of signalling molecules that are essential to cellular and organismal homeostasis. As the detailed mechanisms of PP-InsP signalling begin to emerge, synthetic analogues of PP-InsPs containing stabilised mimics of the labile diphosphate group can provide valuable investigational tools. We synthesised 5-PCF2Am-InsP5 (1), a novel fluorinated phosphonate analogue of 5-PP-InsP5, and obtained an X-ray crystal structure of 1 in complex with diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2). 5-PCF2Am-InsP5 binds to the kinase domain of PPIP5K2 in a similar orientation to that of the natural substrate 5-PP-InsP5 and the PCF2Am structure can mimic many aspects of the diphosphate group in 5-PP-InsP5. We propose that 1, the structural and electronic properties of which are in some ways complementary to those of existing phosphonoacetate and methylenebisphosphonate analogues of 5-PP-InsP5, may be a useful addition to the expanding array of chemical tools for the investigation of signalling by PP-InsPs. The PCF2Am group may also deserve attention for wider application as a diphosphate mimic.
Collapse
Affiliation(s)
- Andrew M Riley
- Medicinal Chemistry and Drug Discovery , Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , UK . ; ; Tel: +44 (0)1865 271945
| | - Huanchen Wang
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Stephen B Shears
- Inositol Signaling Group , Laboratory of Signal Transduction , National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina , USA
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery , Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , UK . ; ; Tel: +44 (0)1865 271945
| |
Collapse
|
9
|
Inositol hexakisphosphate kinase 3 promotes focal adhesion turnover via interactions with dynein intermediate chain 2. Proc Natl Acad Sci U S A 2019; 116:3278-3287. [PMID: 30718399 DOI: 10.1073/pnas.1817001116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cells express a family of three inositol hexakisphosphate kinases (IP6Ks). Although sharing the same enzymatic activity, individual IP6Ks mediate different cellular processes. Here we report that IP6K3 is enriched at the leading edge of migrating cells where it associates with dynein intermediate chain 2 (DIC2). Using immunofluorescence microscopy and total internal reflection fluorescence microscopy, we found that DIC2 and IP6K3 are recruited interdependently to the leading edge of migrating cells, where they function coordinately to enhance the turnover of focal adhesions. Deletion of IP6K3 causes defects in cell motility and neuronal dendritic growth, eventually leading to brain malformations. Our results reveal a mechanism whereby IP6K3 functions in coordination with DIC2 in a confined intracellular microenvironment to promote focal adhesion turnover.
Collapse
|
10
|
Chakraborty A. The inositol pyrophosphate pathway in health and diseases. Biol Rev Camb Philos Soc 2018; 93:1203-1227. [PMID: 29282838 PMCID: PMC6383672 DOI: 10.1111/brv.12392] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Inositol pyrophosphates (IPPs) are present in organisms ranging from plants, slime moulds and fungi to mammals. Distinct classes of kinases generate different forms of energetic diphosphate-containing IPPs from inositol phosphates (IPs). Conversely, polyphosphate phosphohydrolase enzymes dephosphorylate IPPs to regenerate the respective IPs. IPPs and/or their metabolizing enzymes regulate various cell biological processes by modulating many proteins via diverse mechanisms. In the last decade, extensive research has been conducted in mammalian systems, particularly in knockout mouse models of relevant enzymes. Results obtained from these studies suggest impacts of the IPP pathway on organ development, especially of brain and testis. Conversely, deletion of specific enzymes in the pathway protects mice from various diseases such as diet-induced obesity (DIO), type-2 diabetes (T2D), fatty liver, bacterial infection, thromboembolism, cancer metastasis and aging. Furthermore, pharmacological inhibition of the same class of enzymes in mice validates the therapeutic importance of this pathway in cardio-metabolic diseases. This review critically analyses these findings and summarizes the significance of the IPP pathway in mammalian health and diseases. It also evaluates benefits and risks of targeting this pathway in disease therapies. Finally, future directions of mammalian IPP research are discussed.
Collapse
Affiliation(s)
- Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, U.S.A
| |
Collapse
|
11
|
Baughman BM, Wang H, An Y, Kireev D, Stashko MA, Jessen HJ, Pearce KH, Frye SV, Shears SB. A High-Throughput Screening-Compatible Strategy for the Identification of Inositol Pyrophosphate Kinase Inhibitors. PLoS One 2016; 11:e0164378. [PMID: 27736936 PMCID: PMC5063353 DOI: 10.1371/journal.pone.0164378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/24/2016] [Indexed: 11/22/2022] Open
Abstract
Pharmacological tools-'chemical probes'-that intervene in cell signaling cascades are important for complementing genetically-based experimental approaches. Probe development frequently begins with a high-throughput screen (HTS) of a chemical library. Herein, we describe the design, validation, and implementation of the first HTS-compatible strategy against any inositol phosphate kinase. Our target enzyme, PPIP5K, synthesizes 'high-energy' inositol pyrophosphates (PP-InsPs), which regulate cell function at the interface between cellular energy metabolism and signal transduction. We optimized a time-resolved, fluorescence resonance energy transfer ADP-assay to record PPIP5K-catalyzed, ATP-driven phosphorylation of 5-InsP7 to 1,5-InsP8 in 384-well format (Z' = 0.82 ± 0.06). We screened a library of 4745 compounds, all anticipated to be membrane-permeant, which are known-or conjectured based on their structures-to target the nucleotide binding site of protein kinases. At a screening concentration of 13 μM, fifteen compounds inhibited PPIP5K >50%. The potency of nine of these hits was confirmed by dose-response analyses. Three of these molecules were selected from different structural clusters for analysis of binding to PPIP5K, using isothermal calorimetry. Acceptable thermograms were obtained for two compounds, UNC10112646 (Kd = 7.30 ± 0.03 μM) and UNC10225498 (Kd = 1.37 ± 0.03 μM). These Kd values lie within the 1-10 μM range generally recognized as suitable for further probe development. In silico docking data rationalizes the difference in affinities. HPLC analysis confirmed that UNC10225498 and UNC10112646 directly inhibit PPIP5K-catalyzed phosphorylation of 5-InsP7 to 1,5-InsP8; kinetic experiments showed inhibition to be competitive with ATP. No other biological activity has previously been ascribed to either UNC10225498 or UNC10112646; moreover, at 10 μM, neither compound inhibits IP6K2, a structurally-unrelated PP-InsP kinase. Our screening strategy may be generally applicable to inhibitor discovery campaigns for other inositol phosphate kinases.
Collapse
Affiliation(s)
- Brandi M. Baughman
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Huanchen Wang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Yi An
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael A. Stashko
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Henning J. Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-University of Freiburg, Freiburg 79104, Germany
| | - Kenneth H. Pearce
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Stephen B. Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
12
|
Ghoshal S, Zhu Q, Asteian A, Lin H, Xu H, Ernst G, Barrow JC, Xu B, Cameron MD, Kamenecka TM, Chakraborty A. TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine] ameliorates diet induced obesity and insulin resistance via inhibition of the IP6K1 pathway. Mol Metab 2016; 5:903-917. [PMID: 27689003 PMCID: PMC5034689 DOI: 10.1016/j.molmet.2016.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 12/30/2022] Open
Abstract
Objective Obesity and type 2 diabetes (T2D) lead to various life-threatening diseases such as coronary heart disease, stroke, osteoarthritis, asthma, and neurodegeneration. Therefore, extensive research is ongoing to identify novel pathways that can be targeted in obesity/T2D. Deletion of the inositol pyrophosphate (5-IP7) biosynthetic enzyme, inositol hexakisphosphate kinase-1 (IP6K1), protects mice from high fat diet (HFD) induced obesity (DIO) and insulin resistance. Yet, whether this pathway is a valid pharmacologic target in obesity/T2D is not known. Here, we demonstrate that TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine], a pan-IP6K inhibitor, has strong anti-obesity and anti-diabetic effects in DIO mice. Methods Q-NMR, GTT, ITT, food intake, energy expenditure, QRT-PCR, ELISA, histology, and immunoblot studies were conducted in short (2.5-week)- and long (10-week)-term TNP treated DIO C57/BL6 WT and IP6K1-KO mice, under various diet and temperature conditions. Results TNP, when injected at the onset of HFD-feeding, decelerates initiation of DIO and insulin resistance. Moreover, TNP facilitates weight loss and restores metabolic parameters, when given to DIO mice. However, TNP does not reduce weight gain in HFD-fed IP6K1-KO mice. TNP specifically enhances insulin sensitivity in DIO mice via Akt activation. TNP decelerates weight gain primarily by enhancing thermogenic energy expenditure in the adipose tissue. Accordingly, TNP's effect on body weight is partly abolished whereas its impact on glucose homeostasis is preserved at thermoneutral temperature. Conclusion Pharmacologic inhibition of the inositol pyrophosphate pathway has strong therapeutic potential in obesity, T2D, and other metabolic diseases. Pharmacologic inhibition of IP6K by TNP, at the onset of high fat feeding, decelerates initiation of DIO and insulin resistance in mice. TNP, when treated to DIO mice, promotes weight loss and restores metabolic homeostasis. TNP does not reduce high fat diet induced weight gain in IP6K1-KO mice. TNP promotes insulin sensitivity by stimulating Akt activity, whereas it reduces body weight primarily by enhancing thermogenic energy expenditure. Long-term TNP treatment does not display deleterious side effects.
Collapse
Key Words
- 5-IP7, diphosphoinositol pentakisphosphate
- ALT, alanine aminotransferase
- AST, aspartate transaminase
- AUC, area under curve
- Akt
- BAT, brown adipose tissue
- CD, chow-diet
- CPT1a, carnitine palmitoyltransferase I
- Cidea, cell death activator-A
- DIO, diet-induced obesity
- Diabetes
- EE, energy expenditure
- EWAT, epididymal adipose tissue
- Energy expenditure
- GSK3, glycogen synthase kinase
- GTT, glucose tolerance test
- H&E, hematoxylin and eosin
- HFD, high-fat diet
- HPLC, high performance liquid chromatography
- IP6K
- IP6K, Inositol hexakisphosphate kinase
- IP6K1-KO, IP6K1 knockout
- ITT, insulin tolerance test
- IWAT, inguinal adipose tissue
- Inositol pyrophosphate
- Obesity
- PCR, polymerase chain reaction
- PGC1α, PPAR coactivator 1 alpha
- PKA, protein kinase A
- PPARγ, peroxisome proliferator-activated receptor gamma
- PRDM16, PR domain containing 16
- Pro-TNP, TNP treatment for protection against DIO
- Q-NMR, quantitative nuclear magnetic resonance
- QRT-PCR, quantitative reverse transcription polymerase chain reaction
- RER, Respiratory exchange ratio
- RWAT, retroperitoneal adipose tissue
- Rev-TNP, long-term TNP treatment for reversal of DIO
- RevT-TNP, Long-term TNP treatment for reversal of DIO at thermoneutral temperature
- S473, serine 473
- S9, serine 9
- SREV-TNP, short-term TNP treatment for reversal of DIO
- T2D, type-2 diabetes
- T308, threonine 308
- TNP, [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl)purine]
- UCP-1/3, uncoupling protein 1/3
- VO2, volume of oxygen consumption
- WAT, white adipose tissue
Collapse
Affiliation(s)
- Sarbani Ghoshal
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Qingzhang Zhu
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alice Asteian
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hua Lin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Haifei Xu
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Glen Ernst
- Drug Discovery Division, Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - James C Barrow
- Drug Discovery Division, Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Michael D Cameron
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Theodore M Kamenecka
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Anutosh Chakraborty
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
13
|
Inositol hexakisphosphate kinase-1 interacts with perilipin1 to modulate lipolysis. Int J Biochem Cell Biol 2016; 78:149-155. [PMID: 27373682 DOI: 10.1016/j.biocel.2016.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/20/2016] [Accepted: 06/28/2016] [Indexed: 12/21/2022]
Abstract
Lipolysis leads to the breakdown of stored triglycerides (TAG) to release free fatty acids (FFA) and glycerol which is utilized by energy expenditure pathways to generate energy. Therefore, a decrease in lipolysis augments fat accumulation in adipocytes which promotes weight gain. Conversely, if lipolysis is not complemented by energy expenditure, it leads to FFA induced insulin resistance and type-2 diabetes. Thus, lipolysis is under stringent physiological regulation, although the precise mechanism of the regulation is not known. Deletion of inositol hexakisphosphate kinase-1 (IP6K1), the major inositol pyrophosphate biosynthetic enzyme, protects mice from high fat diet (HFD) induced obesity and insulin resistance. IP6K1-KO mice are lean due to enhanced energy expenditure. Therefore, IP6K1 is a target in obesity and type-2 diabetes. However, the mechanism/s by which IP6K1 regulates adipose tissue lipid metabolism is yet to be understood. Here, we demonstrate that IP6K1-KO mice display enhanced basal lipolysis. IP6K1 modulates lipolysis via its interaction with the lipolytic regulator protein perilipin1 (PLIN1). Furthermore, phosphorylation of IP6K1 at a PKC/PKA motif modulates its interaction with PLIN1 and lipolysis. Thus, IP6K1 is a novel regulator of PLIN1 mediated lipolysis.
Collapse
|