1
|
Yang X, Wei H, Li J, Li G, Zhang Y, Li H. Efficacy of sialic acid supplementation in early life in autism model rats. Sci Rep 2025; 15:8576. [PMID: 40075137 PMCID: PMC11903695 DOI: 10.1038/s41598-025-93550-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
Autism spectrum disorder (ASD) is a set of heterogeneous neurodevelopmental conditions, the etiology of which remains elusive. Sialic acid (SA) is an essential nutrient for nervous system development, and previous studies reported that the levels of SA were decreased in the blood and saliva of ASD children. However, it is not clear whether SA supplementation can alleviate behavioral problems in autism. We administered SA intervention in the VPA-induced autism model rats, evaluated behavior performance, and measured the levels of Gne and St8sia2 genes, BDNF and anti-GM1. At the same time, untargeted metabolomics was used to characterize the metabolites. It was found that the stereotypical behaviors, social preference and cognitive function were improved after SA supplementation. Additionally, the number of hippocampal neurons was increased, and the shape was normalized. Moreover, 94 differentially abundant metabolites were identified between the high dose SA and VPA groups. These changes in metabolites were correlated with pyrimidine metabolism, lysine degradation metabolism, biosynthesis of amino acids, mineral absorption, protein digestion and absorption, galactose metabolism, phenylalanine, tyrosine and tryptophan biosynthesis and phenylalanine metabolism. In conclusion, SA could ameliorate ASD-like phenotypes and change metabolites in autistic animals, which suggests that it may be a therapeutic approach for ASD.
Collapse
Affiliation(s)
- Xiaolei Yang
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, 161006, China
| | - Hongjuan Wei
- Nursing School, Qiqihar Medical University, Qiqihar, 161006, China
| | - Jiyuan Li
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, 161006, China
| | - Gang Li
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, 161006, China
| | - Yan Zhang
- Nursing School, Qiqihar Medical University, Qiqihar, 161006, China
| | - Hongjie Li
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, 161006, China.
| |
Collapse
|
2
|
Noel M, Suttapitugsakul S, Cummings RD, Mealer RG. O-GalNAc glycans are enriched in neuronal tracts and regulate nodes of Ranvier. Proc Natl Acad Sci U S A 2025; 122:e2418949122. [PMID: 39999163 PMCID: PMC11892645 DOI: 10.1073/pnas.2418949122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Protein O-glycosylation is a critical modification in the brain, as genetic variants in the pathway are associated with common and severe neuropsychiatric phenotypes. However, little is known about the most abundant O-glycans in the mammalian brain, which are N-acetylgalactosamine (O-GalNAc) linked. Here, we determined the spatial localization, protein carriers, and cellular function of O-GalNAc glycans in the mouse brain. We observed striking spatial enrichment of O-GalNAc glycans in neuronal tracts, and specifically at nodes of Ranvier, specialized structures involved in signal propagation in the brain. Glycoproteomic analysis revealed that more than half of the identified O-GalNAc glycans were present on chondroitin sulfate proteoglycans termed lecticans, and display both domain enrichment and regional heterogeneity. Inhibition of O-GalNAc synthesis in neurons reduced binding of Siglec-4, a known regulator of neurite growth, and shortened the length of nodes of Ranvier. This work establishes a function of O-GalNAc glycans in the brain and will inform future studies on their role in development and disease.
Collapse
Affiliation(s)
- Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Suttipong Suttapitugsakul
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Robert G. Mealer
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
3
|
de Siqueira Patriota LL, de Lima BRF, de Oliveira Marinho A, da Costa JA, de Lucena ALA, Paiva PMG, Napoleão DC, Cavalcanti JVFL, Pereira MC, Napoleão TH, da Rosa MM. Moringa oleifera Lam. seed lectin (WSMoL) reduces chronic stress-induced anxiety and depression in mice by lessening inflammation and balancing brain chemicals. Behav Brain Res 2025; 477:115318. [PMID: 39481762 DOI: 10.1016/j.bbr.2024.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Phyto-based treatments for anxiety and depression are gaining attention. The efficacy of the water-soluble Moringa oleifera seed lectin (WSMoL) in reducing acute anxiolytic and depressive-like behaviors in mice has been previously demonstrated. In the present study, it was evaluated the effects of WSMoL on reducing anxiety and depressive-like symptoms in a mouse model of unpredictable chronic mild stress (UCMS). The animals were divided into groups and exposed to a four-week UCMS regimen. Following this, the mice received daily intraperitoneal injections of vehicle (non-stressed and UCMS control groups), WSMoL (2 or 4 mg/kg), or fluoxetine (10 mg/kg) for 21 days. Neurobehavioral tests included the open field test and elevated plus maze test to assess anxiety-like behavior, and the tail suspension test and sucrose preference test to evaluate depression-like behavior. Biochemical analyses measured serum corticosterone and cytokines as well brain levels of cytokines and monoamines. All tests indicated that WSMoL significantly (p < 0.05) reversed the anxiety and depression-like behaviors induced by UCMS. The stress protocol increased serum corticosterone levels and WSMoL treatment was not able to normalize corticosterone secretion. WSMoL treatment reduced serum and brain levels of IL-2, IL-6, and TNF-α, indicating reduced neuroinflammation, and increased brain levels of dopamine, serotonin, and noradrenaline. In summary, WSMoL mitigated UCMS-induced anxiety and depression-like behaviors by reducing neuroinflammation and modulating brain monoamine levels.
Collapse
Affiliation(s)
| | | | | | - Jainaldo Alves da Costa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Alex Leandro Andrade de Lucena
- Departamento de Engenharia Química, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Daniella Carla Napoleão
- Departamento de Engenharia Química, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Michelly Cristiny Pereira
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil; Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (NUPIT), Universidade Federal de Pernambuco, Recife, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Michelle Melgarejo da Rosa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil; Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino (NUPIT), Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
4
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 PMCID: PMC11640421 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
5
|
Noel M, Suttapitugsakul S, Wei M, Tilton C, Mehta AY, Matsumoto Y, Heimburg-Molinaro J, Mealer RG, Cummings RD. Unique Glycans in Synaptic Glycoproteins in Mouse Brain. ACS Chem Neurosci 2024; 15:4033-4045. [PMID: 39401784 PMCID: PMC11587512 DOI: 10.1021/acschemneuro.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 11/07/2024] Open
Abstract
The synapse is an essential connection between neuronal cells in which the membrane and secreted glycoproteins regulate neurotransmission. The post-translational modifications of glycoproteins with carbohydrates, although essential for their functions as well as their specific localization, are not well understood. Oddly, whereas galactose addition to glycoproteins is required for neuronal functions, galactosylation is severely restricted for Asn-linked on N-glycans in the brain, and genetic evidence highlights the important roles of galactose in brain functions and development. To explore this novel glycosylation, we exploited an orthogonal technology in which a biotinylated sialic acid derivative (CMP-biotin-Sia) is transferred to terminally galactosylated proteins by a recombinant sialyltransferase (rST6Gal1). This approach allowed us to identify the carrier proteins as well as their localization on brain sections. Immunohistochemical analysis of the biotinylated glycoproteins in brain sections demonstrates that they are largely positioned in the pre- and postsynaptic membranes. Consistent with this positioning, glycoproteomic analyses of the labeled glycoproteins identified a number of them that are involved in synaptic function, cell adhesion, and extracellular matrix interactions. The discovery of these galactosylated N-glycoproteins and their relative confinement to synapses provide novel insights into the unusual and specific nature of protein glycosylation in the brain.
Collapse
Affiliation(s)
- Maxence Noel
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Suttipong Suttapitugsakul
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Mohui Wei
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Catherine Tilton
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Akul Y. Mehta
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yasuyuki Matsumoto
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jamie Heimburg-Molinaro
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Robert G. Mealer
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department
of Psychiatry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Richard D. Cummings
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
6
|
Feng Y, Sun L, Dang X, Liu D, Liao Z, Yao J, Zhang Y, Deng Z, Li J, Zhao M, Liu F. Aberrant glycosylation in schizophrenia: insights into pathophysiological mechanisms and therapeutic potentials. Front Pharmacol 2024; 15:1457811. [PMID: 39286629 PMCID: PMC11402814 DOI: 10.3389/fphar.2024.1457811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Schizophrenia (SCZ) is a severe neuropsychiatric disorder characterized by cognitive, affective, and social dysfunction, resulting in hallucinations, delusions, emotional blunting, and disordered thinking. In recent years, proteomics has been increasingly influential in SCZ research. Glycosylation, a key post-translational modification, can alter neuronal stability and normal signaling in the nervous system by affecting protein folding, stability, and cellular signaling. Recent research evidence suggests that abnormal glycosylation patterns exist in different brain regions in autopsy samples from SCZ patients, and that there are significant differences in various glycosylation modification types and glycosylation modifying enzymes. Therefore, this review explores the mechanisms of aberrant modifications of N-glycosylation, O-glycosylation, glycosyltransferases, and polysialic acid in the brains of SCZ patients, emphasizing their roles in neurotransmitter receptor function, synaptic plasticity, and neural adhesion. Additionally, the effects of antipsychotic drugs on glycosylation processes and the potential for glycosylation-targeted therapies are discussed. By integrating these findings, this review aims to provide a comprehensive perspective to further understand the role of aberrant glycosylation modifications in the pathophysiology of SCZ.
Collapse
Affiliation(s)
- Yanchen Feng
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Sun
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Diyan Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziyun Liao
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jianping Yao
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziqi Deng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinyao Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Min Zhao
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Feixiang Liu
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
7
|
Neto S, Reis A, Pinheiro M, Ferreira M, Neves V, Castanho TC, Santos N, Rodrigues AJ, Sousa N, Santos MAS, Moura GR. Unveiling the molecular landscape of cognitive aging: insights from polygenic risk scores, DNA methylation, and gene expression. Hum Genomics 2024; 18:75. [PMID: 38956648 PMCID: PMC11221141 DOI: 10.1186/s40246-024-00640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Aging represents a significant risk factor for the occurrence of cerebral small vessel disease, associated with white matter (WM) lesions, and to age-related cognitive alterations, though the precise mechanisms remain largely unknown. This study aimed to investigate the impact of polygenic risk scores (PRS) for WM integrity, together with age-related DNA methylation, and gene expression alterations, on cognitive aging in a cross-sectional healthy aging cohort. The PRSs were calculated using genome-wide association study (GWAS) summary statistics for magnetic resonance imaging (MRI) markers of WM integrity, including WM hyperintensities, fractional anisotropy (FA), and mean diffusivity (MD). These scores were utilized to predict age-related cognitive changes and evaluate their correlation with structural brain changes, which distinguish individuals with higher and lower cognitive scores. To reduce the dimensionality of the data and identify age-related DNA methylation and transcriptomic alterations, Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) was used. Subsequently, a canonical correlation algorithm was used to integrate the three types of omics data (PRS, DNA methylation, and gene expression data) and identify an individual "omics" signature that distinguishes subjects with varying cognitive profiles. RESULTS We found a positive association between MD-PRS and long-term memory, as well as a correlation between MD-PRS and structural brain changes, effectively discriminating between individuals with lower and higher memory scores. Furthermore, we observed an enrichment of polygenic signals in genes related to both vascular and non-vascular factors. Age-related alterations in DNA methylation and gene expression indicated dysregulation of critical molecular features and signaling pathways involved in aging and lifespan regulation. The integration of multi-omics data underscored the involvement of synaptic dysfunction, axonal degeneration, microtubule organization, and glycosylation in the process of cognitive aging. CONCLUSIONS These findings provide valuable insights into the biological mechanisms underlying the association between WM coherence and cognitive aging. Additionally, they highlight how age-associated DNA methylation and gene expression changes contribute to cognitive aging.
Collapse
Affiliation(s)
- Sonya Neto
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Andreia Reis
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Miguel Pinheiro
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Margarida Ferreira
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vasco Neves
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Teresa Costa Castanho
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
| | - Nadine Santos
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
| | - Ana João Rodrigues
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
| | - Nuno Sousa
- ICVS - School of Medicine, Campus Gualtar, University of Minho, 4710-057, Braga, Portugal
- Clinical Academic Center - Braga (2CA-B), Braga, Portugal
- P5 Medical Center, Braga, Portugal
| | - Manuel A S Santos
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
- Multidisciplinary Institute of Aging, MIA-Portugal, Faculty of Medicine, University of Coimbra, Rua Largo 2, 3º, 3000-370, Coimbra, Portugal
| | - Gabriela R Moura
- Institute for Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
8
|
Guan L, Wang W, Ji X, Cheng H, Du W, Ye L. T-antigen as a biomarker of progression-free survival in patients with glioblastoma. Ann Clin Transl Neurol 2024; 11:1765-1774. [PMID: 38721992 PMCID: PMC11251471 DOI: 10.1002/acn3.52082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/29/2024] [Accepted: 04/20/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE Glioblastoma (GBM) is one of the most aggressive brain tumors and often leads to poor outcomes. Studies have indicated that glycan levels are significantly correlated with the pathogenesis and development of cancers. However, whether glycan levels can serve as diagnostic or prognostic biomarkers in GBM remains unclear. METHODS We obtained glycomic profiles in tissue and serum samples from 55 individuals with GBM using a well-established lectin biochip platform probing with 11 specific lectins. RESULTS Our univariate analysis showed that 5 out of the 11 lectin-probed glycans (LPGs) were significantly higher in GBM tissues than in peri-tumoral tissues. After logistic regression analyses, only the Jacalin-probed T-antigen difference between the two groups remained significant (p = 0.037). Moreover, survival-related analyses showed that the level of Jacalin-probed T-antigen was significantly associated with the progression-free survival (p = 0.038) of patients. However, none of the LPG levels were correlated with the overall survival or the chemosensitivity to temozolomide therapy. The correlation coefficient analysis showed a moderate-to-strong correlation in the Jacalin-probed T-antigen levels between GBM tissues and serum samples, indicating its potential usefulness as a non-invasive GBM progression biomarker. INTERPRETATION Glycomics analyses can be helpful in the prediction of GBM recurrences and may provide information useful for GBM glycan-based target therapies or vaccine development.
Collapse
Affiliation(s)
- Liao Guan
- Department of Neurosurgerythe First Affiliated Hospital of Anhui Medical UniversityJixi Road 218Hefei230022PR China
| | - Wenwen Wang
- First Clinical Medical CollegeAnhui Medical UniversityMeishan Road 81Hefei230032PR China
| | - Xuefei Ji
- Department of Neurosurgerythe First Affiliated Hospital of Anhui Medical UniversityJixi Road 218Hefei230022PR China
| | - Hongwei Cheng
- Department of Neurosurgerythe First Affiliated Hospital of Anhui Medical UniversityJixi Road 218Hefei230022PR China
| | - Weidong Du
- Department of PathologyAnhui Medical UniversityMeishan Road 81Hefei230032PR China
| | - Lei Ye
- Department of Neurosurgerythe First Affiliated Hospital of Anhui Medical UniversityJixi Road 218Hefei230022PR China
| |
Collapse
|
9
|
Kang Y, Zhang Q, Xu S, Yu Y. The alteration and role of glycoconjugates in Alzheimer's disease. Front Aging Neurosci 2024; 16:1398641. [PMID: 38946780 PMCID: PMC11212478 DOI: 10.3389/fnagi.2024.1398641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by abnormal protein deposition. With an alarming 30 million people affected worldwide, AD poses a significant public health concern. While inhibiting key enzymes such as β-site amyloid precursor protein-cleaving enzyme 1 and γ-secretase or enhancing amyloid-β clearance, has been considered the reasonable strategy for AD treatment, their efficacy has been compromised by ineffectiveness. Furthermore, our understanding of AD pathogenesis remains incomplete. Normal aging is associated with a decline in glucose uptake in the brain, a process exacerbated in patients with AD, leading to significant impairment of a critical post-translational modification: glycosylation. Glycosylation, a finely regulated mechanism of intracellular secondary protein processing, plays a pivotal role in regulating essential functions such as synaptogenesis, neurogenesis, axon guidance, as well as learning and memory within the central nervous system. Advanced glycomic analysis has unveiled that abnormal glycosylation of key AD-related proteins closely correlates with the onset and progression of the disease. In this context, we aimed to delve into the intricate role and underlying mechanisms of glycosylation in the etiopathology and pathogenesis of AD. By highlighting the potential of targeting glycosylation as a promising and alternative therapeutic avenue for managing AD, we strive to contribute to the advancement of treatment strategies for this debilitating condition.
Collapse
Affiliation(s)
- Yue Kang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qian Zhang
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Silu Xu
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Yu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Abstract
Gliomas are a diverse group of primary central nervous system tumors that affect both children and adults. Recent studies have revealed a dynamic cross talk that occurs between glioma cells and components of their microenvironment, including neurons, astrocytes, immune cells, and the extracellular matrix. This cross talk regulates fundamental aspects of glioma development and growth. In this review, we discuss recent discoveries about the impact of these interactions on gliomas and highlight how tumor cells actively remodel their microenvironment to promote disease. These studies provide a better understanding of the interactions in the microenvironment that are important in gliomas, offer insight into the cross talk that occurs, and identify potential therapeutic vulnerabilities that can be utilized to improve clinical outcomes.
Collapse
Affiliation(s)
- Maya Anjali Jayaram
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, California, USA;
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, California, USA;
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, California, USA
| |
Collapse
|
11
|
Yang J, Li H, Zhao Y. Dessert or Poison? The Roles of Glycosylation in Alzheimer's, Parkinson's, Huntington's Disease, and Amyotrophic Lateral Sclerosis. Chembiochem 2023; 24:e202300017. [PMID: 37440197 DOI: 10.1002/cbic.202300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/27/2023] [Indexed: 07/14/2023]
Abstract
Ministry of Education and Key Laboratory of Neurons and glial cells of the central nervous system (CNS) are modified by glycosylation and rely on glycosylation to achieve normal neural function. Neurodegenerative disease is a common disease of the elderly, affecting their healthy life span and quality of life, and no effective treatment is currently available. Recent research implies that various glycosylation traits are altered during neurodegenerative diseases, suggesting a potential implication of glycosylation in disease pathology. Herein, we summarized the current knowledge about glycosylation associated with Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic lateral sclerosis (ALS) pathogenesis, focusing on their promising functional avenues. Moreover, we collected research aimed at highlighting the need for such studies to provide a wealth of disease-related glycosylation information that will help us better understand the pathophysiological mechanisms and hopefully specific glycosylation information to provide further diagnostic and therapeutic directions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiajun Yang
- Department of Biochemistry and Molecular Biology School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hongmei Li
- Department of Biochemistry and Molecular Biology School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yuhui Zhao
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
12
|
Pradeep P, Kang H, Lee B. Glycosylation and behavioral symptoms in neurological disorders. Transl Psychiatry 2023; 13:154. [PMID: 37156804 PMCID: PMC10167254 DOI: 10.1038/s41398-023-02446-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Glycosylation, the addition of glycans or carbohydrates to proteins, lipids, or other glycans, is a complex post-translational modification that plays a crucial role in cellular function. It is estimated that at least half of all mammalian proteins undergo glycosylation, underscoring its importance in the functioning of cells. This is reflected in the fact that a significant portion of the human genome, around 2%, is devoted to encoding enzymes involved in glycosylation. Changes in glycosylation have been linked to various neurological disorders, including Alzheimer's disease, Parkinson's disease, autism spectrum disorder, and schizophrenia. Despite its widespread occurrence, the role of glycosylation in the central nervous system remains largely unknown, particularly with regard to its impact on behavioral abnormalities in brain diseases. This review focuses on examining the role of three types of glycosylation: N-glycosylation, O-glycosylation, and O-GlcNAcylation, in the manifestation of behavioral and neurological symptoms in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Prajitha Pradeep
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
- IBS School, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyeyeon Kang
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea.
- IBS School, University of Science and Technology (UST), Daejeon, 34113, South Korea.
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
13
|
Raj Shekhar B, Rupani K, Raghunath Parkar S, Sunil Nayak A, Vasant Kumbhar B, Khare SP, Menon S, Gawde H, Kumar Das D. Identifying Novel Risk Conferring Genes Involved in Glycosylation Processes with Familial Schizophrenia in an Indian Cohort: Prediction of ADAMTS9 gene Variant for Structural Stability. Gene 2023; 872:147443. [PMID: 37105505 DOI: 10.1016/j.gene.2023.147443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
Schizophrenia is a complex neuropsychiatric disorder and heritability is as high as 80% making it the most heritable mental disorder. Although GWAS has identified numerous variants, the pathophysiology is still elusive. Here, an attempt was made to identify genetic risk factors in familial cases of schizophrenia that are associated with a common causative pathway. To achieve this objective, exome sequencing was done in 4 familial cases and identified six unique coding variants in five genes. Among these genes, PIGQ gene has two pathogenic variants, one nonsense and in-frame deletion. One missense variant in GALNT16 and one in GALNT5 have variable damaging score, however, the other variants, in ADAMTS9 and in LTBP4 have the highest damaging score. Further analysis showed that the variant of LTBP4 was not present in the functional domain. The other missense variant in the ADAMTS9 gene was found to be significant and was present in the thrombospondin repeat motif, one of the important motifs. Detailed molecular dynamics simulation study on this variant showed a damaging effect on structural stability. Since, all these genes culminated into the glycosylation process, it was evident that an aberrant glycosylation process may be one of the risk factors. Although, extracellular matrix formation through glycosylation have been shown to be associated, the involvement of ADAMTS9 and PIGQ gene mediated glycosylation has not been reported. In this paper, a novel link between ADAMTS9 and PIGQ gene with schizophrenia have been reported. Therefore, this novel observation has contributed immensely to the existing knowledge on risk factor of Schizophrenia.
Collapse
Affiliation(s)
- Bipin Raj Shekhar
- Genetic Research Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, Maharashtra-400012, India; Stem Cell Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, Maharashtra-400012, India
| | - Karishma Rupani
- Department of Psychiatry, Seth GS Medical College and KEM Hospital, Parel, Mumbai, Maharashtra-400012, India
| | - Shubhangi Raghunath Parkar
- Department of Psychiatry, Seth GS Medical College and KEM Hospital, Parel, Mumbai, Maharashtra-400012, India
| | - Ajita Sunil Nayak
- Department of Psychiatry, Seth GS Medical College and KEM Hospital, Parel, Mumbai, Maharashtra-400012, India
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University (Deemed), Mumbai, Maharashtra-400012, India
| | - Satyajeet P Khare
- Symbiosis School of Biological Sciences, Symbiosis International University, Pune, Maharashtra-412115, India
| | - Shyla Menon
- Stem Cell Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, Maharashtra-400012, India
| | - Harshavardhan Gawde
- Genetic Research Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, Maharashtra-400012, India
| | - Dhanjit Kumar Das
- Stem Cell Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, Maharashtra-400012, India.
| |
Collapse
|
14
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
15
|
Proceedings of workshop: "Neuroglycoproteins in health and disease", INNOGLY cost action. Glycoconj J 2022; 39:579-586. [PMID: 36001187 PMCID: PMC9399589 DOI: 10.1007/s10719-022-10078-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
Abstract
The Cost Action "Innovation with glycans: new frontiers from synthesis to new biological targets" (INNOGLY) hosted the Workshop "Neuroglycoproteins in health and disease", in Alicante, Spain, on March 2022. This event brought together an european group of scientists that presented novel insights into changes in glycosylation in diseases of the central nervous system and cancer, as well as new techniques to study protein glycosylation. Herein we provide the abstracts of all the presentations.
Collapse
|
16
|
Abstract
Neuroprosthetic devices that record and modulate neural activities have demonstrated immense potential for bypassing or restoring lost neurological functions due to neural injuries and disorders. However, implantable electrical devices interfacing with brain tissue are susceptible to a series of inflammatory tissue responses along with mechanical or electrical failures which can affect the device performance over time. Several biomaterial strategies have been implemented to improve device-tissue integration for high quality and stable performance. Ranging from developing smaller, softer, and more flexible electrode designs to introducing bioactive coatings and drug-eluting layers on the electrode surface, such strategies have shown different degrees of success but with limitations. With their hydrophilic properties and specific bioactivities, carbohydrates offer a potential solution for addressing some of the limitations of the existing biomolecular approaches. In this review, we summarize the role of polysaccharides in the central nervous system, with a primary focus on glycoproteins and proteoglycans, to shed light on their untapped potential as biomaterials for neural implants. Utilization of glycosaminoglycans for neural interface and tissue regeneration applications is comprehensively reviewed to provide the current state of carbohydrate-based biomaterials for neural implants. Finally, we will discuss the challenges and opportunities of applying carbohydrate-based biomaterials for neural tissue interfaces.
Collapse
Affiliation(s)
- Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Liu PH, Chuang GT, Hsiung CN, Yang WS, Ku HC, Lin YC, Chen YS, Huang YY, Lin CH, Li WY, Lin JW, Hsu CN, Hwang JJ, Liao KCW, Hsieh ML, Lee HL, Shen CY, Chang YC. A genome-wide association study for melatonin secretion. Sci Rep 2022; 12:8025. [PMID: 35577822 PMCID: PMC9110427 DOI: 10.1038/s41598-022-12084-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMelatonin exerts a wide range of effects among various tissues and organs. However, there is currently no study to investigate the genetic determinants of melatonin secretion. Here, we conducted a genome-wide association study (GWAS) for melatonin secretion using morning urine 6-hydroxymelatonin sulfate-to-creatinine ratio (UMCR). We initially enrolled 5000 participants from Taiwan Biobank in this study. After excluding individuals that did not have their urine collected in the morning, those who had history of neurological or psychiatric disorder, and those who failed to pass quality control, association of single nucleotide polymorphisms with log-transformed UMCR adjusted for age, sex and principal components of ancestry were analyzed. A second model additionally adjusted for estimated glomerular filtration rate (eGFR). A total of 2373 participants underwent the genome-wide analysis. Five candidate loci associated with log UMCR (P value ranging from 6.83 × 10−7 to 3.44 × 10−6) encompassing ZFHX3, GALNT15, GALNT13, LDLRAD3 and intergenic between SEPP1 and FLJ32255 were identified. Similar results were yielded with further adjustment for eGFR. Interestingly, the identified genes are associated with circadian behavior, neuronal differentiation, motor disorders, anxiety, and neurodegenerative diseases. We conducted the first GWAS for melatonin secretion and identified five candidate genetic loci associated with melatonin level. Replication and functional studies are needed in the future.
Collapse
|
18
|
Lajoie JM, Katt ME, Waters EA, Herrin BR, Shusta EV. Identification of lamprey variable lymphocyte receptors that target the brain vasculature. Sci Rep 2022; 12:6044. [PMID: 35411012 PMCID: PMC9001667 DOI: 10.1038/s41598-022-09962-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/28/2022] [Indexed: 12/21/2022] Open
Abstract
The blood-brain barrier (BBB) represents a significant bottleneck for the delivery of therapeutics to the central nervous system. In recent years, the promise of coopting BBB receptor-mediated transport systems for brain drug delivery has increased in large part due to the discovery and engineering of BBB-targeting antibodies. Here we describe an innovative screening platform for identification of new BBB targeting molecules from a class of lamprey antigen recognition proteins known as variable lymphocyte receptors (VLRs). Lamprey were immunized with murine brain microvessel plasma membranes, and the resultant repertoire cloned into the yeast surface display system. The library was screened via a unique workflow that identified 16 VLR clones that target extracellular epitopes of in vivo-relevant BBB membrane proteins. Of these, three lead VLR candidates, VLR-Fc-11, VLR-Fc-30, and VLR-Fc-46 selectively target the brain vasculature and traffic within brain microvascular endothelial cells after intravenous administration in mice, with VLR-Fc-30 being confirmed as trafficking into the brain parenchyma. Epitope characterization indicates that the VLRs, in part, recognize sialylated glycostructures. These promising new targeting molecules have the potential for brain targeting and drug delivery with improved brain vascular specificity.
Collapse
Affiliation(s)
- Jason M Lajoie
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Moriah E Katt
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Elizabeth A Waters
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brantley R Herrin
- Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Rd NE, Atlanta, GA, 30322, USA.
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
| |
Collapse
|
19
|
Ghanimi Fard M, Khabir Z, Reineck P, Cordina NM, Abe H, Ohshima T, Dalal S, Gibson BC, Packer NH, Parker LM. Targeting cell surface glycans with lectin-coated fluorescent nanodiamonds. NANOSCALE ADVANCES 2022; 4:1551-1564. [PMID: 36134370 PMCID: PMC9418452 DOI: 10.1039/d2na00036a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/06/2022] [Indexed: 06/02/2023]
Abstract
Glycosylation is arguably the most important functional post-translational modification in brain cells and abnormal cell surface glycan expression has been associated with neurological diseases and brain cancers. In this study we developed a novel method for uptake of fluorescent nanodiamonds (FND), carbon-based nanoparticles with low toxicity and easily modifiable surfaces, into brain cell subtypes by targeting their glycan receptors with carbohydrate-binding lectins. Lectins facilitated uptake of 120 nm FND with nitrogen-vacancy centers in three types of brain cells - U87-MG astrocytes, PC12 neurons and BV-2 microglia cells. The nanodiamond/lectin complexes used in this study target glycans that have been described to be altered in brain diseases including sialic acid glycans via wheat (Triticum aestivum) germ agglutinin (WGA), high mannose glycans via tomato (Lycopersicon esculentum) lectin (TL) and core fucosylated glycans via Aleuria aurantia lectin (AAL). The lectin conjugated nanodiamonds were taken up differently by the various brain cell types with fucose binding AAL/FNDs taken up preferentially by glioblastoma phenotype astrocyte cells (U87-MG), sialic acid binding WGA/FNDs by neuronal phenotype cells (PC12) and high mannose binding TL/FNDs by microglial cells (BV-2). With increasing recognition of glycans having a role in many diseases, the lectin bioconjugated nanodiamonds developed here are well suited for further investigation into theranostic applications.
Collapse
Affiliation(s)
- Mina Ghanimi Fard
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Zahra Khabir
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University Melbourne VIC 3001 Australia
| | - Nicole M Cordina
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Hiroshi Abe
- Quantum Beam Science Research Directorate, The Institute for Quantum Life Science, National Institutes for Quantum Science and Technology Takasaki Gunma 3701292 Japan
| | - Takeshi Ohshima
- Quantum Beam Science Research Directorate, The Institute for Quantum Life Science, National Institutes for Quantum Science and Technology Takasaki Gunma 3701292 Japan
| | - Sagar Dalal
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Brant C Gibson
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University Melbourne VIC 3001 Australia
| | - Nicolle H Packer
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
- Institute for Glycomics, Griffith University Southport QLD 4222 Australia
| | - Lindsay M Parker
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| |
Collapse
|
20
|
Yang J, Yin M, Hou Y, Li H, Guo Y, Yu H, Zhang K, Zhang C, Jia L, Zhang F, Li X, Bian H, Li Z. Role of ammonia for brain abnormal protein glycosylation during the development of hepatitis B virus-related liver diseases. Cell Biosci 2022; 12:16. [PMID: 35164881 PMCID: PMC8842931 DOI: 10.1186/s13578-022-00751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background Ammonia is the most typical neurotoxin in hepatic encephalopathy (HE), but the underlying pathophysiology between ammonia and aberrant glycosylation in HE remains unknown. Results Here, we used HBV transgenic mice and astrocytes to present a systems-based study of glycosylation changes and corresponding enzymes associated with the key factors of ammonia in HE. We surveyed protein glycosylation changes associated with the brain of HBV transgenic mice by lectin microarrays. Upregulation of Galβ1-3GalNAc mediated by core 1 β1,3-galactosyltransferase (C1GALT1) was identified as a result of ammonia stimulation. Using in vitro assays, we validated that upregulation of C1GALT1 is a driver of deregulates calcium (Ca2+) homeostasis by overexpression of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in astrocytes. Conclusions We demonstrated that silencing C1GALT1 could depress the IP3R1 expression, an effective strategy to inhibit the ammonia-induced upregulation of Ca2+ activity, thereby C1GALT1 and IP3R1 may serve as therapeutic targets in hyperammonemia of HE. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00751-4.
Collapse
Affiliation(s)
- Jiajun Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Mengqi Yin
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yao Hou
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hao Li
- Cell Engineering Research Centre and Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yonghong Guo
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Kun Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Chen Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Liyuan Jia
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Fan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xia Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Huijie Bian
- Cell Engineering Research Centre and Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
21
|
Williams SE, Noel M, Lehoux S, Cetinbas M, Xavier RJ, Sadreyev RI, Scolnick EM, Smoller JW, Cummings RD, Mealer RG. Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues. Nat Commun 2022; 13:275. [PMID: 35022400 PMCID: PMC8755730 DOI: 10.1038/s41467-021-27781-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/08/2021] [Indexed: 01/14/2023] Open
Abstract
Glycosylation is essential to brain development and function, but prior studies have often been limited to a single analytical technique and excluded region- and sex-specific analyses. Here, using several methodologies, we analyze Asn-linked and Ser/Thr/Tyr-linked protein glycosylation between brain regions and sexes in mice. Brain N-glycans are less complex in sequence and variety compared to other tissues, consisting predominantly of high-mannose and fucosylated/bisected structures. Most brain O-glycans are unbranched, sialylated O-GalNAc and O-mannose structures. A consistent pattern is observed between regions, and sex differences are minimal compared to those in plasma. Brain glycans correlate with RNA expression of their synthetic enzymes, and analysis of glycosylation genes in humans show a global downregulation in the brain compared to other tissues. We hypothesize that this restricted repertoire of protein glycans arises from their tight regulation in the brain. These results provide a roadmap for future studies of glycosylation in neurodevelopment and disease.
Collapse
Affiliation(s)
- Sarah E Williams
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramnik J Xavier
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward M Scolnick
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert G Mealer
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA.
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Brandão-Teles C, Smith BJ, Carregari VC. PTMs: A Missing Piece for Schizophrenia Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:119-127. [DOI: 10.1007/978-3-031-05460-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Glycoconjugate journal special issue on: the glycobiology of Parkinson's disease. Glycoconj J 2021; 39:55-74. [PMID: 34757539 DOI: 10.1007/s10719-021-10024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects over 10 million aging people worldwide. This condition is characterized by the degeneration of dopaminergic neurons in the pars compacta region of the substantia nigra (SNpc) and by aggregation of proteins, commonly α-synuclein (SNCA). The formation of Lewy bodies that encapsulate aggregated proteins in lipid vesicles is a hallmark of PD. Glycosylation of proteins and neuroinflammation are involved in the pathogenesis. SNCA has many posttranslational modifications and interacts with components of membranes that affect aggregation. The large membrane lipid dolichol accumulates in the brain upon age and has a significant effect on membrane structure. The replacement of dopamine and dopaminergic neurons are at the forefront of therapeutic development. This review examines the role of membrane lipids, glycolipids, glycoproteins and dopamine in the aggregation of SNCA and development of PD. We discuss the SNCA-dopamine-neuromelanin-dolichol axis and the role of membranes in neuronal stem cells that could be a regenerative therapy for PD patients.
Collapse
|
24
|
Bright F, Katzeff JS, Hodges JR, Piguet O, Kril JJ, Halliday GM, Kim WS. Glycoprotein Pathways Altered in Frontotemporal Dementia With Autoimmune Disease. Front Immunol 2021; 12:736260. [PMID: 34539672 PMCID: PMC8440893 DOI: 10.3389/fimmu.2021.736260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Behavioral variant frontotemporal dementia (bvFTD) is a younger onset form of neurodegeneration initiated in the frontal and/or temporal lobes with a slow clinical onset but rapid progression. bvFTD is highly complex biologically with different pathological signatures and genetic variants that can exhibit a spectrum of overlapping clinical manifestations. Although the role of innate immunity has been extensively investigated in bvFTD, the involvement of adaptive immunity in bvFTD pathogenesis is poorly understood. We analyzed blood serum proteomics to identify proteins that are associated with autoimmune disease in bvFTD. Eleven proteins (increased: ATP5B, CALML5, COLEC11, FCGBP, PLEK, PLXND1; decreased: APOB, ATP8B1, FAM20C, LOXL3, TIMD4) were significantly altered in bvFTD with autoimmune disease compared to those without autoimmune disease. The majority of these proteins were enriched for glycoprotein-associated proteins and pathways, suggesting that the glycome is targeted in bvFTD with autoimmune disease.
Collapse
Affiliation(s)
- Fiona Bright
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jared S Katzeff
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Olivier Piguet
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Jillian J Kril
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Woojin Scott Kim
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Hasan MM, Mimi MA, Mamun MA, Islam A, Waliullah ASM, Nabi MM, Tamannaa Z, Kahyo T, Setou M. Mass Spectrometry Imaging for Glycome in the Brain. Front Neuroanat 2021; 15:711955. [PMID: 34393728 PMCID: PMC8358800 DOI: 10.3389/fnana.2021.711955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Glycans are diverse structured biomolecules that play crucial roles in various biological processes. Glycosylation, an enzymatic system through which various glycans are bound to proteins and lipids, is the most common and functionally crucial post-translational modification process. It is known to be associated with brain development, signal transduction, molecular trafficking, neurodegenerative disorders, psychopathologies, and brain cancers. Glycans in glycoproteins and glycolipids expressed in brain cells are involved in neuronal development, biological processes, and central nervous system maintenance. The composition and expression of glycans are known to change during those physiological processes. Therefore, imaging of glycans and the glycoconjugates in the brain regions has become a “hot” topic nowadays. Imaging techniques using lectins, antibodies, and chemical reporters are traditionally used for glycan detection. However, those techniques offer limited glycome detection. Mass spectrometry imaging (MSI) is an evolving field that combines mass spectrometry with histology allowing spatial and label-free visualization of molecules in the brain. In the last decades, several studies have employed MSI for glycome imaging in brain tissues. The current state of MSI uses on-tissue enzymatic digestion or chemical reaction to facilitate successful glycome imaging. Here, we reviewed the available literature that applied MSI techniques for glycome visualization and characterization in the brain. We also described the general methodologies for glycome MSI and discussed its potential use in the three-dimensional MSI in the brain.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mst Afsana Mimi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - A S M Waliullah
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Mahamodun Nabi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Zinat Tamannaa
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu, Japan
| |
Collapse
|
26
|
Gaunitz S, Tjernberg LO, Schedin-Weiss S. What Can N-glycomics and N-glycoproteomics of Cerebrospinal Fluid Tell Us about Alzheimer Disease? Biomolecules 2021; 11:858. [PMID: 34207636 PMCID: PMC8226827 DOI: 10.3390/biom11060858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022] Open
Abstract
Proteomics-large-scale studies of proteins-has over the last decade gained an enormous interest for studies aimed at revealing proteins and pathways involved in disease. To fully understand biological and pathological processes it is crucial to also include post-translational modifications in the "omics". To this end, glycomics (identification and quantification of glycans enzymatically or chemically released from proteins) and glycoproteomics (identification and quantification of peptides/proteins with the glycans still attached) is gaining interest. The study of protein glycosylation requires a workflow that involves an array of sample preparation and analysis steps that needs to be carefully considered. Herein, we briefly touch upon important steps such as sample preparation and preconcentration, glycan release, glycan derivatization and quantification and advances in mass spectrometry that today are the work-horse for glycomics and glycoproteomics studies. Several proteins related to Alzheimer disease pathogenesis have altered protein glycosylation, and recent glycomics studies have shown differences in cerebrospinal fluid as well as in brain tissue in Alzheimer disease as compared to controls. In this review, we discuss these techniques and how they have been used to shed light on Alzheimer disease and to find glycan biomarkers in cerebrospinal fluid.
Collapse
Affiliation(s)
- Stefan Gaunitz
- Department of Clinical Chemistry, Karolinska University Hospital, 14186 Stockholm, Sweden;
| | - Lars O. Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden;
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden;
| |
Collapse
|
27
|
Glycoproteomic analysis of the changes in protein N-glycosylation during neuronal differentiation in human-induced pluripotent stem cells and derived neuronal cells. Sci Rep 2021; 11:11169. [PMID: 34045517 PMCID: PMC8160270 DOI: 10.1038/s41598-021-90102-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
N-glycosylation of glycoproteins, a major post-translational modification, plays a crucial role in various biological phenomena. In central nervous systems, N-glycosylation is thought to be associated with differentiation and regeneration; however, the state and role of N-glycosylation in neuronal differentiation remain unclear. Here, we conducted sequential LC/MS/MS analyses of tryptic digest, enriched glycopeptides, and deglycosylated peptides of proteins derived from human-induced pluripotent stem cells (iPSCs) and iPSC-derived neuronal cells, which were used as a model of neuronal differentiation. We demonstrate that the production profiles of many glycoproteins and their glycoforms were altered during neuronal differentiation. Particularly, the levels of glycoproteins modified with an N-glycan, consisting of five N-acetylhexosamines, three hexoses, and a fucose (HN5H3F), increased in dopaminergic neuron-rich cells (DAs). The N-glycan was deduced to be a fucosylated and bisected biantennary glycan based on product ion spectra. Interestingly, the HN5H3F-modified proteins were predicted to be functionally involved in neural cell adhesion, axon guidance, and the semaphorin-plexin signaling pathway, and protein modifications were site-selective and DA-selective regardless of protein production levels. Our integrated method for glycoproteome analysis and resultant profiles of glycoproteins and their glycoforms provide valuable information for further understanding the role of N-glycosylation in neuronal differentiation and neural regeneration.
Collapse
|
28
|
Ye L, Fang YS, Li XX, Gao Y, Liu SS, Chen Q, Wu Q, Cheng HW, Du WD. A simple lectin-based biochip might display the potential clinical value of glycomics in patients with spontaneous intracerebral hemorrhage. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:544. [PMID: 33987242 DOI: 10.21037/atm-20-7315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Intracerebral hemorrhage (ICH) is a cerebrovascular disease with extremely high disability and mortality rates. Glycans play critical roles in biological processes. However, whether glycans can serve as potential biomarkers for determining clinical diagnosis and prognosis in ICH remains determined. Methods In this study, we established a lectin-biochip to measure serum glycans levels in ICH patients (n=48) and healthy controls (n=16). An enzyme-linked immunosorbent assay (ELISA) was carried out to determine serum levels of IL-10 and TNF-α in the patients. Correlation analyses of the serum glycan and cytokine levels and the clinicopathological parameters of patients were performed. Results The biochip-based data revealed that the serum levels of α-Man/α-Glc (ConA), Galβ3GalNAc (PNA), GalNAc (VVA), Fucα6GlcNAc (AAL), α-Fuc (LTL), and Galβ3GalNAc-Ser/Thr (AIL) significantly increased in the super-acute phase of ICH in comparison with healthy controls. Clinicopathological analysis indicated the serum levels of ConA, VVA, and LTL had significant associations with the National Institute of Health Stroke Scale (NIHSS), and serum VVA levels had a significant association with the Mini-Mental State Examination (MMSE) at day 90 after ICH. Correlation coefficient analysis revealed significant correlations between TNF-α and ConA (P<0.001) as well as between IL-10 and ConA (P<0.001), PNA (P=0.02), VVA (P<0.001), and MAL (P=0.04), respectively. Conclusions We established a proof-of-concept platform for detecting serum glycomics and highlighted their potential value in diagnosing and predicting ICH patients' outcomes.
Collapse
Affiliation(s)
- Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong-Sheng Fang
- Department of Pathology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Xue Li
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Yi Gao
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Sheng-Sheng Liu
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Qiang Chen
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Qiang Wu
- Department of Pathology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Wei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei-Dong Du
- Department of Pathology, Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Xu MM, Zhou MT, Li SW, Zhen XC, Yang S. Glycoproteins as diagnostic and prognostic biomarkers for neurodegenerative diseases: A glycoproteomic approach. J Neurosci Res 2021; 99:1308-1324. [PMID: 33634546 DOI: 10.1002/jnr.24805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) are incurable and can develop progressively debilitating disorders, including dementia and ataxias. Alzheimer's disease and Parkinson's disease are the most common NDs that mainly affect the elderly people. There is an urgent need to develop new diagnostic tools so that patients can be accurately stratified at an early stage. As a common post-translational modification, protein glycosylation plays a key role in physiological and pathological processes. The abnormal changes in glycosylation are associated with the altered biological pathways in NDs. The pathogenesis-related proteins, like amyloid-β and microtubule-associated protein tau, have altered glycosylation. Importantly, specific glycosylation changes in cerebrospinal fluid, blood and urine are valuable for revealing neurodegeneration in the early stages. This review describes the emerging biomarkers based on glycoproteomics in NDs, highlighting the potential applications of glycoprotein biomarkers in the early detection of diseases, monitoring of the disease progression, and measurement of the therapeutic responses. The mass spectrometry-based strategies for characterizing glycoprotein biomarkers are also introduced.
Collapse
Affiliation(s)
- Ming-Ming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | | | - Shu-Wei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, China
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
30
|
Aberrant glycosylation in schizophrenia: a review of 25 years of post-mortem brain studies. Mol Psychiatry 2020; 25:3198-3207. [PMID: 32404945 PMCID: PMC8081047 DOI: 10.1038/s41380-020-0761-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Glycosylation, the enzymatic attachment of carbohydrates to proteins and lipids, regulates nearly all cellular processes and is critical in the development and function of the nervous system. Axon pathfinding, neurite outgrowth, synaptogenesis, neurotransmission, and many other neuronal processes are regulated by glycans. Over the past 25 years, studies analyzing post-mortem brain samples have found evidence of aberrant glycosylation in individuals with schizophrenia. Proteins involved in both excitatory and inhibitory neurotransmission display altered glycans in the disease state, including AMPA and kainate receptor subunits, glutamate transporters EAAT1 and EAAT2, and the GABAA receptor. Polysialylated NCAM (PSA-NCAM) and perineuronal nets, highly glycosylated molecules critical for axonal migration and synaptic stabilization, are both downregulated in multiple brain regions of individuals with schizophrenia. In addition, enzymes spanning several pathways of glycan synthesis show differential expression in brains of individuals with schizophrenia. These changes may be due to genetic predisposition, environmental perturbations, medication use, or a combination of these factors. However, the recent association of several enzymes of glycosylation with schizophrenia by genome-wide association studies underscores the importance of glycosylation in this disease. Understanding how glycosylation is dysregulated in the brain will further our understanding of how this pathway contributes to the development and pathophysiology of schizophrenia.
Collapse
|
31
|
Simple and Complex Sugars in Parkinson's Disease: a Bittersweet Taste. Mol Neurobiol 2020; 57:2934-2943. [PMID: 32430844 DOI: 10.1007/s12035-020-01931-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
Abstract
Neuronal homeostasis depends on both simple and complex sugars (the glycoconjugates), and derangement of their metabolism is liable to impair neural function and lead to neurodegeneration. Glucose levels boost glycation phenomena, a wide series of non-enzymatic reactions that give rise to various intermediates and end-products that are potentially dangerous in neurons. Glycoconjugates, including glycoproteins, glycolipids, and glycosaminoglycans, contribute to the constitution of the unique features of neuron membranes and extracellular matrix in the nervous system. Glycosylation defects are indeed frequently associated with nervous system disturbances and neurodegeneration. Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms associated with the loss of dopaminergic neurons in the pars compacta of the substantia nigra. Neurons present intracytoplasmic inclusions of α-synuclein aggregates involved in the disease pathogenesis together with the impairment of the autophagy-lysosome function, oxidative stress, and defective traffic and turnover of membrane components. In the present review, we selected relevant recent contributions concerning the direct involvement of glycation and glycosylation in α-synuclein stability, impaired autophagy and lysosomal function in PD, focusing on potential models of PD pathogenesis provided by genetic variants of glycosphingolipid processing enzymes, especially glucocerebrosidase (GBA). Moreover, we collected data aimed at defining the glycomic profile of PD patients as a tool to help in diagnosis and patient subtyping, as well as those pointing to sugar-related compounds with potential therapeutic applications in PD.
Collapse
|
32
|
Region-specific upregulation of HNK-1 glycan in the PRMT1-deficient brain. Biochim Biophys Acta Gen Subj 2020; 1864:129509. [DOI: 10.1016/j.bbagen.2019.129509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 02/08/2023]
|
33
|
Wang W, Gopal S, Pocock R, Xiao Z. Glycan Mimetics from Natural Products: New Therapeutic Opportunities for Neurodegenerative Disease. Molecules 2019; 24:molecules24244604. [PMID: 31888221 PMCID: PMC6943557 DOI: 10.3390/molecules24244604] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases (NDs) affect millions of people worldwide. Characterized by the functional loss and death of neurons, NDs lead to symptoms (dementia and seizures) that affect the daily lives of patients. In spite of extensive research into NDs, the number of approved drugs for their treatment remains limited. There is therefore an urgent need to develop new approaches for the prevention and treatment of NDs. Glycans (carbohydrate chains) are ubiquitous, abundant, and structural complex natural biopolymers. Glycans often covalently attach to proteins and lipids to regulate cellular recognition, adhesion, and signaling. The importance of glycans in both the developing and mature nervous system is well characterized. Moreover, glycan dysregulation has been observed in NDs such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS). Therefore, glycans are promising but underexploited therapeutic targets. In this review, we summarize the current understanding of glycans in NDs. We also discuss a number of natural products that functionally mimic glycans to protect neurons, which therefore represent promising new therapeutic approaches for patients with NDs.
Collapse
|
34
|
Iqbal S, Parker LM, Everest-Dass AV, Moh ESX, Sayyadi N, Hutchinson MR, Packer NH. Lipopolysaccharide and Morphine-3-Glucuronide-Induced Immune Signalling Increases the Expression of Polysialic Acid in PC12 Cells. Mol Neurobiol 2019; 57:964-975. [PMID: 31646464 DOI: 10.1007/s12035-019-01791-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 09/22/2019] [Indexed: 11/26/2022]
Abstract
Polysialic acid (polySia), a long homopolymer of 2,8-linked sialic acids, is abundant in the embryonic brain and is restricted largely in adult brain to regions that exhibit neurogenesis and structural plasticity. In the central nervous system (CNS), polySia is highly important for cell-cell interactions, differentiation, migration and cytokine responses, which are critical neuronal functions regulating intercellular interactions that underlie immune signalling in the CNS. In recent reports, a metabolite of morphine, morphine-3-glucuronide (M3G), has been shown to cause immune signalling in the CNS. In this study, we compared the effects of neurite growth factor (NGF), lipopolysaccharide (LPS) and M3G exposure on the expression of polySia in PC12 cells using immunocytochemistry and Western blot analysis. PolySia was also extracted from stimulated cell proteins by endo-neuraminidase digestion and quantitated using fluorescent labelling followed by HPLC analysis. PolySia expression was significantly increased following NGF, M3G or LPS stimulation when compared with unstimulated cells or cells exposed to the TLR4 antagonist LPS-RS. Additionally, we analyzed the effects of test agent exposure on cell migration and the oxidative stress response of these cells in the presence and absence of polySia expression on their cell surface. We observed an increase in oxidative stress in cells without polySia as well as following M3G or LPS stimulation. Our study provides evidence that polySia expression in neuronal-like PC12 cells is influenced by M3G and LPS exposure alike, suggestive of a role of TLR4 in triggering these events.
Collapse
Affiliation(s)
- Sameera Iqbal
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia
| | - Lindsay M Parker
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia
| | - Arun V Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Edward S X Moh
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia
| | - Nima Sayyadi
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia
| | - Mark R Hutchinson
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicolle H Packer
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia.
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|