1
|
Burton A, Torres-Padilla ME. Epigenome dynamics in early mammalian embryogenesis. Nat Rev Genet 2025:10.1038/s41576-025-00831-4. [PMID: 40181107 DOI: 10.1038/s41576-025-00831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
During early embryonic development in mammals, the totipotency of the zygote - which is reprogrammed from the differentiated gametes - transitions to pluripotency by the blastocyst stage, coincident with the first cell fate decision. These changes in cellular potency are accompanied by large-scale alterations in the nucleus, including major transcriptional, epigenetic and architectural remodelling, and the establishment of the DNA replication programme. Advances in low-input genomics and loss-of-function methodologies tailored to the pre-implantation embryo now enable these processes to be studied at an unprecedented level of molecular detail in vivo. Such studies have provided new insights into the genome-wide landscape of epigenetic reprogramming and chromatin dynamics during this fundamental period of pre-implantation development.
Collapse
Affiliation(s)
- Adam Burton
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, München, Germany.
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
2
|
Ren D, Zhao F, Li J, Guo X, Ma X, Zheng Y, Shen G, Zhao J. lncRNA TCONS_00251376 promotes the proliferation and migration of gastric cancer cell through upregulating ETV1. CANCER INNOVATION 2025; 4:e156. [PMID: 39668941 PMCID: PMC11636580 DOI: 10.1002/cai2.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 12/14/2024]
Abstract
Background Although there have been significant advancements in the treatment modalities for gastric cancer (GC) in recent years, the overall prognosis remains poor, particularly for individuals in advanced stages. The absence of a sensitive tumor marker in GC is a crucial factor contributing to this challenge. Methods Our study focused on investigating a newly discovered long noncoding RNA (lncRNA) known as TCONS_00251376, which has been confirmed to exhibit differential expression in GC compared to adjacent tissues. To further validate these expression differences, we collected 22 pairs of GC and adjacent noncancerous tissues. Subsequent cell function experiments and animal studies were conducted to elucidate the role and underlying mechanisms of lncRNA TCONS_00251376 in the development of GC. Results The study revealed a significant upregulation of lncRNA TCONS_00251376 in cancer tissues (p < 0.01) and a consistent upregulation in GC cell lines (AGS, MKN45, BGC-823, and MGC-803). Furthermore, it was observed that lncRNA TCONS_00251376 played a promotive role in the proliferation, migration, and invasion of GC cells. Subsequent analysis indicated that lncRNA TCONS_00251376 could upregulate the expression of ETV1, a factor associated with the prognosis of GC. Conclusions Therefore, our findings suggest that lncRNA TCONS_00251376 functions as an oncogenic lncRNA, promoting tumorigenesis and progression by regulating the expression of ETV1 gene. This highlights its potential as an effective target for treating GC.
Collapse
Affiliation(s)
- Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningChina
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningChina
| | - Jinming Li
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningChina
- Graduate School, Qinghai UniversityXiningChina
| | - Xinjian Guo
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningChina
- Department of PathologyAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningChina
| | - Xinfu Ma
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningChina
- Department of Gastrointestinal Oncology SurgeryAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningChina
| | - Yonghui Zheng
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningChina
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningChina
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningChina
| |
Collapse
|
3
|
Krasikova A, Kulikova T, Schelkunov M, Makarova N, Fedotova A, Plotnikov V, Berngardt V, Maslova A, Fedorov A. The first chicken oocyte nucleus whole transcriptomic profile defines the spectrum of maternal mRNA and non-coding RNA genes transcribed by the lampbrush chromosomes. Nucleic Acids Res 2024; 52:12850-12877. [PMID: 39494543 PMCID: PMC11602149 DOI: 10.1093/nar/gkae941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Lampbrush chromosomes, with their unusually high rate of nascent RNA synthesis, provide a valuable model for studying mechanisms of global transcriptome up-regulation. Here, we obtained a whole-genomic profile of transcription along the entire length of all lampbrush chromosomes in the chicken karyotype. With nuclear RNA-seq, we obtained information about a wider set of transcripts, including long non-coding RNAs retained in the nucleus and stable intronic sequence RNAs. For a number of protein-coding genes, we visualized their nascent transcripts on the lateral loops of lampbrush chromosomes by RNA-FISH. The set of genes transcribed on the lampbrush chromosomes is required for basic cellular processes and is characterized by a broad expression pattern. We also present the first high-throughput transcriptome characterization of miRNAs and piRNAs in chicken oocytes at the lampbrush chromosome stage. Major targets of predicted piRNAs include CR1 and long terminal repeat (LTR) containing retrotransposable elements. Transcription of tandem repeat arrays was demonstrated by alignment against the whole telomere-to-telomere chromosome assemblies. We show that transcription of telomere-derived RNAs is initiated at adjacent LTR elements. We conclude that hypertranscription on the lateral loops of giant lampbrush chromosomes is required for synthesizing large amounts of transferred to the embryo maternal RNA for thousands of genes.
Collapse
Affiliation(s)
- Alla Krasikova
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Tatiana Kulikova
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Mikhail Schelkunov
- Genomics Core Facility, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Institute for Information Transmission Problems, Moscow, 127051, Russia
| | - Nadezhda Makarova
- Genomics Core Facility, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anna Fedotova
- Genomics Core Facility, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir Plotnikov
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Valeria Berngardt
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Antonina Maslova
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Anton Fedorov
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| |
Collapse
|
4
|
Fang T, Wang F, Zhang R, Du ZQ, Yang CX. Single-cell RNA sequencing reveals blastomere heterogeneity of 2-cell embryos in pigs. Reprod Domest Anim 2023; 58:1393-1403. [PMID: 37568261 DOI: 10.1111/rda.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
In mammals, single blastomeres from as early as 2-cell embryos demonstrate heterogeneous developmental capacity and fate decision into different cell lineages. However, mechanisms underlying blastomere heterogeneity of 2-cell embryos remain largely unresolved. Here, we analysed the molecular heterogeneity of full-length mRNAs and their 3'UTR regions, based on the single-cell RNA-seq data of pig 2-cell embryos generated from in vivo fertilization (in vivo), in vitro fertilization (in vitro) and parthenogenetic activation (PA), respectively. First, unsupervised clustering helped discover two different groups of blastomeres for 2-cell pig embryos. Between these two groups of blastomeres in pig 2-cell embryos, 35, 301 and 428 full-length mRNAs respectively in in vivo, in vitro and PA embryo types were identified to be differentially expressed (padj ≤ .05 and |log2 [fold change]| ≥1) (DE mRNAs), while 92, 89 and 42 mRNAs were shown to be with significantly different 3'UTR lengths (3'UTR DE) (padj ≤ .05). Gene enrichment for both DE mRNAs and 3'UTR DE mRNAs found multiple signalling pathways, including cell cycle, RNA processing. Few numbers of common DE mRNAs and 3'UTR DE mRNAs existed between in vitro and in vivo blastomeres derived from 2-cell embryos, indicating the larger differences between in vitro and in vivo fertilized embryos. Integrative genomics viewer analysis further identified that 3'UTRs of HSDL2 and SGTA (in vivo), FAM204A and phosphoserine phosphatase (in vitro), PRPF40A and RPIA (PA) had >100 nt average length changes. Moreover, numbers and locations of regulatory elements (polyadenylation site, cytoplasmic polyadenylation element and microRNA binding sites) within 3'UTRs of these DE mRNAs were predicted. These results indicate that molecular heterogeneity existed among blastomeres from different types of pig 2-cell embryos, providing useful information and novel insights into future functional investigation on its relationship with the subsequent embryo development and differentiation.
Collapse
Affiliation(s)
- Ting Fang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Fang Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Rong Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
5
|
Jiang Y, Adhikari D, Li C, Zhou X. Spatiotemporal regulation of maternal mRNAs during vertebrate oocyte meiotic maturation. Biol Rev Camb Philos Soc 2023; 98:900-930. [PMID: 36718948 DOI: 10.1111/brv.12937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Vertebrate oocytes face a particular challenge concerning the regulation of gene expression during meiotic maturation. Global transcription becomes quiescent in fully grown oocytes, remains halted throughout maturation and fertilization, and only resumes upon embryonic genome activation. Hence, the oocyte meiotic maturation process is largely regulated by protein synthesis from pre-existing maternal messenger RNAs (mRNAs) that are transcribed and stored during oocyte growth. Rapidly developing genome-wide techniques have greatly expanded our insights into the global translation changes and possible regulatory mechanisms during oocyte maturation. The storage, translation, and processing of maternal mRNAs are thought to be regulated by factors interacting with elements in the mRNA molecules. Additionally, posttranscriptional modifications of mRNAs, such as methylation and uridylation, have recently been demonstrated to play crucial roles in maternal mRNA destabilization. However, a comprehensive understanding of the machineries that regulate maternal mRNA fate during oocyte maturation is still lacking. In particular, how the transcripts of important cell cycle components are stabilized, recruited at the appropriate time for translation, and eliminated to modulate oocyte meiotic progression remains unclear. A better understanding of these mechanisms will provide invaluable insights for the preconditions of developmental competence acquisition, with important implications for the treatment of infertility. This review discusses how the storage, localization, translation, and processing of oocyte mRNAs are regulated, and how these contribute to oocyte maturation progression.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Chunjin Li
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Xu Zhou
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| |
Collapse
|
6
|
Zhang Z, Shi Q, Zhu X, Jin L, Lang L, Lyu S, Xin X, Huang Y, Yu X, Li Z, Chen S, Xu Z, Zhang W, Wang E. Identification and Functional Analysis of Transcriptome Profiles, Long Non-Coding RNAs, Single-Nucleotide Polymorphisms, and Alternative Splicing from the Oocyte to the Preimplantation Stage of Sheep by Single-Cell RNA Sequencing. Genes (Basel) 2023; 14:1145. [PMID: 37372325 DOI: 10.3390/genes14061145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Numerous dynamic and complicated processes characterize development from the oocyte to the embryo. However, given the importance of functional transcriptome profiles, long non-coding RNAs, single-nucleotide polymorphisms, and alternative splicing during embryonic development, the effect that these features have on the blastomeres of 2-, 4-, 8-, 16-cell, and morula stages of development has not been studied. Here, we carried out experiments to identify and functionally analyze the transcriptome profiles, long non-coding RNAs, single-nucleotide polymorphisms (SNPs), and alternative splicing (AS) of cells from sheep from the oocyte to the blastocyst developmental stages. We found between the oocyte and zygote groups significantly down-regulated genes and the second-largest change in gene expression occurred between the 8- and 16-cell stages. We used various methods to construct a profile to characterize cellular and molecular features and systematically analyze the related GO and KEGG profile of cells of all stages from the oocyte to the blastocyst. This large-scale, single-cell atlas provides key cellular information and will likely assist clinical studies in improving preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Xiaoting Zhu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Lei Jin
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Limin Lang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Shijie Lyu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Xiaoling Xin
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiang Yu
- Henan Animal Health Supervision Institute, Zhengzhou 450003, China
| | - Zhiming Li
- Henan Provincial Animal Husbandry General Station, Zhengzhou 450008, China
| | - Sujuan Chen
- Synthetic Biology Engineering Lab of Henan Province, School of Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhaoxue Xu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Wei Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| |
Collapse
|
7
|
Xu H, Liang H. The regulation of totipotency transcription: Perspective from in vitro and in vivo totipotency. Front Cell Dev Biol 2022; 10:1024093. [PMID: 36393839 PMCID: PMC9643643 DOI: 10.3389/fcell.2022.1024093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/13/2022] [Indexed: 09/08/2024] Open
Abstract
Totipotency represents the highest developmental potency. By definition, totipotent stem cells are capable of giving rise to all embryonic and extraembryonic cell types. In mammalian embryos, totipotency occurs around the zygotic genome activation period, which is around the 2-cell stage in mouse embryo or the 4-to 8-cell stage in human embryo. Currently, with the development of in vitro totipotent-like models and the advances in small-scale genomic methods, an in-depth mechanistic understanding of the totipotency state and regulation was enabled. In this review, we explored and summarized the current views about totipotency from various angles, including genetic and epigenetic aspects. This will hopefully formulate a panoramic view of totipotency from the available research works until now. It can also help delineate the scaffold and formulate new hypotheses on totipotency for future research works.
Collapse
Affiliation(s)
| | - Hongqing Liang
- Division of Human Reproduction and Developmental Genetics, Women’s Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Wu ZW, Gao ZR, Liang H, Fang T, Wang Y, Du ZQ, Yang CX. Network analysis reveals different hub genes and molecular pathways for pig in vitro fertilized early embryos and parthenogenotes. Reprod Domest Anim 2022; 57:1544-1553. [PMID: 35997106 DOI: 10.1111/rda.14231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/21/2022] [Indexed: 12/01/2022]
Abstract
Maternal-to-zygotic transition (MZT) occurs when maternal transcripts decay and zygotic genome is activated gradually at early stage of embryo development. Previously, single cell RNA-seq (scRNA-seq) has helped us to uncover the MZT-associated mRNA dynamics of in vitro produced pig early embryos. Here, to further investigate functional modules and hub genes associated with MZT process, the weighted gene-coexpression network analysis (WGCNA) was performed on our previously generated 45 scRNA-seq datasets. For the in vitro fertilized embryo (IVF) group, 5 significant modules were identified (midnightblue/black/red and blue/brown modules, positively correlated with 1-cell (IVF1) and 8-cell (IVF8), respectively), containing genes mainly enriched in signaling pathways such as Wnt, regulation of RNA transcription, fatty acid metabolic process, poly(A) RNA binding and lysosome. For the parthenogenetically activated embryo (PA) group, 9 significant modules were identified (black/purple/red, brown/turquoise/yellow, and magenta/blue/green modules, positively correlated with MII oocytes, 1-cell (PA1), and 8-cell (PA8), respectively), mainly enriched in extracellular exosome, poly(A) RNA binding, mitochondrion, transcription factor activity. Moreover, some of identified hub genes within 3 IVF and 9 PA significant modules, including ADCY2, DHX34, KDM4A, GDF10, ABCC10, PAFAH2, HEXIM2, COQ9, DCAF11, SGK1, ESRRB etc., have been reported to play vital roles in different biological processes. Our findings provide information and resources for subsequent in-depth study on the regulation and function of MZT in pig embryos.
Collapse
Affiliation(s)
- Zi-Wei Wu
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Zhuo-Ran Gao
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Hao Liang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Ting Fang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Yi Wang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, 434025, Jingzhou, Hubei, China
| |
Collapse
|
9
|
Transgenerational epigenetic impacts of parental infection on offspring health and disease susceptibility. Trends Genet 2022; 38:662-675. [PMID: 35410793 PMCID: PMC8992946 DOI: 10.1016/j.tig.2022.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Maternal immune activation (MIA) and infection during pregnancy are known to reprogramme offspring phenotypes. However, the epigenetic effects of preconceptual paternal infection and paternal immune activation (PIA) are not currently well understood. Recent reports show that paternal infection and immune activation can affect offspring phenotypes, particularly brain function, behaviour, and immune system functioning, across multiple generations without re-exposure to infection. Evidence from other environmental exposures indicates that epigenetic inheritance also occurs in humans. Given the growing impact of the coronavirus disease 2019 (COVID-19) pandemic, it is imperative that we investigate all of the potential epigenetic mechanisms and multigenerational phenotypes that may arise from both maternal and paternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as well as associated MIA, PIA, and inflammation. This will allow us to understand and, if necessary, mitigate any potential changes in disease susceptibility in the children, and grandchildren, of affected parents.
Collapse
|
10
|
Abstract
The zygotic genome is transcriptionally silent immediately after fertilization. In mice, initial activation of the zygotic genome occurs in the middle of the one-cell stage. At the mid-to-late two-cell stage, a burst of gene activation occurs after the second round of DNA replication, and the profile of transcribed genes changes dramatically. These two phases of gene activation are called minor and major zygotic gene activation (ZGA), respectively. As they mark the beginning of the gene expression program, it is important to elucidate gene expression regulation during these stages. This article reviews the outcomes of studies that have clarified the profiles and regulatory mechanisms of ZGA.
Collapse
Affiliation(s)
- Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
11
|
Xiang D, Jia B, Guo J, Shao Q, Hong Q, Wei H, Quan G, Wu G. Transcriptome Analysis of mRNAs and Long Non-Coding RNAs During Subsequent Embryo Development of Porcine Cloned Zygotes After Vitrification. Front Genet 2022; 12:753327. [PMID: 34976007 PMCID: PMC8718616 DOI: 10.3389/fgene.2021.753327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/17/2021] [Indexed: 11/15/2022] Open
Abstract
Cryopreservation of porcine cloned zygotes has important implications for biotechnology and biomedicine research; however, lower embryo developmental potential remains an urgent problem to be resolved. For exploring the sublethal cryodamages during embryo development, this study was designed to acquire the mRNA and long non-coding RNA (lncRNA) profiles of 2-cells, 4-cells and blastocysts derived from vitrified porcine cloned zygotes using transcriptome sequencing. We identified 167 differentially expressed (DE) mRNAs and 516 DE lncRNAs in 2-cell stage, 469 DE mRNAs and 565 lncRNAs in 4-cell stage, and 389 DE mRNAs and 816 DE lncRNAs in blastocyst stage. Functional enrichment analysis revealed that the DE mRNAs during embryo development were involved in many regulatory mechanisms related to cell cycle, cell proliferation, apoptosis, metabolism and others. Moreover, the target genes of DE lncRNAs in the three embryonic stages were also enriched in many key GO terms or pathways such as “defense response”, “linoleic acid metabolic process”, “embryonic axis specification”, “negative regulation of protein neddylation”, etc., In conclusion, the present study provided comprehensive transcriptomic data about mRNAs and lncRNAs for the vitrified porcine cloned zygotes during different developmental stages, which contributed to further understand the potential cryodamage mechanisms responsible for impaired embryo development.
Collapse
Affiliation(s)
- Decai Xiang
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Baoyu Jia
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jianxiong Guo
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Qingyong Shao
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Hongjiang Wei
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Guobo Quan
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Guoquan Wu
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| |
Collapse
|
12
|
Liu Y, Ding W, Yu W, Zhang Y, Ao X, Wang J. Long non-coding RNAs: Biogenesis, functions, and clinical significance in gastric cancer. Mol Ther Oncolytics 2021; 23:458-476. [PMID: 34901389 PMCID: PMC8637188 DOI: 10.1016/j.omto.2021.11.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent malignant tumor types and the third leading cause of cancer-related death worldwide. Its morbidity and mortality are very high due to a lack of understanding about its pathogenesis and the slow development of novel therapeutic strategies. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs with a length of more than 200 nt. They play crucial roles in a wide spectrum of physiological and pathological processes by regulating the expression of genes involved in proliferation, differentiation, apoptosis, cell cycle, invasion, metastasis, DNA damage, and carcinogenesis. The aberrant expression of lncRNAs has been found in various cancer types. A growing amount of evidence demonstrates that lncRNAs are involved in many aspects of GC pathogenesis, including its occurrence, metastasis, and recurrence, indicating their potential role as novel biomarkers in the diagnosis, prognosis, and therapeutic targets of GC. This review systematically summarizes the biogenesis, biological properties, and functions of lncRNAs and highlights their critical role and clinical significance in GC. This information may contribute to the development of better diagnostics and treatments for GC.
Collapse
Affiliation(s)
- Ying Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao 266003, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China
| | - Xiang Ao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jianxun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
13
|
Sirard MA. How the environment affects early embryonic development. Reprod Fertil Dev 2021; 34:203-213. [PMID: 35231267 DOI: 10.1071/rd21266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the field of animal reproduction, the environment associated with gametes and embryos refers to the parents' condition as well as conditions surrounding gametes and embryos in vivo or in vitro . This environment is now known to influence not only the functionality of the early embryo but potentially the future phenotype of the offspring. Using transcriptomic and epigenetic molecular analysis, and the bovine model, recent research has shown that both the female and the male metabolic status, for example age, can affect gene expression and gene programming in the embryo. Evidence demonstrates that milking cows, which are losing weight at the time of conception, generates compromised embryos and offspring with a unique metabolic signature. A similar phenomenon has been associated with different culture conditions and the IVF procedure. The general common consequence of these situations is an embryo behaving on 'economy' mode where translation, cell division and ATP production is reduced, potentially to adapt to the perceived future environment. Few epidemiological studies have been done in bovines to assess if these changes result in a different phenotype and more studies are required to associate specific molecular changes in embryos with visible consequences later in life.
Collapse
Affiliation(s)
- Marc-André Sirard
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
14
|
Yang CX, Liang H, Wu ZW, Huo LJ, Du ZQ. Identification of lncRNAs involved in maternal-to-zygotic transition of in vitro-produced porcine embryos by single-cell RNA-seq. Reprod Domest Anim 2021; 57:111-122. [PMID: 34725864 DOI: 10.1111/rda.14034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Long non-coding RNAs (lncRNAs) function through multiple tiers of molecular circuits and are vital to gamete maturation and early embryo development. However, in pig early embryos, identification and expression dynamics of lncRNAs remain less studied. Here, we systematically analysed the expression dynamics of lncRNAs based on our previously published single-cell RNA-seq data from pig mature oocytes (GSE160334), and single blastomeres biopsied from pig in vitro fertilized (IVF) and early parthenogenetically activated (PA) embryos (1- to 8-cell stages; GSE164812). With the progression of embryo development, the total number of expressed lncRNAs gradually decreased and showed great variation at each developmental stage for both IVF and PA groups. Consecutive stage pairwise comparison of MII oocytes, 1-cell zygotes, 2-cell, 4-cell and 8-cell IVF embryos identified 151, 245, 1119 and 188 differentially expressed (DE) lncRNAs, including 119, 80, 867, 77 up-regulated and 32, 165, 252, 111 down-regulated, while 289, 437, 895 and 495 DE lncRNAs (141, 89, 768, 97 up-regulated and 148, 348, 127, 398 down-regulated) were identified in PA embryos at the same stages. The DE lncRNAs identified within IVF embryos were much different from that identified within PA embryos, showing embryo type-specific manner. Further cross-comparison between PA and IVF embryos identified 184, 656, 2502 and 266 DE lncRNAs for the 1- to 8-cell embryo stages, respectively. Further GO and KEGG enrichment analysis of DE mRNAs targeted by DELs indicated that different signalling pathways were involved in maternal-only and bi-parental embryo development. Collectively, comparative profiling of lncRNA expression dynamics between pig IVF and PA embryos provides a valuable resource, to investigate further regulatory mechanisms of lncRNAs associated with ZGA and maternal RNA decay during early embryo development.
Collapse
Affiliation(s)
- Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Hao Liang
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Zi-Wei Wu
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
15
|
Du ZQ, Liang H, Liu XM, Liu YH, Wang C, Yang CX. Single cell RNA-seq reveals genes vital to in vitro fertilized embryos and parthenotes in pigs. Sci Rep 2021; 11:14393. [PMID: 34257377 PMCID: PMC8277874 DOI: 10.1038/s41598-021-93904-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Successful early embryo development requires the correct reprogramming and configuration of gene networks by the timely and faithful execution of zygotic genome activation (ZGA). However, the regulatory principle of molecular elements and circuits fundamental to embryo development remains largely obscure. Here, we profiled the transcriptomes of single zygotes and blastomeres, obtained from in vitro fertilized (IVF) or parthenogenetically activated (PA) porcine early embryos (1- to 8-cell), focusing on the gene expression dynamics and regulatory networks associated with maternal-to-zygote transition (MZT) (mainly maternal RNA clearance and ZGA). We found that minor and major ZGAs occur at 1-cell and 4-cell stages for both IVF and PA embryos, respectively. Maternal RNAs gradually decay from 1- to 8-cell embryos. Top abundantly expressed genes (CDV3, PCNA, CDR1, YWHAE, DNMT1, IGF2BP3, ARMC1, BTG4, UHRF2 and gametocyte-specific factor 1-like) in both IVF and PA early embryos identified are of vital roles for embryo development. Differentially expressed genes within IVF groups are different from that within PA groups, indicating bi-parental and maternal-only embryos have specific sets of mRNAs distinctly decayed and activated. Pathways enriched from DEGs showed that RNA associated pathways (RNA binding, processing, transport and degradation) could be important. Moreover, mitochondrial RNAs are found to be actively transcribed, showing dynamic expression patterns, and for DNA/H3K4 methylation and transcription factors as well. Taken together, our findings provide an important resource to investigate further the epigenetic and genome regulation of MZT events in early embryos of pigs.
Collapse
Affiliation(s)
- Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Hao Liang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiao-Man Liu
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yun-Hua Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
16
|
Dholpuria S, Kumar S, Kumar M, Sarwalia P, Kumar R, Datta TK. A novel lincRNA identified in buffalo oocytes with protein binding characteristics could hold the key for oocyte competence. Mol Biol Rep 2021; 48:3925-3934. [PMID: 34014469 DOI: 10.1007/s11033-021-06388-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/29/2021] [Indexed: 12/23/2022]
Abstract
Studying the maternal oocyte-specific genes, in farm animals is a significant step towards delineating the underlying mechanisms that regulate oocyte quality, early embryonic development and survival. With the creation of buffalo oocyte-specific subtracted cDNA library, it has raised new questions which need to be answered. The present study has characterized one of the ESTs selected from the library and highlighted its importance in the oocyte quality. The selected EST was made full length by RLM-RACE and four transcript variants were identified. Bioinformatics analysis indicated the novelty of full-length transcript along with conserved intergenic nature. The largest transcript was identified as long intergenic noncoding RNA based upon coding potential calculator output. The expression analysis at different hours of oocyte maturation showed a significant variation in developmentally competent oocytes to that of incompetent ones. Along with this, the transcript was also found to have protein binding ability which was confirmed by RNA electrophoretic mobility shift assay. The protein used in the experiment was isolated from oocyte and cumulus cells via sonication. A novel lincRNA has been reported here that might have an important role in maturation of oocytes, inferred from its relative gene expression study and protein binding characteristics.
Collapse
Affiliation(s)
- Sunny Dholpuria
- Department of Life Science, Sharda University, Greater Noida, India.
| | - Sandeep Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Manish Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Parul Sarwalia
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Rakesh Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
17
|
Yang CX, Wu ZW, Liu XM, Liang H, Gao ZR, Wang Y, Fang T, Liu YH, Miao YL, Du ZQ. Single-cell RNA-seq reveals mRNAs and lncRNAs important for oocytes in vitro matured in pigs. Reprod Domest Anim 2021; 56:642-657. [PMID: 33496347 DOI: 10.1111/rda.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
The faithful execution of molecular programme underlying oocyte maturation and meiosis is vital to generate competent haploid gametes for efficient mammalian reproduction. However, the organization and principle of molecular circuits and modules for oocyte meiosis remain obscure. Here, we employed the recently developed single-cell RNA-seq technique to profile the transcriptomes of germinal vesicle (GV) and metaphase II (MII) oocytes, aiming to discover the dynamic changes of mRNAs and long non-coding RNAs (lncRNAs) during oocyte in vitro meiotic maturation. During the transition from GV to MII, total number of detected RNAs (mRNAs and lncRNAs) in oocytes decreased. Moreover, 1,807 (602 up- and 1,205 down-regulated) mRNAs and 313 (177 up- and 136 down-regulated) lncRNAs were significantly differentially expressed (DE), i.e., more mRNAs down-regulated, but more lncRNAs up-regulated. During maturation of pig oocytes, mitochondrial mRNAs were actively transcribed, eight of which (ND6, ND5, CYTB, ND1, ND2, COX1, COX2 and COX3) were significantly up-regulated. Both DE mRNAs and targets of DE lncRNAs were enriched in multiple biological and signal pathways potentially associated with oocyte meiosis. Highly abundantly expressed mRNAs (including DNMT1, UHRF2, PCNA, ARMC1, BTG4, ASNS and SEP11) and lncRNAs were also discovered. Weighted gene co-expression network analysis (WGCNA) revealed 20 hub mRNAs in three modules to be important for oocyte meiosis and maturation. Taken together, our findings provide insights and resources for further functional investigation of mRNAs/lncRNAs in in vitro meiotic maturation of pig oocytes.
Collapse
Affiliation(s)
- Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zi-Wei Wu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xiao-Man Liu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Hao Liang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Zhuo-Ran Gao
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yi Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Ting Fang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yun-Hua Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
18
|
Li J, Huang S, Zhang Y, Zhuo W, Tong B, Cai F. LINC00460 Enhances Bladder Carcinoma Cell Proliferation and Migration by Modulating miR-612/FOXK1 Axis. Pharmacology 2020; 106:79-90. [PMID: 33027786 PMCID: PMC7949225 DOI: 10.1159/000509255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/06/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION LincRNA (long intergenic noncoding RNA) has been indicated as a mediator in tumorigenesis of bladder carcinoma. This study was performed to evaluate the role of LINC00460 in bladder carcinoma progression. METHODS Expression levels of LINC00460 in bladder carcinoma tissues and cell lines were analyzed via qRT-PCR. MTT, EdU (5-ethynyl-2'-deoxyuridine) staining, and colony formation assays were utilized to evaluate cell viability and proliferation. The wound healing assay was performed to evaluate bladder cancer cell migration, and the transwell assay was used to evaluate cell invasion. The microRNA (miRNA) target of LINC00460 and the corresponding target gene were validated via the dual luciferase activity assay. The tumorigenic function of LINC00460 was determined via establishment of a xenotransplanted tumor model. RESULTS LINC00460 was elevated in bladder carcinoma tissues and cell lines. Elevated LINC00460 was associated with shorter overall survival of bladder carcinoma patients. Overexpression of LINC00460 promoted cell viability, proliferation, invasion, and migration, while silencing of LINC00460 indicated the opposite effect on bladder carcinoma progression. LINC00460 could directly bind to miR-612 and inhibit miR-612 expression. Moreover, LINC00460 expression was negatively correlated with miR-612 in patients with bladder carcinoma. FOXK1 (Forkhead Box K1) was identified as the target of miR-612 and upregulated in patients with bladder carcinoma. Overexpression of FOXK1 attenuated interference of LINC00460-inhibited bladder carcinoma progression. Knockdown of LINC00460 suppressed in vivo bladder carcinoma growth. CONCLUSIONS LINC00460 promoted bladder carcinoma progression via sponging miR-612 to facilitate FOXK1 expression, suggesting that LINC00460 might have the potential of being explored as a therapeutic target for treatment of bladder carcinoma.
Collapse
Affiliation(s)
| | - Sihuai Huang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yanmei Zhang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weifeng Zhuo
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Baocheng Tong
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Fangzhen Cai
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,
| |
Collapse
|
19
|
Barberet J, Barry F, Choux C, Guilleman M, Karoui S, Simonot R, Bruno C, Fauque P. What impact does oocyte vitrification have on epigenetics and gene expression? Clin Epigenetics 2020; 12:121. [PMID: 32778156 PMCID: PMC7418205 DOI: 10.1186/s13148-020-00911-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Children conceived by assisted reproductive technologies (ART) have a moderate risk for a number of adverse events and conditions. The question whether this additional risk is associated with specific procedures used in ART or whether it is related to the intrinsic biological factors associated with infertility remains unresolved. One of the main hypotheses is that laboratory procedures could have an effect on the epigenome of gametes and embryos. This suspicion is linked to the fact that ART procedures occur precisely during the period when there are major changes in the organization of the epigenome. Oocyte freezing protocols are generally considered safe; however, some evidence suggests that vitrification may be associated with modifications of the epigenetic marks. In this manuscript, after describing the main changes that occur during epigenetic reprogramming, we will provide current information regarding the impact of oocyte vitrification on epigenetic regulation and the consequences on gene expression, both in animals and humans. Overall, the literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by oocyte vitrification, and it also underlines the need to improve our knowledge in this field.
Collapse
Affiliation(s)
- Julie Barberet
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Fatima Barry
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Cécile Choux
- Gynécologie-Obstétrique, CHU Dijon Bourgogne, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Magali Guilleman
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Sara Karoui
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Raymond Simonot
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Céline Bruno
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| | - Patricia Fauque
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction, CECOS, 14 rue Gaffarel, 21079 Dijon Cedex, France
| |
Collapse
|
20
|
Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, Huang H, Qiao J, Tang F, Chen ZJ. Recent advances in mammalian reproductive biology. SCIENCE CHINA. LIFE SCIENCES 2020; 63:18-58. [PMID: 31813094 DOI: 10.1007/s11427-019-1572-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development, including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingjing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chaoyi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zuwei Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, China.
| |
Collapse
|
21
|
Legoff L, D’Cruz SC, Tevosian S, Primig M, Smagulova F. Transgenerational Inheritance of Environmentally Induced Epigenetic Alterations during Mammalian Development. Cells 2019; 8:cells8121559. [PMID: 31816913 PMCID: PMC6953051 DOI: 10.3390/cells8121559] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic studies traditionally focus on DNA as the molecule that passes information on from parents to their offspring. Changes in the DNA code alter heritable information and can more or less severely affect the progeny's phenotype. While the idea that information can be inherited between generations independently of the DNA's nucleotide sequence is not new, the outcome of recent studies provides a mechanistic foundation for the concept. In this review, we attempt to summarize our current knowledge about the transgenerational inheritance of environmentally induced epigenetic changes. We focus primarily on studies using mice but refer to other species to illustrate salient points. Some studies support the notion that there is a somatic component within the phenomenon of epigenetic inheritance. However, here, we will mostly focus on gamete-based processes and the primary molecular mechanisms that are thought to contribute to epigenetic inheritance: DNA methylation, histone modifications, and non-coding RNAs. Most of the rodent studies published in the literature suggest that transgenerational epigenetic inheritance through gametes can be modulated by environmental factors. Modification and redistribution of chromatin proteins in gametes is one of the major routes for transmitting epigenetic information from parents to the offspring. Our recent studies provide additional specific cues for this concept and help better understand environmental exposure influences fitness and fidelity in the germline. In summary, environmental cues can induce parental alterations and affect the phenotypes of offspring through gametic epigenetic inheritance. Consequently, epigenetic factors and their heritability should be considered during disease risk assessment.
Collapse
Affiliation(s)
- Louis Legoff
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
| | - Shereen Cynthia D’Cruz
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
| | - Sergei Tevosian
- University of Florida, Department of Physiological Sciences Box 100144, 1333 Center Drive, Gainesville, FL 32610, USA;
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
| | - Fatima Smagulova
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (L.L.); (S.C.D.); (M.P.)
- Correspondence:
| |
Collapse
|
22
|
Wang X, Wang L, Gong Y, Liu Z, Qin Y, Chen J, Li N. Long noncoding RNA LINC01296 promotes cancer-cell proliferation and metastasis in urothelial carcinoma of the bladder. Onco Targets Ther 2018; 12:75-85. [PMID: 30588032 PMCID: PMC6304073 DOI: 10.2147/ott.s192809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Long noncoding RNAs (lncRNAs) play an important role in the tumorigenesis and progression of human cancer. This research was performed to investigate the role of LINC01296 in clinical characteristics, biological functions and molecular mechanisms of bladder cancer. Materials and methods In this study, expressions of LINC01296 in cancer tissues and normal tissues were firstly compared using the Gene Expression Profiling Interactive Analysis database. Subsequently, a microarray data analysis was performed to compare lncRNA and mRNA expression profiles in four pairs of human bladder cancer samples. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of LINC01296 in bladder cancer tissues. The association between LINC01296 expressions and clinicopathological characteristics of bladder cancer was analyzed by Kaplan–Meier analysis and the Cox proportional-hazard model. The biological functions and molecular mechanisms of LINC01296 in bladder cancer were studied by MTT assay, colony-formation assay, cell cycle analysis, transwell migration assay, wound healing assay, qRT-PCR analysis and Western blot assay. Results The expression of LINC01296 was significantly higher in most cancer tissues than that in adjacent normal tissues, and was positively correlated with clinical stages of the cancer (P=0.016), lymph node metastasis (P=0.034), and pathologic grades (P=0.012). The increased level of LINC01296 was associated with a poorer prognosis and shorter survival of the patients. Multivariate analysis showed that the LINC01296 expression was an independent predictor of overall survival in bladder cancer. Additionally, LINC01296 knockdown inhibited the proliferation, migration and progression of cell cycle of bladder cancer cells, and was involved in the regulation of epithelial-mesenchymal transition. Conclusion The findings of this study suggested that LINC01296 promotes progression of bladder cancer, and potentially acts as a biomarker and therapeutic target of bladder cancer.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Urology, Peking University Shougang Hospital, Beijing 100144, People's Republic of China,
| | - Lei Wang
- Department of Urology, Peking University Shougang Hospital, Beijing 100144, People's Republic of China,
| | - Yanbing Gong
- Department of Science Research, Peking University Shougang Hospital, Beijing 100144, People's Republic of China
| | - Zhenzhen Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital and Institute, Beijing 100142, People's Republic of China
| | - Yingchao Qin
- Department of General Surgery, Chaoyang District Shuangqiao Hospital, Beijing 100024, People's Republic of China
| | - Jia Chen
- Department of Urology, Peking University Shougang Hospital, Beijing 100144, People's Republic of China,
| | - Ningcheng Li
- Department of Urology, Peking University Shougang Hospital, Beijing 100144, People's Republic of China,
| |
Collapse
|
23
|
Zheng L, Luo R, Su T, Hu L, Gao F, Zhang X. Differentially Expressed lncRNAs After the Activation of Primordial Follicles in Mouse. Reprod Sci 2018; 26:1094-1104. [PMID: 30376771 DOI: 10.1177/1933719118805869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The activation of primordial follicles is critical to ovarian follicle development, which directly influences female fertility and reproductive life span. Several studies have suggested a role for long noncoding RNAs (lncRNAs) in ovarian function. However, the precise involvement of lncRNAs in the initiation of primordial follicles is still unknown. Here, an in vitro culture model was used to investigate the roles of lncRNAs in primordial follicle activation. We found that primordial follicles in day 3 mouse ovaries were activated after culturing for 8 days in vitro, as indicated by ovarian morphology changes, increases in primary follicle number, and downregulation of mammalian Sterile 20-like kinase messenger RNA (mRNA) and upregulation of growth differentiation factor 9 mRNA. We next examined lncRNA expression profiles by RNA sequencing at the transcriptome level and found that among 60 078 lncRNAs, 6541 lncRNA were upregulated and 2135 lncRNA were downregulated in 3-day ovaries cultured for 8 days in vitro compared with ovaries from day 3 mice. We also found that 4171 mRNAs were upregulated and 1795 were downregulated in the cultured ovaries. Gene ontology and pathway analyses showed that the functions of differentially expressed lncRNA targets and mRNAs were closely linked with many processes and pathways related to ovary development, including cell proliferation and differentiation, developmental processes, and other signaling transduction pathways. Additionally, many novel identified lncRNAs showed inducible expression, suggesting that these lncRNAs may be good candidates for investigating mouse primordial follicle activation. This study provides a foundation for further exploring lncRNA-related mechanisms in the initiation of mouse primordial follicles.
Collapse
Affiliation(s)
- Liping Zheng
- 1 Jiangxi Medical College, Nanchang University, Nanchang, China.,2 Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Ruichen Luo
- 1 Jiangxi Medical College, Nanchang University, Nanchang, China.,2 Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Tie Su
- 1 Jiangxi Medical College, Nanchang University, Nanchang, China.,2 Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Liaoliao Hu
- 1 Jiangxi Medical College, Nanchang University, Nanchang, China.,2 Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Fengxin Gao
- 3 Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Xiaoning Zhang
- 2 Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China.,3 Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Nuttinck F. Oocyte related factors impacting on embryo quality: relevance for in vitro embryo production. Anim Reprod 2018; 15:271-277. [PMID: 34178150 PMCID: PMC8202467 DOI: 10.21451/1984-3143-ar2018-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The outcome of pregnancy is closely linked to early events that occur during the onset of embryogenesis.
The first stages in embryonic development are mainly governed by the storage of maternal factors
present in the oocyte at the time of fertilisation. In this review, we outline the different
classes of oocyte transcripts that may be involved in activation of the embryonic genome as
well as those associated with epigenetic reprogramming, imprinting maintenance or the control
of transposon mobilisation during preimplantation development. We also report the influence
of cumulus-oocyte crosstalk during the maturation process on the oocyte transcriptome and
how in vitro procedures can affect these interactions.
Collapse
|
25
|
Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol 2018; 19:436-450. [DOI: 10.1038/s41580-018-0008-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Zhang D, Li H, Xie J, Jiang D, Cao L, Yang X, Xue P, Jiang X. Long noncoding RNA LINC01296 promotes tumor growth and progression by sponging miR-5095 in human cholangiocarcinoma. Int J Oncol 2018; 52:1777-1786. [PMID: 29620172 PMCID: PMC5919714 DOI: 10.3892/ijo.2018.4362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to elucidate whether, and how, long intergenic non-protein coding RNA 1296 (LINC01296) is involved in the modulation of human cholangiocarcinoma (CCA) development and progression. Microarray data analysis and reverse transcription-quantitative polymerase chain reaction analysis demonstrated that LINC01296 was significantly upregulated in human CCA compared with nontumor tissues. Furthermore, the expression of LINC01296 in human CCA was positively associated with tumor severity and clinical stage. Knockdown of LINC01296 dramatically suppressed the viability, migration and invasion of RBE and CCLP1 cells, and promoted cell apoptosis in vitro. Furthermore, LINC01296 knockdown inhibited tumor growth in a xenograft model. Mechanistically, LINC01296 was demonstrated to sponge microRNA-5095 (miR-5095), which targets MYCN proto-oncogene bHLH transcription factor (MYCN) mRNA in human CCA. By inhibition of miR-5095, LINC01296 overexpression upregulated the expression of MYCN and promoted cell viability, migration and invasion in CCA cells. The results reveal that the axis of LINC01296/miR-5095/MYCN may be a mechanism to regulate CCA development and progression.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Haiyan Li
- Department of Breast and Thyroid Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Juping Xie
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Decan Jiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Xuewei Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Ping Xue
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|