1
|
Cai M, Ying J, Lopez JM, Huang Y, Clore GM. Unraveling structural transitions and kinetics along the fold-switching pathway of the RfaH C-terminal domain using exchange-based NMR. Proc Natl Acad Sci U S A 2025; 122:e2506441122. [PMID: 40366684 PMCID: PMC12107155 DOI: 10.1073/pnas.2506441122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
The bacterial transcriptional regulator RfaH comprises structurally and functionally distinct N- (NTD) and C- (CTD) terminal domains. The latter switches from a helical hairpin packed against the NTD to a five-stranded β-roll upon displacement by RNA polymerase binding. Here, we use exchange-based NMR to probe fold-switching intermediates sampled by the isolated CTD. In addition to the predominant (~76 to 77%), semistable β-roll conformation (state A), we identify four structurally and kinetically distinct states: A', B, B', and B″. State B is NMR observable with an occupancy of ~23%, exchanges slowly (τex ~ 300 ms) with the major A species, and comprises a largely unfolded ensemble with transient occupancy of helical (α5*) and β-hairpin (β1*/β2*) elements. Backbone chemical shift-based structure predictions using the program CS-ROSETTA suggest that the two transient structural elements within the B state may interact with one another to form a semicompact structure. A' (~0.35%) is an off-pathway state that exchanges rapidly (τex ~ 1 ms) with state A and likely entails a minor localized conformational change in the β1/β2 loop. State B' (~0.3%) exchanges rapidly (τex ~ 1.2 ms) with state B and exhibits downfield 15N backbone shifts (relative to B) in the α5* region indicative of reduced helicity. Finally state B″ (~0.05%) exchanges rapidly (τex ~ 0.8 to 1 ms) with either B' (linear model) or B (branched model), displays significant differences in absolute 15N chemical shift from states B and B', and likely represents a further intermediate with increased helicity along the fold-switching pathway.
Collapse
Affiliation(s)
- Mengli Cai
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - Juan M. Lopez
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
- Departmento de Ciencia–Quimica, Centro de Espectroscopia de Resonancia Magnética Nuclear, Pontificia Universidad Católica del Perú, Lima 32, Perú
| | - Ying Huang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| |
Collapse
|
2
|
Kohli SK, Dhurve G, Mohammad KG, Khan TA, Yusuf M. The power of small RNAs: A comprehensive review on bacterial stress response and adaptation. Int J Biol Macromol 2025; 315:144411. [PMID: 40398788 DOI: 10.1016/j.ijbiomac.2025.144411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/13/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
Bacteria employ a wide range of RNA-based regulatory systems to adapt to various environmental stressors. Among these, small non-coding RNAs (sRNAs) have emerged as critical regulators of gene expression. These compact RNA molecules modulate numerous cellular functions, including stress adaptation, biofilm development, and virulence. By acting primarily at the post-transcriptional level, sRNAs enable bacteria to swiftly adjust gene expression in response to external challenges. One key mechanism of sRNA action is translational repression, which includes the regulation of toxin-antitoxin systems pathways essential for bacterial persistence and antibiotic resistance. Additionally, sRNAs orchestrate the expression of genes involved in biofilm formation, enhancing surface adhesion, extracellular matrix production, and resistance to antimicrobial agents. Bacterial outer membrane vesicles (OMVs) also play a significant role in stress adaptation and intercellular communication. These vesicles transport a complex cargo of proteins, lipids, and nucleic acids, including sRNAs. The transfer of sRNAs through OMVs can modulate the physiology of neighboring bacterial cells as well as host cells, highlighting their role in cross-kingdom signaling. sRNAs serve as versatile and potent regulatory elements that support bacterial survival under hostile conditions. Advancing our understanding of sRNA-mediated networks offers promising avenues for uncovering bacterial pathogenesis and developing innovative antimicrobial therapies.
Collapse
Affiliation(s)
- Sukhmeen Kaur Kohli
- Department of Earth and Climate Sciences (ECS), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Ganeshwari Dhurve
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Kashif Gulam Mohammad
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Tanveer Alam Khan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohammad Yusuf
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
3
|
Dong L, Huang Y, Zhang S, Xu B, Li B, Cao Y. Risk Factors for Development and Mortality of Carbapenem-Resistant Pseudomonas aeruginosa Bloodstream Infection in a Chinese Teaching Hospital: A Seven-Year Retrospective Study. Infect Drug Resist 2025; 18:979-991. [PMID: 39990780 PMCID: PMC11847577 DOI: 10.2147/idr.s495240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/30/2025] [Indexed: 02/25/2025] Open
Abstract
Objective Pseudomonas aeruginosa (P. aeruginosa) is a gram-negative opportunistic pathogen, which can cause acute and chronic infections, often resulting in high mortality. The aim of this study was to investigate the risk factors for the development and mortality of patients with carbapenem-resistant P. aeruginosa bloodstream infection (CRPA BSI). Methods A total of 112 patients with CRPA BSI and 112 patients with carbapenem-sensitive P. aeruginosa (CSPA) BSI were included from a Chinese teaching hospital from January 2017 to December 2023 in this retrospective cohort study. The detection rate, antimicrobial susceptibility of P. aeruginosa and clinical characteristics of these patients were investigated. Multivariable logistic regression analysis was used to identify risk factors for the development and outcomes of CRPA BSI. Results In the past 7 years, 7480 blood samples of P. aeruginosa were cultured in the hospital. The detection rates of CRPA, multidrug resistant P. aeruginosa (MDRPA), and difficult-to-treat resistant P. aeruginosa (DTRPA) BSI increased annually (26% to 47%, 10% to 36% and 5% to 15%, respectively). CRPA showed high resistance to conventional antibiotics. Chronic lung disease (OR 3.953, 95% CI 1.131-13.812), transplantation (OR 2.837, 95% CI 1.036-7.770), multi-organ failure (OR 4.815, 95% CI 1.949-11.894), pre-infection within CRPA (OR 9.239, 95% CI 3.441-24.803), and exposure to carbapenems within 90 days (OR 2.734, 95% CI 1.052 -7.106) were independent risk factors for the development of CRPA bacteremia. Sepsis or septic shock (OR 8.774, 95% CI 3.140-24.515, p = 0.001) were independent risk factors of mortality. Conclusion Chronic lung disease, transplantation, multi-organ failure, prior CRPA infection, and prior carbapenems exposure are independent risk factors for the development of CRPA bacteremia. Sepsis or septic shock increases 28-day mortality. To investigate the molecular mechanisms of carbapenem-resistance of P. aeruginosa, standardize antibiotic usage, and assess risk factors for the development and mortality of CRPA BSI are beneficial to control infection and reduce death.
Collapse
Affiliation(s)
- Luyan Dong
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Yingbin Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350004, People’s Republic of China
| | - Shengcen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Binbin Xu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Bin Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| |
Collapse
|
4
|
Zhang S, Shu Y, Zhang W, Xu Z, Li Y, Li S, Li Q, Xiong R, Long Y, Liu J, Zhang Y, Chen C, Lu Y. Quorum sensing N-acyl homoserine lactones-SdiA enhances the biofilm formation of E. coli by regulating sRNA CsrB expression. Heliyon 2023; 9:e21658. [PMID: 38027585 PMCID: PMC10651509 DOI: 10.1016/j.heliyon.2023.e21658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
As an important virulence phenotype of Escherichia coli, the regulation mechanism of biofilm by non-coding RNA and quorum sensing system has not been clarified. Here, by transcriptome sequencing and RT-PCR analysis, we found CsrB, a non-coding RNA of the carbon storage regulation system, was positively regulated by the LuxR protein SdiA. Furthermore, β-galactosidase reporter assays showed that SdiA enhanced promoter transcriptional activity of csrB. The consistent dynamic expression levels of SdiA and CsrB during Escherichia coli growth were also detected. Moreover, curli assays and biofilm assays showed sdiA deficiency in Escherichia coli SM10λπ or BW25113 led to a decreased formation of biofilm, and was significantly restored by over-expression of CsrB. Interestingly, the regulations of SdiA on CsrB in biofilm formation were enhanced by quorum sensing signal molecules AHLs. In conclusion, SdiA plays a crucial role in Escherichia coli biofilm formation by regulating the expression of non-coding RNA CsrB. Our study provides new insights into SdiA-non-coding RNA regulatory network involved in Escherichia coli biofilm formation.
Collapse
Affiliation(s)
- Shebin Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yurong Shu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Weizheng Zhang
- Department of Laboratory Medicine, Guangzhou No.11 People's Hospital, Guangzhou Cadre Health Management Center, Guangzhou, PR China
| | - Zhenjie Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Youqiang Li
- Department of Laboratory Medicine, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, PR China
| | - Song Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qiwei Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Rui Xiong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yifei Long
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jianping Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yunyan Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Cha Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yang Lu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital Guangzhou, Qingyuan, PR China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| |
Collapse
|
5
|
Abstract
Small regulatory RNA (sRNAs) are key mediators of posttranscriptional gene control in bacteria. Assisted by RNA-binding proteins, a single sRNA often modulates the expression of dozens of genes, and thus sRNAs frequently adopt central roles in regulatory networks. Posttranscriptional regulation by sRNAs comes with several unique features that cannot be achieved by transcriptional regulators. However, for optimal network performance, transcriptional and posttranscriptional control mechanisms typically go hand-in-hand. This view is reflected by the ever-growing class of mixed network motifs involving sRNAs and transcription factors, which are ubiquitous in biology and whose regulatory properties we are beginning to understand. In addition, sRNA activity can be antagonized by base-pairing with sponge RNAs, adding yet another layer of complexity to these networks. In this article, we summarize the regulatory concepts underlying sRNA-mediated gene control in bacteria and discuss how sRNAs shape the output of a network, focusing on several key examples.
Collapse
Affiliation(s)
- Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany;
- Microverse Cluster, Friedrich Schiller University Jena, Jena, Germany
| | - Sahar Melamed
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
6
|
Sarshar M, Scribano D, Palamara AT, Ambrosi C, Masotti A. The Acinetobacter baumannii model can explain the role of small non-coding RNAs as potential mediators of host-pathogen interactions. Front Mol Biosci 2022; 9:1088783. [PMID: 36619166 PMCID: PMC9810633 DOI: 10.3389/fmolb.2022.1088783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial small RNAs (sRNAs) research has accelerated over the past decade, boosted by advances in RNA-seq technologies and methodologies for capturing both protein-RNA and RNA-RNA interactions. The emerging picture is that these regulatory sRNAs play important roles in controlling complex physiological processes and are required to survive the antimicrobial challenge. In recent years, the RNA content of OMVs/EVs has also gained increasing attention, particularly in the context of infection. Secreted RNAs from several bacterial pathogens have been characterized but the exact mechanisms promoting pathogenicity remain elusive. In this review, we briefly discuss how secreted sRNAs interact with targets in infected cells, thus representing a novel perspective of host cell manipulation during bacterial infection. During the last decade, Acinetobacter baumannii became clinically relevant emerging pathogens responsible for nosocomial and community-acquired infections. Therefore, we also summarize recent findings of regulation by sRNAs in A. baumannii and discuss how this emerging bacterium utilizes many of these sRNAs to adapt to its niche and become successful human pathogen.
Collapse
Affiliation(s)
- Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,*Correspondence: Meysam Sarshar, ; Andrea Masotti,
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Anna Teresa Palamara
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy,Department of Infectious Diseases, National Institute of Health, Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy,IRCCS San Raffaele Roma, Rome, Italy
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,*Correspondence: Meysam Sarshar, ; Andrea Masotti,
| |
Collapse
|
7
|
Balakrishnan R, Mori M, Segota I, Zhang Z, Aebersold R, Ludwig C, Hwa T. Principles of gene regulation quantitatively connect DNA to RNA and proteins in bacteria. Science 2022; 378:eabk2066. [PMID: 36480614 PMCID: PMC9804519 DOI: 10.1126/science.abk2066] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein concentrations are set by a complex interplay between gene-specific regulatory processes and systemic factors, including cell volume and shared gene expression machineries. Elucidating this interplay is crucial for discerning and designing gene regulatory systems. We quantitatively characterized gene-specific and systemic factors that affect transcription and translation genome-wide for Escherichia coli across many conditions. The results revealed two design principles that make regulation of gene expression insulated from concentrations of shared machineries: RNA polymerase activity is fine-tuned to match translational output, and translational characteristics are similar across most messenger RNAs (mRNAs). Consequently, in bacteria, protein concentration is set primarily at the promoter level. A simple mathematical formula relates promoter activities and protein concentrations across growth conditions, enabling quantitative inference of gene regulation from omics data.
Collapse
Affiliation(s)
- Rohan Balakrishnan
- Department of Physics, University of California at San Diego, La Jolla, California 92093-0374
| | - Matteo Mori
- Department of Physics, University of California at San Diego, La Jolla, California 92093-0374
| | - Igor Segota
- Departments of Medicine and Pharmacology, University of California at San Diego, La Jolla, California 92093
| | - Zhongge Zhang
- Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093
| | - Ruedi Aebersold
- Faculty of Science, University of Zurich, Zurich, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Terence Hwa
- Department of Physics, University of California at San Diego, La Jolla, California 92093-0374
- Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
8
|
da Silva GC, Rossi CC, Rosa JN, Sanches NM, Cardoso DL, Li Y, Witney AA, Gould KA, Fontes PP, Callaghan AJ, Bossé JT, Langford PR, Bazzolli DMS. Identification of small RNAs associated with RNA chaperone Hfq reveals a new stress response regulator in Actinobacillus pleuropneumoniae. Front Microbiol 2022; 13:1017278. [PMID: 36267174 PMCID: PMC9577009 DOI: 10.3389/fmicb.2022.1017278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The RNA chaperone Hfq promotes the association of small RNAs (sRNAs) with cognate mRNAs, controlling the expression of bacterial phenotype. Actinobacillus pleuropneumoniae hfq mutants strains are attenuated for virulence in pigs, impaired in the ability to form biofilms, and more susceptible to stress, but knowledge of the extent of sRNA involvement is limited. Here, using A. pleuropneumoniae strain MIDG2331 (serovar 8), 14 sRNAs were identified by co-immunoprecipitation with Hfq and the expression of eight, identified as trans-acting sRNAs, were confirmed by Northern blotting. We focused on one of these sRNAs, named Rna01, containing a putative promoter for RpoE (stress regulon) recognition. Knockout mutants of rna01 and a double knockout mutant of rna01 and hfq, both had decreased biofilm formation and hemolytic activity, attenuation for virulence in Galleria mellonella, altered stress susceptibility, and an altered outer membrane protein profile. Rna01 affected extracellular vesicle production, size and toxicity in G. mellonella. qRT-PCR analysis of rna01 and putative cognate mRNA targets indicated that Rna01 is associated with the extracytoplasmic stress response. This work increases our understanding of the multilayered and complex nature of the influence of Hfq-dependent sRNAs on the physiology and virulence of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Giarlã Cunha da Silva
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ciro César Rossi
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jéssica Nogueira Rosa
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Newton Moreno Sanches
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Daniela Lopes Cardoso
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Yanwen Li
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Adam A. Witney
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - Kate A. Gould
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | | | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Janine Thérèse Bossé
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul Richard Langford
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária—Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
9
|
Dawan J, Ahn J. Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10071385. [PMID: 35889104 PMCID: PMC9322497 DOI: 10.3390/microorganisms10071385] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteria can be adapted to adverse and detrimental conditions that induce general and specific responses to DNA damage as well as acid, heat, cold, starvation, oxidative, envelope, and osmotic stresses. The stress-triggered regulatory systems are involved in bacterial survival processes, such as adaptation, physiological changes, virulence potential, and antibiotic resistance. Antibiotic susceptibility to several antibiotics is reduced due to the activation of stress responses in cellular physiology by the stimulation of resistance mechanisms, the promotion of a resistant lifestyle (biofilm or persistence), and/or the induction of resistance mutations. Hence, the activation of bacterial stress responses poses a serious threat to the efficacy and clinical success of antibiotic therapy. Bacterial stress responses can be potential targets for therapeutic alternatives to antibiotics. An understanding of the regulation of stress response in association with antibiotic resistance provides useful information for the discovery of novel antimicrobial adjuvants and the development of effective therapeutic strategies to control antibiotic resistance in bacteria. Therefore, this review discusses bacterial stress responses linked to antibiotic resistance in Gram-negative bacteria and also provides information on novel therapies targeting bacterial stress responses that have been identified as potential candidates for the effective control of Gram-negative antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jirapat Dawan
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Korea
- Correspondence: ; Tel.: +82-33-250-6564
| |
Collapse
|
10
|
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7:199. [PMID: 35752612 PMCID: PMC9233671 DOI: 10.1038/s41392-022-01056-1] [Citation(s) in RCA: 511] [Impact Index Per Article: 170.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, 430071, P.R. China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haihua Liang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Min Wu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
11
|
Abstract
Temperature is one of the ubiquitous signals that control both the development as well as virulence of various microbial species. Therefore their survival is dependent upon initiating appropriate response upon temperature fluctuations. In particular, pathogenic microbes exploit host-temperature sensing mechanisms for triggering the expression of virulence genes. Many studies have revealed that the biomolecules within a cell such as DNA, RNA, lipids and proteins help in sensing change in temperature, thereby acting as thermosensors. This review shall provide an insight into the different mechanisms of thermosensing and how they aid pathogenic microbes in host invasion.
Collapse
|
12
|
Matera G, Altuvia Y, Gerovac M, El Mouali Y, Margalit H, Vogel J. Global RNA interactome of Salmonella discovers a 5' UTR sponge for the MicF small RNA that connects membrane permeability to transport capacity. Mol Cell 2022; 82:629-644.e4. [PMID: 35063132 DOI: 10.1016/j.molcel.2021.12.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 10/04/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
The envelope of Gram-negative bacteria is a vital barrier that must balance protection and nutrient uptake. Small RNAs are crucial regulators of the envelope composition and function. Here, using RIL-seq to capture the Hfq-mediated RNA-RNA interactome in Salmonella enterica, we discover envelope-related riboregulators, including OppX. We show that OppX acts as an RNA sponge of MicF sRNA, a prototypical porin repressor. OppX originates from the 5' UTR of oppABCDF, encoding the major inner-membrane oligopeptide transporter, and sequesters MicF's seed region to derepress the synthesis of the porin OmpF. Intriguingly, OppX operates as a true sponge, storing MicF in an inactive complex without affecting its levels or stability. Conservation of the opp-OppX-MicF-ompF axis in related bacteria suggests that it serves an important mechanism, adjusting envelope porosity to specific transport capacity. These data also highlight the resource value of this Salmonella RNA interactome, which will aid in unraveling RNA-centric regulation in enteric pathogens.
Collapse
Affiliation(s)
- Gianluca Matera
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Milan Gerovac
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Youssef El Mouali
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), D-97080 Würzburg, Germany.
| |
Collapse
|
13
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1578-1585. [DOI: 10.1093/jac/dkac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/16/2022] [Indexed: 11/14/2022] Open
|
14
|
Checkpoints That Regulate Balanced Biosynthesis of Lipopolysaccharide and Its Essentiality in Escherichia coli. Int J Mol Sci 2021; 23:ijms23010189. [PMID: 35008618 PMCID: PMC8745692 DOI: 10.3390/ijms23010189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria, such as Escherichia coli, is essential for their viability. Lipopolysaccharide (LPS) constitutes the major component of OM, providing the permeability barrier, and a tight balance exists between LPS and phospholipids amounts as both of these essential components use a common metabolic precursor. Hence, checkpoints are in place, right from the regulation of the first committed step in LPS biosynthesis mediated by LpxC through its turnover by FtsH and HslUV proteases in coordination with LPS assembly factors LapB and LapC. After the synthesis of LPS on the inner leaflet of the inner membrane (IM), LPS is flipped by the IM-located essential ATP-dependent transporter to the periplasmic face of IM, where it is picked up by the LPS transport complex spanning all three components of the cell envelope for its delivery to OM. MsbA exerts its intrinsic hydrocarbon ruler function as another checkpoint to transport hexa-acylated LPS as compared to underacylated LPS. Additional checkpoints in LPS assembly are: LapB-assisted coupling of LPS synthesis and translocation; cardiolipin presence when LPS is underacylated; the recruitment of RfaH transcriptional factor ensuring the transcription of LPS core biosynthetic genes; and the regulated incorporation of non-stoichiometric modifications, controlled by the stress-responsive RpoE sigma factor, small RNAs and two-component systems.
Collapse
|
15
|
Reissier S, Le Neindre K, Bordeau V, Dejoies L, Le Bot A, Felden B, Cattoir V, Revest M. The Regulatory RNA ern0160 Confers a Potential Selective Advantage to Enterococcus faecium for Intestinal Colonization. Front Microbiol 2021; 12:757227. [PMID: 34858368 PMCID: PMC8631354 DOI: 10.3389/fmicb.2021.757227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to evaluate the role of the regulatory small RNA (sRNA) Ern0160 in gastrointestinal tract (GIT) colonization by Enterococcus faecium. For this purpose, four strains of E. faecium were used, Aus0004 (WT), an ern0160-deleted Aus0004 mutant (Δ0160), a trans-complemented Δ0160 strain overexpressing ern0160 (Δ0160_0160), and a strain Δ0160 with an empty pAT29 vector (Δ0160_pAT29). Strains were studied both in vitro and in vivo, alone and in competitive assays. In in vitro experiments, no difference was observed between WT and Δ0160 strains cultured single while Δ0160_0160 strain grew more slowly than Δ0160_pAT29. In competitive assays, the WT strain was predominant compared to the deleted strain Δ0160 at the end of the experiment. Then, in vivo experiments were performed using a GIT colonization mouse model. Several existing models of GIT colonization were compared while a novel one, combining ceftriaxone and amoxicillin, was developed. A GIT colonization was performed with each strain alone, and no significant difference was noticed. By contrast, significant results were obtained with co-colonization experiments. With WT + Δ0160 suspension, a significant advantage for the WT strain was observed from day 5 to the end of the protocol, suggesting the involvement of ern0160 in GIT colonization. With Δ0160_0160 + Δ0160_pAT29 suspension, the strain with the empty vector took the advantage from day 3 to the end of the protocol, suggesting a deleterious effect of ern0160 overexpression. Altogether, these findings demonstrate the potential implication of Ern0160 in GIT colonization of E. faecium. Further investigations are needed for the identification of sRNA target(s) in order to decipher underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Killian Le Neindre
- Unité Inserm U1230, Université de Rennes 1, Rennes, France.,Service de Bactériologie-Hygiène Hospitalière & CNR de la Résistance aux Antibiotiques (Laboratoire Associé 'Entérocoques'), CHU de Rennes, Rennes, France
| | | | - Loren Dejoies
- Unité Inserm U1230, Université de Rennes 1, Rennes, France.,Service de Bactériologie-Hygiène Hospitalière & CNR de la Résistance aux Antibiotiques (Laboratoire Associé 'Entérocoques'), CHU de Rennes, Rennes, France
| | - Audrey Le Bot
- Unité Inserm U1230, Université de Rennes 1, Rennes, France.,Service de Maladies Infectieuses et Réanimation Médicale, CHU de Rennes, Rennes, France
| | - Brice Felden
- Unité Inserm U1230, Université de Rennes 1, Rennes, France
| | - Vincent Cattoir
- Unité Inserm U1230, Université de Rennes 1, Rennes, France.,Service de Bactériologie-Hygiène Hospitalière & CNR de la Résistance aux Antibiotiques (Laboratoire Associé 'Entérocoques'), CHU de Rennes, Rennes, France
| | - Matthieu Revest
- Unité Inserm U1230, Université de Rennes 1, Rennes, France.,Service de Maladies Infectieuses et Réanimation Médicale, CHU de Rennes, Rennes, France
| |
Collapse
|
16
|
Liu G, Chang H, Qiao Y, Huang K, Zhang A, Zhao Y, Feng Z. Profiles of Small Regulatory RNAs at Different Growth Phases of Streptococcus thermophilus During pH-Controlled Batch Fermentation. Front Microbiol 2021; 12:765144. [PMID: 35035386 PMCID: PMC8753986 DOI: 10.3389/fmicb.2021.765144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Small regulatory RNA (sRNA) has been shown to play an important role under various stress conditions in bacteria, and it plays a vital role in regulating growth, adaptation and survival through posttranscriptional control of gene expression in bacterial cells. Streptococcus thermophilus is widely used as a starter culture in the manufacture of fermented dairy products. However, the lack of reliable information on the expression profiles and potential physiological functions of sRNAs in this species hinders our understanding of the importance of sRNAs in S. thermophilus. The present study was conducted to assess the expression profiles of sRNAs in S. thermophilus and to identify sRNAs that exhibited significant changes. A total of 530 potential sRNAs were identified, including 198 asRNAs, 135 sRNAs from intergenic regions, and 197 sRNAs from untranslated regions (UTRs). Significant changes occurred in the expression of 238, 83, 194, and 139 sRNA genes during the lag, early exponential growth, late exponential growth, and stationary phases, respectively. The expression of 14 of the identified sRNAs was verified by qRT-PCR. Predictions of the target genes of these candidate sRNAs showed that the primary metabolic pathways targeted were involved in carbon metabolism, biosynthesis of amino acids, ABC transporters, the metabolism of amino and nucleotide sugars, purine metabolism, and the phosphotransferase system. The expression of the predicted target genes was further analyzed to better understand the roles of sRNAs during different growth stages. The results suggested that these sRNAs play crucial roles by regulating biological pathways during different growth phases of S. thermophilus. According to the results, sRNAs sts141, sts392, sts318, and sts014 are involved in the regulation of osmotic stress. sRNAs sts508, sts087, sts372, sts141, sts375, and sts119 are involved in the regulation of starvation stress. sRNAs sts129, sts226, sts166, sts231, sts204, sts145, and sts236 are involved in arginine synthesis. sRNAs sts033, sts341, sts492, sts140, sts230, sts172, and sts377 are involved in the ADI pathway. The present study provided valuable information for the functional study of sRNAs in S. thermophilus and indicated a future research direction for sRNA in S. thermophilus. Overall, our results provided new insights for understanding the complex regulatory network of sRNAs in S. thermophilus.
Collapse
Affiliation(s)
- Gefei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Haode Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Kai Huang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Ao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Yu Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
- Yu Zhao,
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
- College of Food and Biological Engineering, Qiqihar University, 42 Wenhua Road, 160006, Qiqihar, China
- *Correspondence: Zhen Feng,
| |
Collapse
|
17
|
London LY, Aubee JI, Nurse J, Thompson KM. Post-Transcriptional Regulation of RseA by Small RNAs RyhB and FnrS in Escherichia coli. Front Mol Biosci 2021; 8:668613. [PMID: 34805264 PMCID: PMC8595263 DOI: 10.3389/fmolb.2021.668613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
RseA is the critical central regulator of the σE-dependent stress response in E. coli and other related bacteria. The synthesis of RseA is controlled at the transcriptional level by several promoters and transcriptional regulators, including σE itself at two σE-dependent promoters: rpoE P and rseA P3. The presence of these two independent polycistrons encoding rseA is potentially redundant. We hypothesized that post-transcriptional control of the rseA P3 transcript was necessary to overcome this redundancy. However, to date, nothing is known about the post-transcriptional control of the rseA P3 transcript. We executed a targeted genetic screen to identify small RNA regulators of the rseA P3 transcript and identified RyhB and FnrS as small RNA activators of the RseA P3 transcript. Through genetic analysis, we confirmed that a direct interaction occurs between RyhB and RseA. We also identified sequences within the 5' untranslated region (UTR) of RseA that were inhibitory for RseA expression. Point mutations predicted to prevent an interaction between RyhB and RseA resulted in increased RseA expression. Taken together, this suggests that the 5' UTR of the RseAP3 transcript prevents optimal expression of RseA, preventing redundancy due to RseA expression from the σE-dependent rpoE P, and this is overcome by the stimulatory activity of RyhB and FnrS.
Collapse
Affiliation(s)
- Laricca Y. London
- Department of Biological and Environmental Sciences, Alabama A&M University, Huntsville, AL, United States
| | - Joseph I Aubee
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, United States
| | - Jalisa Nurse
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, United States
- Department of Biology, Howard University, Washington, DC, United States
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, United States
| |
Collapse
|
18
|
Djapgne L, Oglesby AG. Impacts of Small RNAs and Their Chaperones on Bacterial Pathogenicity. Front Cell Infect Microbiol 2021; 11:604511. [PMID: 34322396 PMCID: PMC8311930 DOI: 10.3389/fcimb.2021.604511] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are critical post-transcriptional regulators that exert broad effects on cell physiology. One class of sRNAs, referred to as trans-acting sRNAs, base-pairs with mRNAs to cause changes in their stability or translation. Another class of sRNAs sequesters RNA-binding proteins that in turn modulate mRNA expression. RNA chaperones play key roles in these regulatory events by promoting base-pairing of sRNAs to mRNAs, increasing the stability of sRNAs, inducing conformational changes on mRNA targets upon binding, or by titrating sRNAs away from their primary targets. In pathogenic bacteria, sRNAs and their chaperones exert broad impacts on both cell physiology and virulence, highlighting the central role of these systems in pathogenesis. This review provides an overview of the growing number and roles of these chaperone proteins in sRNA regulation, highlighting how these proteins contribute to bacterial pathogenesis.
Collapse
Affiliation(s)
- Louise Djapgne
- Department of Chemistry, Georgetown College, Washington, DC, United States
| | - Amanda G Oglesby
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
19
|
Increased Production of Outer Membrane Vesicles by Salmonella Interferes with Complement-Mediated Innate Immune Attack. mBio 2021; 12:e0086921. [PMID: 34061589 PMCID: PMC8262969 DOI: 10.1128/mbio.00869-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) enriched with bioactive proteins, toxins, and virulence factors play a critical role in host-pathogen and microbial interactions. The two-component system PhoP-PhoQ (PhoPQ) of Salmonella enterica orchestrates the remodeling of outer membrane lipopolysaccharide (LPS) molecules and concomitantly upregulates OMV production. In this study, we document a novel use of nanoparticle tracking analysis to determine bacterial OMV size and number. Among the PhoPQ-activated genes tested, pagC expression had the most significant effect on the upregulation of OMV production. We provide the first evidence that PhoPQ-mediated upregulation of OMV production contributes to bacterial survival by interfering with complement activation. OMVs protected bacteria in a dose-dependent manner, and bacteria were highly susceptible to complement-mediated killing in their absence. OMVs from bacteria expressing PagC bound to complement component C3b in a dose-dependent manner and inactivated it by recruiting complement inhibitor Factor H. As we also found that Factor H binds to PagC, we propose that PagC interferes with complement-mediated killing of Salmonella in the following two steps: first by engaging Factor H, and second, through the production of PagC-enriched OMVs that divert and inactivate the complement away from the bacteria. Since PhoPQ activation occurs intracellularly, the resultant increase in PagC expression and OMV production is suggested to contribute to the local and systemic spread of Salmonella released from dying host cells that supports the infection of new cells. IMPORTANCE Bacterial outer membrane vesicles (OMVs) mediate critical bacterium-bacterium and host-microbial interactions that influence pathogenesis through multiple mechanisms, including the elicitation of inflammatory responses, delivery of virulence factors, and enhancement of biofilm formation. As such, there is a growing interest in understanding the underlying mechanisms of OMV production. Recent studies have revealed that OMV biogenesis is a finely tuned physiological process that requires structural organization and selective sorting of outer membrane components into the vesicles. In Salmonella, outer membrane remodeling and OMV production are tightly regulated by its PhoPQ system. In this study, we demonstrate that PhoPQ-regulated OMV production plays a significant role in defense against host innate immune attack. PhoPQ-activated PagC expression recruits the complement inhibitor Factor H and degrades the active C3 component of complement. Our results provide valuable insight into the combination of tools and environmental signals that Salmonella employs to evade complement-mediated lysis, thereby suggesting a strong evolutionary adaptation of this facultative intracellular pathogen to protect itself during its extracellular stage in the host.
Collapse
|
20
|
Dejoies L, Le Neindre K, Reissier S, Felden B, Cattoir V. Distinct expression profiles of regulatory RNAs in the response to biocides in Staphylococcus aureus and Enterococcus faecium. Sci Rep 2021; 11:6892. [PMID: 33767282 PMCID: PMC7994832 DOI: 10.1038/s41598-021-86376-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/05/2021] [Indexed: 11/09/2022] Open
Abstract
The aim of the study was to characterize the antimicrobial activity of clinically-relevant biocides (chlorhexidine digluconate, benzalkonium chloride, PVP-iodine and triclosan) and to determine the sRNA expression profiles under biocide exposure in two major bacterial opportunistic pathogens, Enterococcus faecium and Staphylococcus aureus. In vitro activities were evaluated against S. aureus HG003 and E. faecium Aus0004. We determined MIC, MBC, sub-inhibitory concentrations (SIC) and growth curves under SIC conditions. sRNA expression study under SIC exposure of biocides was performed by RT-qPCR on 3 sRNAs expressed in S. aureus (RNAIII, SprD and SprX) and the first 9 sRNAs identified as expressed in E. faecium. MICs were higher against E. faecium than for S. aureus. Growth curves under increasing biocide concentrations highlighted two types of bactericidal activity: "on/off" effect for chlorhexidine, benzalkonium chloride, PVP-iodine and a "concentration-dependent" activity for triclosan. Exposure to biocide SICs led to an alteration of several sRNA expression profiles, mostly repressed. The distinct biocide activity profiles must be evaluated with other compounds and bacterial species to enrich the prediction of resistance risks associated with biocide usage. Biocide exposure induces various sRNA-mediated responses in both S. aureus and E. faecium, and further investigations are needed to decipher sRNA-driven regulatory networks.
Collapse
Affiliation(s)
- Loren Dejoies
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- Inserm UMR_S 1230, Bacterial Regulatory RNAs and Medicine, University of Rennes 1, Rennes, France
| | - Killian Le Neindre
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- Inserm UMR_S 1230, Bacterial Regulatory RNAs and Medicine, University of Rennes 1, Rennes, France
| | - Sophie Reissier
- Inserm UMR_S 1230, Bacterial Regulatory RNAs and Medicine, University of Rennes 1, Rennes, France
| | - Brice Felden
- Inserm UMR_S 1230, Bacterial Regulatory RNAs and Medicine, University of Rennes 1, Rennes, France.
| | - Vincent Cattoir
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France.
- Inserm UMR_S 1230, Bacterial Regulatory RNAs and Medicine, University of Rennes 1, Rennes, France.
- National Reference Center for Antimicrobial Resistance (Lab 'Enterococci'), Rennes, France.
| |
Collapse
|
21
|
Extracellular RNAs in Bacterial Infections: From Emerging Key Players on Host-Pathogen Interactions to Exploitable Biomarkers and Therapeutic Targets. Int J Mol Sci 2020; 21:ijms21249634. [PMID: 33348812 PMCID: PMC7766527 DOI: 10.3390/ijms21249634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are key regulators of post-transcriptional gene expression in prokaryotic and eukaryotic organisms. These molecules can interact with mRNAs or proteins, affecting a variety of cellular functions. Emerging evidence shows that intra/inter-species and trans-kingdom regulation can also be achieved with exogenous RNAs, which are exported to the extracellular medium, mainly through vesicles. In bacteria, membrane vesicles (MVs) seem to be the more common way of extracellular communication. In several bacterial pathogens, MVs have been described as a delivery system of ncRNAs that upon entry into the host cell, regulate their immune response. The aim of the present work is to review this recently described mode of host-pathogen communication and to foster further research on this topic envisaging their exploitation in the design of novel therapeutic and diagnostic strategies to fight bacterial infections.
Collapse
|
22
|
Tang D, Chen X, Jia Y, Liang Y, He Y, Lu T, Zhu C, Han B, An S, Tang J. Genome-wide screen and functional analysis in Xanthomonas reveal a large number of mRNA-derived sRNAs, including the novel RsmA-sequester RsmU. MOLECULAR PLANT PATHOLOGY 2020; 21:1573-1590. [PMID: 32969159 PMCID: PMC7694677 DOI: 10.1111/mpp.12997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/02/2020] [Accepted: 08/26/2020] [Indexed: 05/07/2023]
Abstract
Although bacterial small noncoding RNAs (sRNAs) are known to play a critical role in various cellular processes, including pathogenesis, the identity and action of such sRNAs are still poorly understood in many organisms. Here we have performed a genome-wide screen and functional analysis of the sRNAs in Xanthomonas campestris pv. campestris (Xcc), an important phytopathogen. The 50-500-nt RNA fragments isolated from the wild-type strain grown in a virulence gene-inducing condition were sequenced and a total of 612 sRNA candidates (SRCs) were identified. The majority (82%) of the SRCs were derived from mRNA, rather than specific sRNA genes. A representative panel of 121 SRCs were analysed by northern blotting; 117 SRCs were detected, supporting the contention that the overwhelming majority of the 612 SRCs identified are indeed sRNAs. Phenotypic analysis of strains overexpressing different candidates showed that a particular sRNA, RsmU, acts as a negative regulator of virulence, the hypersensitive response, and cell motility in Xcc. In vitro electrophoretic mobility shift assay and in vivo coimmunoprecipitation analyses indicated that RsmU interacted with the global posttranscriptional regulator RsmA, although sequence analysis displayed that RsmU is not a member of the sRNAs families known to antagonize RsmA. Northern blotting analyses demonstrated that RsmU has two isoforms that are processed from the 3'-untranslated region of the mRNA of XC1332 predicted to encode ComEA, a periplasmic protein required for DNA uptake in bacteria. This work uncovers an unexpected major sRNA biogenesis strategy in bacteria and a hidden layer of sRNA-mediated virulence regulation in Xcc.
Collapse
Affiliation(s)
- Dong‐Jie Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Xiao‐Lin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
- Present address:
Plant Protection Research InstituteGuangxi Academy of Agricultural Science174 Daxue RoadNanningGuangxi530007China
| | - Yu Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Yu‐Wei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Yuan‐Ping He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Ting‐Ting Lu
- National Center for Gene Research & Institute of Plant Physiology and EcologyShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Chuan‐Rang Zhu
- National Center for Gene Research & Institute of Plant Physiology and EcologyShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Bin Han
- National Center for Gene Research & Institute of Plant Physiology and EcologyShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Shi‐Qi An
- National Biofilms Innovation CentreBiological SciencesUniversity of SouthamptonSouthamptonUK
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| |
Collapse
|
23
|
Piattelli E, Peltier J, Soutourina O. Interplay between Regulatory RNAs and Signal Transduction Systems during Bacterial Infection. Genes (Basel) 2020; 11:E1209. [PMID: 33081172 PMCID: PMC7602753 DOI: 10.3390/genes11101209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of pathogenic bacteria to stably infect the host depends on their capacity to respond and adapt to the host environment and on the efficiency of their defensive mechanisms. Bacterial envelope provides a physical barrier protecting against environmental threats. It also constitutes an important sensory interface where numerous sensing systems are located. Signal transduction systems include Two-Component Systems (TCSs) and alternative sigma factors. These systems are able to sense and respond to the ever-changing environment inside the host, altering the bacterial transcriptome to mitigate the impact of the stress. The regulatory networks associated with signal transduction systems comprise small regulatory RNAs (sRNAs) that can be directly involved in the expression of virulence factors. The aim of this review is to describe the importance of TCS- and alternative sigma factor-associated sRNAs in human pathogens during infection. The currently available genome-wide approaches for studies of TCS-regulated sRNAs will be discussed. The differences in the signal transduction mediated by TCSs between bacteria and higher eukaryotes and the specificity of regulatory RNAs for their targets make them appealing targets for discovery of new strategies to fight against multi-resistant bacteria.
Collapse
Affiliation(s)
- Emma Piattelli
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 75015 Paris, France
| | - Olga Soutourina
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Institut Universitaire de France, CEDEX 05, 75231 Paris, France
| |
Collapse
|
24
|
Multicopy Suppressor Analysis of Strains Lacking Cytoplasmic Peptidyl-Prolyl cis/trans Isomerases Identifies Three New PPIase Activities in Escherichia coli That Includes the DksA Transcription Factor. Int J Mol Sci 2020; 21:ijms21165843. [PMID: 32823955 PMCID: PMC7461557 DOI: 10.3390/ijms21165843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Consistent with a role in catalyzing rate-limiting step of protein folding, removal of genes encoding cytoplasmic protein folding catalysts belonging to the family of peptidyl-prolyl cis/trans isomerases (PPIs) in Escherichia coli confers conditional lethality. To address the molecular basis of the essentiality of PPIs, a multicopy suppressor approach revealed that overexpression of genes encoding chaperones (DnaK/J and GroL/S), transcriptional factors (DksA and SrrA), replication proteins Hda/DiaA, asparatokinase MetL, Cmk and acid resistance regulator (AriR) overcome some defects of Δ6ppi strains. Interestingly, viability of Δ6ppi bacteria requires the presence of transcriptional factors DksA, SrrA, Cmk or Hda. DksA, MetL and Cmk are for the first time shown to exhibit PPIase activity in chymotrypsin-coupled and RNase T1 refolding assays and their overexpression also restores growth of a Δ(dnaK/J/tig) strain, revealing their mechanism of suppression. Mutagenesis of DksA identified that D74, F82 and L84 amino acid residues are critical for its PPIase activity and their replacement abrogated multicopy suppression ability. Mutational studies revealed that DksA-mediated suppression of either Δ6ppi or ΔdnaK/J is abolished if GroL/S and RpoE are limiting, or in the absence of either major porin regulatory sensory kinase EnvZ or RNase H, transporter TatC or LepA GTPase or Pi-signaling regulator PhoU.
Collapse
|
25
|
Effect of rpoE on the Non-coding RNA Expression Profiles of Salmonella enterica serovar Typhi under the Stress of Ampicillin. Curr Microbiol 2020; 77:2405-2412. [DOI: 10.1007/s00284-020-02055-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
|
26
|
Hou B, Yang X, Xia H, Wu H, Ye J, Zhang H. sRNA EsrE Is Transcriptionally Regulated by the Ferric Uptake Regulator Fur in Escherichia coli. J Microbiol Biotechnol 2020; 30:127-135. [PMID: 31693839 PMCID: PMC9728176 DOI: 10.4014/jmb.1907.07026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Small RNAs (sRNAs) are widespread and play major roles in regulation circuits in bacteria. Previously, we have demonstrated that transcription of esrE is under the control of its own promoter. However, the regulatory elements involved in EsrE sRNA expression are still unknown. In this study, we found that different cis-regulatory elements exist in the promoter region of esrE. We then screened and analyzed seven potential corresponding trans-regulatory elements by using pull-down assays based on DNA affinity chromatography. Among these candidate regulators, we investigated the relationship between the ferric uptake regulator (Fur) and the EsrE sRNA. Electrophoresis mobility shift assays (EMSAs) and β-galactosidase activity assays demonstrated that Fur can bind to the promoter region of esrE, and positively regulate EsrE sRNA expression in the presence of Fe2+.
Collapse
Affiliation(s)
- Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China,Department of Applied Biology, East China University of Science and Technology, Shanghai, P.R. China
| | - Xichen Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Hui Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China,Department of Applied Biology, East China University of Science and Technology, Shanghai, P.R. China,Corresponding authors H.W. Phone: +86-021-64252507 Fax: +86-021-64252507 E-mail:
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China,Department of Applied Biology, East China University of Science and Technology, Shanghai, P.R. China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P.R. China,Department of Applied Biology, East China University of Science and Technology, Shanghai, P.R. China,H.Z. Phone: +86-021-64252507 Fax: +86-012-64252507 E-mail:
| |
Collapse
|
27
|
Deng Y, Su Y, Liu S, Bei L, Guo Z, Li H, Chen C, Feng J. A novel sRNA srvg17985 identified in Vibrio alginolyticus involving into metabolism and stress response. Microbiol Res 2019; 229:126295. [PMID: 31450184 DOI: 10.1016/j.micres.2019.126295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 11/28/2022]
Abstract
Vibrio alginolyticus is an opportunistic pathogen that is a threat to the aquaculture industry. Evidence has revealed critical roles for small RNAs (sRNAs) in bacterial physiology and pathology by modulating gene expression post transcription. However, little information about sRNA-mediated regulation in V. alginolyticus is available. We experimentally verified the existence and characterized the function of sRNA srvg17985 in V. alginolyticus ZJ-T. We identified a 179 nt and growth-phase-dependent transcript with a σ70 promoter and a ρ-independent terminator. The transcript consisted of five stem-loops and was conserved in Vibrio spp. Phenotype microarray assays showed that deletion of srvg17985 led to less use of Gly-Glu as a carbon source but a gain in ability to use l-phenylalanine as a nitrogen source. Srvg17985 regulated the osmotic stress response with stronger tolerance to NaCl but weaker tolerance to urea. In addition, srvg17985 inhibited the deamination of l-serine at pH 9.5 and promoted the hydrolysis of X-beta-d-glucuronide, thus affecting the pH stress response. Bioinformatics by IntaRNA and TargetRNA2 identified 45 common target mRNAs, some of which probably contributed to the observed phenotypes. These results indicated that srvg17985 regulated environmental adaptation. The results provide valuable information for in-depth studies of sRNA-mediated regulation mechanisms of the complex physiological processes of V alginolyticus and provide new targets for antibacterial therapeutics or attenuated vaccines for Vibrio spp.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lei Bei
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Huo Li
- Jinyang Tropical Haizhen Aquaculture Co., Ltd., Maoming, China
| | - Chang Chen
- Xisha/Nansha Ocean Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, China.
| |
Collapse
|
28
|
Systems Analyses Reveal the Resilience of Escherichia coli Physiology during Accumulation and Export of the Nonnative Organic Acid Citramalate. mSystems 2019; 4:4/4/e00187-19. [PMID: 31186337 PMCID: PMC6561320 DOI: 10.1128/msystems.00187-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Citramalate is an attractive biotechnology target because it is a precursor of methylmethacrylate, which is used to manufacture Perspex and other high-value products. Engineered E. coli strains are able to produce high titers of citramalate, despite having to express a foreign enzyme and tolerate the presence of a nonnative biochemical. A systems analysis of the citramalate fermentation was undertaken to uncover the reasons underpinning its productivity. This showed that E. coli readily adjusts to the redirection of metabolic resources toward recombinant protein and citramalate production and suggests that E. coli is an excellent chassis for manufacturing similar small, polar, foreign molecules. Productivity of bacterial cell factories is frequently compromised by stresses imposed by recombinant protein synthesis and carbon-to-product conversion, but little is known about these bioprocesses at a systems level. Production of the unnatural metabolite citramalate in Escherichia coli requires the expression of a single gene coding for citramalate synthase. Multiomic analyses of a fermentation producing 25 g liter−1 citramalate were undertaken to uncover the reasons for its productivity. Metabolite, transcript, protein, and lipid profiles of high-cell-density, fed-batch fermentations of E. coli expressing either citramalate synthase or an inactivated enzyme were similar. Both fermentations showed downregulation of flagellar genes and upregulation of chaperones IbpA and IbpB, indicating that these responses were due to recombinant protein synthesis and not citramalate production. Citramalate production did not perturb metabolite pools, except for an increased intracellular pyruvate pool. Gene expression changes in response to citramalate were limited; none of the general stress response regulons were activated. Modeling of transcription factor activities suggested that citramalate invoked a GadW-mediated acid response, and changes in GadY and RprA regulatory small RNA (sRNA) expression supported this. Although changes in membrane lipid composition were observed, none were unique to citramalate production. This systems analysis of the citramalate fermentation shows that E. coli has capacity to readily adjust to the redirection of resources toward recombinant protein and citramalate production, suggesting that it is an excellent chassis choice for manufacturing organic acids. IMPORTANCE Citramalate is an attractive biotechnology target because it is a precursor of methylmethacrylate, which is used to manufacture Perspex and other high-value products. Engineered E. coli strains are able to produce high titers of citramalate, despite having to express a foreign enzyme and tolerate the presence of a nonnative biochemical. A systems analysis of the citramalate fermentation was undertaken to uncover the reasons underpinning its productivity. This showed that E. coli readily adjusts to the redirection of metabolic resources toward recombinant protein and citramalate production and suggests that E. coli is an excellent chassis for manufacturing similar small, polar, foreign molecules.
Collapse
|
29
|
Cai Q, Wang G, Li Z, Zhang L, Fu Y, Yang X, Lin W, Lin X. SWATH based quantitative proteomics analysis reveals Hfq2 play an important role on pleiotropic physiological functions in Aeromonas hydrophila. J Proteomics 2019; 195:1-10. [DOI: 10.1016/j.jprot.2018.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/15/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022]
|
30
|
Klein G, Raina S. Regulated Assembly of LPS, Its Structural Alterations and Cellular Response to LPS Defects. Int J Mol Sci 2019; 20:ijms20020356. [PMID: 30654491 PMCID: PMC6358824 DOI: 10.3390/ijms20020356] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/21/2022] Open
Abstract
Distinguishing feature of the outer membrane (OM) of Gram-negative bacteria is its asymmetry due to the presence of lipopolysaccharide (LPS) in the outer leaflet of the OM and phospholipids in the inner leaflet. Recent studies have revealed the existence of regulatory controls that ensure a balanced biosynthesis of LPS and phospholipids, both of which are essential for bacterial viability. LPS provides the essential permeability barrier function and act as a major virulence determinant. In Escherichia coli, more than 100 genes are required for LPS synthesis, its assembly at inner leaflet of the inner membrane (IM), extraction from the IM, translocation to the OM, and in its structural alterations in response to various environmental and stress signals. Although LPS are highly heterogeneous, they share common structural elements defining their most conserved hydrophobic lipid A part to which a core polysaccharide is attached, which is further extended in smooth bacteria by O-antigen. Defects or any imbalance in LPS biosynthesis cause major cellular defects, which elicit envelope responsive signal transduction controlled by RpoE sigma factor and two-component systems (TCS). RpoE regulon members and specific TCSs, including their non-coding arm, regulate incorporation of non-stoichiometric modifications of LPS, contributing to LPS heterogeneity and impacting antibiotic resistance.
Collapse
Affiliation(s)
- Gracjana Klein
- Unit of Bacterial Genetics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Satish Raina
- Unit of Bacterial Genetics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
31
|
Small Noncoding Regulatory RNAs from Pseudomonas aeruginosa and Burkholderia cepacia Complex. Int J Mol Sci 2018; 19:ijms19123759. [PMID: 30486355 PMCID: PMC6321483 DOI: 10.3390/ijms19123759] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is the most life-limiting autosomal recessive disorder in Caucasians. CF is characterized by abnormal viscous secretions that impair the function of several tissues, with chronic bacterial airway infections representing the major cause of early decease of these patients. Pseudomonas aeruginosa and bacteria from the Burkholderia cepacia complex (Bcc) are the leading pathogens of CF patients’ airways. A wide array of virulence factors is responsible for the success of infections caused by these bacteria, which have tightly regulated responses to the host environment. Small noncoding RNAs (sRNAs) are major regulatory molecules in these bacteria. Several approaches have been developed to study P. aeruginosa sRNAs, many of which were characterized as being involved in the virulence. On the other hand, the knowledge on Bcc sRNAs remains far behind. The purpose of this review is to update the knowledge on characterized sRNAs involved in P. aeruginosa virulence, as well as to compile data so far achieved on sRNAs from the Bcc and their possible roles on bacteria virulence.
Collapse
|
32
|
Gestal MC, Whitesides LT, Harvill ET. Integrated Signaling Pathways Mediate Bordetella Immunomodulation, Persistence, and Transmission. Trends Microbiol 2018; 27:118-130. [PMID: 30661570 DOI: 10.1016/j.tim.2018.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/17/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023]
Abstract
The mammalian immune system includes a sophisticated array of antimicrobial mechanisms. However, successful pathogens have developed subversive strategies to detect, modulate, and/or evade immune control and clearance. Independent disciplines study host immunology and bacterial pathogenesis, but interkingdom signaling between bacteria and host during natural infection remains poorly understood. An efficient natural host infection system has revealed complex communication between Bordetella spp. and mice, identified novel regulatory mechanisms, and demonstrated that bordetellae can respond to microenvironment and inflammatory status cues. Understanding these bacterial signaling pathways and their complex network that allows precisely timed expression of numerous immunomodulatory factors will serve as a paradigm for other organisms lacking such a powerful experimental infection system. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- M C Gestal
- Deaprtment of Infectious Diseases, College of Veterinary Medicine, University of Georgia. 501 DW Brooks Drive, 30602, Athens, Georgia, USA.
| | - L T Whitesides
- Deaprtment of Infectious Diseases, College of Veterinary Medicine, University of Georgia. 501 DW Brooks Drive, 30602, Athens, Georgia, USA
| | - E T Harvill
- Deaprtment of Infectious Diseases, College of Veterinary Medicine, University of Georgia. 501 DW Brooks Drive, 30602, Athens, Georgia, USA.
| |
Collapse
|
33
|
Abstract
The extensive use of antibiotics has resulted in a situation where multidrug-resistant pathogens have become a severe menace to human health worldwide. A deeper understanding of the principles used by pathogens to adapt to, respond to, and resist antibiotics would pave the road to the discovery of drugs with novel mechanisms. For bacteria, antibiotics represent clinically relevant stresses that induce protective responses. The recent implication of regulatory RNAs (small RNAs [sRNAs]) in antibiotic response and resistance in several bacterial pathogens suggests that they should be considered innovative drug targets. This minireview discusses sRNA-mediated mechanisms exploited by bacterial pathogens to fight against antibiotics. A critical discussion of the newest findings in the field is provided, with emphasis on the implication of sRNAs in major mechanisms leading to antibiotic resistance, including drug uptake, active drug efflux, drug target modifications, biofilms, cell walls, and lipopolysaccharide (LPS) biosynthesis. Of interest is the lack of knowledge about sRNAs implicated in Gram-positive compared to Gram-negative bacterial resistance.
Collapse
|