1
|
Berndsen CE, Storm AR, Sardelli AM, Hossain SR, Clermont KR, McFather LM, Connor MA, Monroe JD. The Pseudoenzyme β-Amylase9 From Arabidopsis Activates α-Amylase3: A Possible Mechanism to Promote Stress-Induced Starch Degradation. Proteins 2025; 93:1189-1201. [PMID: 39846389 PMCID: PMC12046210 DOI: 10.1002/prot.26803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Starch accumulation in plants provides carbon for nighttime use, for regrowth after periods of dormancy, and for times of stress. Both ɑ- and β-amylases (AMYs and BAMs, respectively) catalyze starch hydrolysis, but their functional roles are unclear. Moreover, the presence of catalytically inactive amylases that show starch excess phenotypes when deleted presents questions on how starch degradation is regulated. Plants lacking one of these catalytically inactive β-amylases, BAM9, have enhanced starch accumulation when combined with mutations in BAM1 and BAM3, the primary starch degrading BAMs in response to stress and at night, respectively. BAM9 has been reported to be transcriptionally induced by stress although the mechanism for BAM9 function is unclear. From yeast two-hybrid experiments, we identified the plastid-localized AMY3 as a potential interaction partner for BAM9. We found that BAM9 interacted with AMY3 in vitro and that BAM9 enhances AMY3 activity about three-fold. Modeling of the AMY3-BAM9 complex predicted a previously undescribed alpha-alpha hairpin in AMY3 that could serve as a potential interaction site. Additionally, AMY3 lacking the alpha-alpha hairpin is unaffected by BAM9. Structural analysis of AMY3 showed that it can form a homodimer in solution and that BAM9 appears to replace one of the AMY3 monomers to form a heterodimer. The presence of both BAM9 and AMY3 in many vascular plant lineages, along with model-based evidence that they heterodimerize, suggests that the interaction is conserved. Collectively these data suggest that BAM9 is a pseudoamylase that activates AMY3 in response to cellular stress, possibly facilitating stress recovery.
Collapse
Affiliation(s)
| | - Amanda R. Storm
- Department of BiologyWestern Carolina UniversityCullowheeNorth CarolinaUSA
- Department of BiologyJames Madison UniversityHarrisonburgVirginiaUSA
| | - Angelina M. Sardelli
- Department of Chemistry and BiochemistryJames Madison UniversityHarrisonburgVirginiaUSA
| | - Sheikh R. Hossain
- Department of BiologyJames Madison UniversityHarrisonburgVirginiaUSA
| | | | - Luke M. McFather
- Department of Chemistry and BiochemistryJames Madison UniversityHarrisonburgVirginiaUSA
| | - Mafe A. Connor
- Department of Chemistry and BiochemistryJames Madison UniversityHarrisonburgVirginiaUSA
| | - Jonathan D. Monroe
- Department of Chemistry and BiochemistryJames Madison UniversityHarrisonburgVirginiaUSA
- Department of BiologyJames Madison UniversityHarrisonburgVirginiaUSA
| |
Collapse
|
2
|
Kodikara IK, Pflum MKH. Scaffolding Activities of Pseudodeacetylase HDAC7. ACS Chem Biol 2025; 20:248-258. [PMID: 39908122 PMCID: PMC12051139 DOI: 10.1021/acschembio.4c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Histone deacetylase (HDAC) enzymes remove acetyl groups from acetyllysine-containing proteins, including nucleosomal histones to control gene expression. Beyond fundamental cell biology, HDAC activity is linked to various cancers, with many HDAC inhibitors developed as anticancer therapeutics. Among the 11 metal-dependent HDAC proteins, the four class IIa isoforms (HDAC4, 5, 7, and 9) are "pseudodeacetylases" without measurable enzymatic activity due to mutation of a catalytic tyrosine. Deacetylase-related activities of class IIa HDAC proteins are attributed to scaffolding functions, where recruitment of an active HDAC isoform leads to bound substrate deacetylation. Scaffolding of class IIa proteins beyond simple recruitment of an active HDAC is only starting to emerge. This review explores the various scaffolding roles of HDAC7, including recently reported acetylation-mediated reversible scaffolding, which is a form of acetyllysine-binding reader function. Studying the functional roles of HDAC7 will provide molecular insight into normal and pathological conditions, which could facilitate drug design.
Collapse
Affiliation(s)
- Ishadi K.M. Kodikara
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| | - Mary Kay H. Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| |
Collapse
|
3
|
Barcytė D, Jaške K, Pánek T, Yurchenko T, Ševčíková T, Eliášová A, Eliáš M. A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology. Open Biol 2024; 14:240022. [PMID: 39474867 PMCID: PMC11528492 DOI: 10.1098/rsob.240022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/22/2024] [Accepted: 09/02/2024] [Indexed: 11/03/2024] Open
Abstract
Complete plastid loss seems to be very rare among secondarily non-photosynthetic eukaryotes. Leukarachnion sp. PRA-24, an amoeboid colourless protist related to the photosynthetic algal class Synchromophyceae (Ochrophyta), is a candidate for such a case based on a previous investigation by transmission electron microscopy. Here, we characterize this organism in further detail and describe it as Leucomyxa plasmidifera gen. et sp. nov., additionally demonstrating it is the first known representative of a broader clade of non-photosynthetic ochrophytes. We recovered its complete plastid genome, exhibiting a reduced gene set similar to plastomes of other non-photosynthetic ochrophytes, yet being even more extreme in sequence divergence. Identification of components of the plastid protein import machinery in the L. plasmidifera transcriptome assembly corroborated that the organism possesses a cryptic plastid organelle. According to our bioinformatic reconstruction, the plastid contains a unique combination of biosynthetic pathways producing haem, a folate precursor and tocotrienols. As another twist to its organellar biology, L. plasmidifera turned out to contain an unusual long insertion in its mitogenome related to a newly discovered mitochondrial plasmid exhibiting unprecedented features in terms of its size and coding capacity. Combined, our work uncovered further striking outcomes of the evolutionary course of semiautonomous organelles in protists.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Karin Jaške
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2,128 43, Czech Republic
| | - Tatiana Yurchenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Tereza Ševčíková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Anežka Eliášová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| |
Collapse
|
4
|
Sung AY, Guerra RM, Steenberge LH, Alston CL, Murayama K, Okazaki Y, Shimura M, Prokisch H, Ghezzi D, Torraco A, Carrozzo R, Rötig A, Taylor RW, Keck JL, Pagliarini DJ. Systematic analysis of NDUFAF6 in complex I assembly and mitochondrial disease. Nat Metab 2024; 6:1128-1142. [PMID: 38720117 PMCID: PMC11395703 DOI: 10.1038/s42255-024-01039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/28/2024] [Indexed: 06/27/2024]
Abstract
Isolated complex I (CI) deficiencies are a major cause of primary mitochondrial disease. A substantial proportion of CI deficiencies are believed to arise from defects in CI assembly factors (CIAFs) that are not part of the CI holoenzyme. The biochemistry of these CIAFs is poorly defined, making their role in CI assembly unclear, and confounding interpretation of potential disease-causing genetic variants. To address these challenges, we devised a deep mutational scanning approach to systematically assess the function of thousands of NDUFAF6 genetic variants. Guided by these data, biochemical analyses and cross-linking mass spectrometry, we discovered that the CIAF NDUFAF6 facilitates incorporation of NDUFS8 into CI and reveal that NDUFS8 overexpression rectifies NDUFAF6 deficiency. Our data further provide experimental support of pathogenicity for seven novel NDUFAF6 variants associated with human pathology and introduce functional evidence for over 5,000 additional variants. Overall, our work defines the molecular function of NDUFAF6 and provides a clinical resource for aiding diagnosis of NDUFAF6-related diseases.
Collapse
Affiliation(s)
- Andrew Y Sung
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rachel M Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Laura H Steenberge
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Charlotte L Alston
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masaru Shimura
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Daniele Ghezzi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Torraco
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rosalba Carrozzo
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Agnès Rötig
- Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Robert W Taylor
- Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Jeffery CJ. Current successes and remaining challenges in protein function prediction. FRONTIERS IN BIOINFORMATICS 2023; 3:1222182. [PMID: 37576715 PMCID: PMC10415035 DOI: 10.3389/fbinf.2023.1222182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
In recent years, improvements in protein function prediction methods have led to increased success in annotating protein sequences. However, the functions of over 30% of protein-coding genes remain unknown for many sequenced genomes. Protein functions vary widely, from catalyzing chemical reactions to binding DNA or RNA or forming structures in the cell, and some types of functions are challenging to predict due to the physical features associated with those functions. Other complications in understanding protein functions arise due to the fact that many proteins have more than one function or very small differences in sequence or structure that correspond to different functions. We will discuss some of the recent developments in predicting protein functions and some of the remaining challenges.
Collapse
Affiliation(s)
- Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Yao S, Liu Y, Zhuang J, Zhao Y, Dai X, Jiang C, Wang Z, Jiang X, Zhang S, Qian Y, Tai Y, Wang Y, Wang H, Xie D, Gao L, Xia T. Insights into acylation mechanisms: co-expression of serine carboxypeptidase-like acyltransferases and their non-catalytic companion paralogs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:117-133. [PMID: 35437852 PMCID: PMC9541279 DOI: 10.1111/tpj.15782] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/12/2022] [Indexed: 05/18/2023]
Abstract
Serine carboxypeptidase-like acyltransferases (SCPL-ATs) play a vital role in the diversification of plant metabolites. Galloylated flavan-3-ols highly accumulate in tea (Camellia sinensis), grape (Vitis vinifera), and persimmon (Diospyros kaki). To date, the biosynthetic mechanism of these compounds remains unknown. Herein, we report that two SCPL-AT paralogs are involved in galloylation of flavan-3-ols: CsSCPL4, which contains the conserved catalytic triad S-D-H, and CsSCPL5, which has the alternative triad T-D-Y. Integrated data from transgenic plants, recombinant enzymes, and gene mutations showed that CsSCPL4 is a catalytic acyltransferase, while CsSCPL5 is a non-catalytic companion paralog (NCCP). Co-expression of CsSCPL4 and CsSCPL5 is likely responsible for the galloylation. Furthermore, pull-down and co-immunoprecipitation assays showed that CsSCPL4 and CsSCPL5 interact, increasing protein stability and promoting post-translational processing. Moreover, phylogenetic analyses revealed that their homologs co-exist in galloylated flavan-3-ol- or hydrolyzable tannin-rich plant species. Enzymatic assays further revealed the necessity of co-expression of those homologs for acyltransferase activity. Evolution analysis revealed that the mutations of the CsSCPL5 catalytic residues may have taken place about 10 million years ago. These findings show that the co-expression of SCPL-ATs and their NCCPs contributes to the acylation of flavan-3-ols in the plant kingdom.
Collapse
Affiliation(s)
- Shengbo Yao
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Yajun Liu
- School of Life ScienceAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Juhua Zhuang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Yue Zhao
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Xinlong Dai
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Changjuan Jiang
- School of Life ScienceAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Zhihui Wang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Shuxiang Zhang
- School of Life ScienceAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Yumei Qian
- School of Biological and Food EngineeringSuzhou UniversitySuzhou234000AnhuiChina
| | - Yuling Tai
- School of Life ScienceAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Yunsheng Wang
- School of Life ScienceAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Haiyan Wang
- School of Life ScienceAnhui Agricultural UniversityHefei230036AnhuiChina
| | - De‐Yu Xie
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Liping Gao
- School of Life ScienceAnhui Agricultural UniversityHefei230036AnhuiChina
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefei230036AnhuiChina
| |
Collapse
|
7
|
Ballou ER, Cook AG, Wallace EWJ. Repeated Evolution of Inactive Pseudonucleases in a Fungal Branch of the Dis3/RNase II Family of Nucleases. Mol Biol Evol 2021; 38:1837-1846. [PMID: 33313834 PMCID: PMC8097288 DOI: 10.1093/molbev/msaa324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The RNase II family of 3'-5' exoribonucleases is present in all domains of life, and eukaryotic family members Dis3 and Dis3L2 play essential roles in RNA degradation. Ascomycete yeasts contain both Dis3 and inactive RNase II-like "pseudonucleases." The latter function as RNA-binding proteins that affect cell growth, cytokinesis, and fungal pathogenicity. However, the evolutionary origins of these pseudonucleases are unknown: What sequence of events led to their novel function, and when did these events occur? Here, we show how RNase II pseudonuclease homologs, including Saccharomyces cerevisiae Ssd1, are descended from active Dis3L2 enzymes. During fungal evolution, active site mutations in Dis3L2 homologs have arisen at least four times, in some cases following gene duplication. In contrast, N-terminal cold-shock domains and regulatory features are conserved across diverse dikarya and mucoromycota, suggesting that the nonnuclease function requires these regions. In the basidiomycete pathogenic yeast Cryptococcus neoformans, the single Ssd1/Dis3L2 homolog is required for cytokinesis from polyploid "titan" growth stages. This phenotype of C. neoformans Ssd1/Dis3L2 deletion is consistent with those of inactive fungal pseudonucleases, yet the protein retains an active site sequence signature. We propose that a nuclease-independent function for Dis3L2 arose in an ancestral hyphae-forming fungus. This second function has been conserved across hundreds of millions of years, whereas the RNase activity was lost repeatedly in independent lineages.
Collapse
Affiliation(s)
- Elizabeth R Ballou
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Edward W J Wallace
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Cruz-González A, Muñoz-Velasco I, Cottom-Salas W, Becerra A, Campillo-Balderas JA, Hernández-Morales R, Vázquez-Salazar A, Jácome R, Lazcano A. Structural analysis of viral ExoN domains reveals polyphyletic hijacking events. PLoS One 2021; 16:e0246981. [PMID: 33730017 PMCID: PMC7968707 DOI: 10.1371/journal.pone.0246981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Nidoviruses and arenaviruses are the only known RNA viruses encoding a 3’-5’ exonuclease domain (ExoN). The proofreading activity of the ExoN domain has played a key role in the growth of nidoviral genomes, while in arenaviruses this domain partakes in the suppression of the host innate immune signaling. Sequence and structural homology analyses suggest that these proteins have been hijacked from cellular hosts many times. Analysis of the available nidoviral ExoN sequences reveals a high conservation level comparable to that of the viral RNA-dependent RNA polymerases (RdRp), which are the most conserved viral proteins. Two highly preserved zinc fingers are present in all nidoviral exonucleases, while in the arenaviral protein only one zinc finger can be identified. This is in sharp contrast with the reported lack of zinc fingers in cellular ExoNs, and opens the possibility of therapeutic strategies in the struggle against COVID-19.
Collapse
Affiliation(s)
- Adrián Cruz-González
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Israel Muñoz-Velasco
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Wolfgang Cottom-Salas
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
- Escuela Nacional Preparatoria, Plantel 8 Miguel E. Schulz, Universidad Nacional Autónoma de México, México City, México
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | | | | | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, United States of America
| | - Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
- * E-mail: (AL); (RJ)
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
- El Colegio Nacional, México City, México
- * E-mail: (AL); (RJ)
| |
Collapse
|
9
|
Abstract
Drug metabolizing enzymes catalyze the biotransformation of many of drugs and chemicals. The drug metabolizing enzymes are distributed among several evolutionary families and catalyze a range of detoxication reactions, including oxidation/reduction, conjugative, and hydrolytic reactions that serve to detoxify potentially toxic compounds. This detoxication function requires that drug metabolizing enzymes exhibit substrate promiscuity. In addition to their catalytic functions, many drug metabolizing enzymes possess functions unrelated to or in addition to catalysis. Such proteins are termed 'moonlighting proteins' and are defined as proteins with multiple biochemical or biophysical functions that reside in a single protein. This review discusses the diverse moonlighting functions of drug metabolizing enzymes and the roles they play in physiological functions relating to reproduction, vision, cell signaling, cancer, and transport. Further research will likely reveal new examples of moonlighting functions of drug metabolizing enzymes.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, ANU College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, NY, USA
| |
Collapse
|
10
|
Liu H, Jeffery CJ. Moonlighting Proteins in the Fuzzy Logic of Cellular Metabolism. Molecules 2020; 25:molecules25153440. [PMID: 32751110 PMCID: PMC7435893 DOI: 10.3390/molecules25153440] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
The numerous interconnected biochemical pathways that make up the metabolism of a living cell comprise a fuzzy logic system because of its high level of complexity and our inability to fully understand, predict, and model the many activities, how they interact, and their regulation. Each cell contains thousands of proteins with changing levels of expression, levels of activity, and patterns of interactions. Adding more layers of complexity is the number of proteins that have multiple functions. Moonlighting proteins include a wide variety of proteins where two or more functions are performed by one polypeptide chain. In this article, we discuss examples of proteins with variable functions that contribute to the fuzziness of cellular metabolism.
Collapse
Affiliation(s)
- Haipeng Liu
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA;
| | - Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
- Correspondence: ; Tel.: +1-312-996-3168
| |
Collapse
|
11
|
Paul A, Srinivasan N. Genome-wide and structural analyses of pseudokinases encoded in the genome of Arabidopsis thaliana provide functional insights. Proteins 2020; 88:1620-1638. [PMID: 32667690 DOI: 10.1002/prot.25981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/26/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022]
Abstract
Protein Kinase-Like Non-Kinases (PKLNKs), commonly known as "pseudokinases", are homologous to eukaryotic Ser/Thr/Tyr protein kinases (PKs) but lack the crucial aspartate residue in the catalytic loop, indispensable for phosphotransferase activity. Therefore, they are predicted to be "catalytically inactive" enzyme homologs. Analysis of protein-kinase like sequences from Arabidopsis thaliana led to the identification of more than 120 pseudokinases lacking catalytic aspartate, majority of which are closely related to the plant-specific receptor-like kinase family. These pseudokinases engage in different biological processes, enabled by their diverse domain architectures and specific subcellular localizations. Structural comparison of pseudokinases with active and inactive conformations of canonical PKs, belonging to both plant and animal origin, revealed unique structural differences. The currently available crystal structures of pseudokinases show that the loop topologically equivalent to activation segment of PKs adopts a distinct-folded conformation, packing against the pseudoenzyme core, in contrast to the extended and inhibitory geometries observed for active and inactive states, respectively, of catalytic PKs. Salt-bridge between ATP-binding Lys and DFG-Asp as well as hydrophobic interactions between the conserved nonpolar residue C-terminal to the equivalent DFG motif and nonpolar residues in C-helix mediate such a conformation in pseudokinases. This results in enhanced solvent accessibility of the pseudocatalytic loop in pseudokinases that can possibly serve as an interacting surface while associating with other proteins. Specifically, our analysis identified several residues that may be involved in pseudokinase regulation and hints at the repurposing of pseudocatalytic residues to achieve mechanistic control over noncatalytic functions of pseudoenzymes.
Collapse
Affiliation(s)
- Anindita Paul
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
12
|
Jeffery CJ. Enzymes, pseudoenzymes, and moonlighting proteins: diversity of function in protein superfamilies. FEBS J 2020; 287:4141-4149. [PMID: 32534477 DOI: 10.1111/febs.15446] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/20/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022]
Abstract
As more genome sequences are elucidated, there is an increasing need for information about the functions of the millions of proteins they encode. The function of a newly sequenced protein is often estimated by sequence alignment with the sequences of proteins with known functions. However, protein superfamilies can contain members that share significant amino acid sequence and structural homology yet catalyze different reactions or act on different substrates. Some homologous proteins differ by having a second or even third function, called moonlighting proteins. More recently, it was found that most protein superfamilies also include pseudoenzymes, a protein, or a domain within a protein, that has a three-dimensional fold that resembles a conventional catalytically active enzyme, but has no catalytic activity. In this review, we discuss several examples of protein families that contain enzymes, pseudoenzymes, and moonlighting proteins. It is becoming clear that pseudoenzymes and moonlighting proteins are widespread in the evolutionary tree, and in many protein families, and they are often very similar in sequence and structure to their monofunctional and catalytically active counterparts. A greater understanding is needed to clarify when similarities and differences in amino acid sequences and structures correspond to similarities and differences in biochemical functions and cellular roles. This information can help improve programs that identify protein functions from sequence or structure and assist in more accurate annotation of sequence and structural databases, as well as in our understanding of the broad diversity of protein functions.
Collapse
Affiliation(s)
- Constance J Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, IL, USA
| |
Collapse
|
13
|
Smyth P, Sessler T, Scott CJ, Longley DB. FLIP(L): the pseudo-caspase. FEBS J 2020; 287:4246-4260. [PMID: 32096279 PMCID: PMC7586951 DOI: 10.1111/febs.15260] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
Possessing structural homology with their active enzyme counterparts but lacking catalytic activity, pseudoenzymes have been identified for all major enzyme groups. Caspases are a family of cysteine‐dependent aspartate‐directed proteases that play essential roles in regulating cell death and inflammation. Here, we discuss the only human pseudo‐caspase, FLIP(L), a paralog of the apoptosis‐initiating caspases, caspase‐8 and caspase‐10. FLIP(L) has been shown to play a key role in regulating the processing and activity of caspase‐8, thereby modulating apoptotic signaling mediated by death receptors (such as TRAIL‐R1/R2), TNF receptor‐1 (TNFR1), and Toll‐like receptors. In this review, these canonical roles of FLIP(L) are discussed. Additionally, a range of nonclassical pseudoenzyme roles are described, in which FLIP(L) functions independently of caspase‐8. These nonclassical pseudoenzyme functions enable FLIP(L) to play key roles in the regulation of a wide range of biological processes beyond its canonical roles as a modulator of cell death.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Tamas Sessler
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Daniel B Longley
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| |
Collapse
|
14
|
Ribeiro AJM, Tyzack JD, Borkakoti N, Thornton JM. Identifying pseudoenzymes using functional annotation: pitfalls of common practice. FEBS J 2019; 287:4128-4140. [PMID: 31733177 DOI: 10.1111/febs.15142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
Pseudoenzymes are proteins that are evolutionary related to enzymes but lack relevant catalytic activity. They are usually evolved from enzymatic ancestors that have lost their catalytic activities. The loss of catalytic function is one extreme amongst the other evolutionary changes that can occur to enzymes, like the changing of substrate specificity or the reaction catalysed. However, the loss of catalytic function events remain poorly characterised, except for some notable examples, like the pseudokinases. In this review, we aim to analyse current knowledge related to pseudoenzymes across a large number of enzymes families. This aims to be a review of the data available in biological databases, rather than a more traditional literature review. In particular, we use UniProtKB as the source for functional annotation and M-CSA (Mechanism and Catalytic Site Atlas) for information on the catalytic residues of enzymes. We show that explicit annotation of lack of activity is not exhaustive in UniProtKB and that a protocol using lack of catalytic annotation as an indication for lack of function can be an adequate alternative, after some corrections. After identifying pseudoenzymes related to enzymes in M-CSA, we were able to comment on their prevalence across enzyme families, and on the correlation between lack of catalytic function and the mutation of catalytic residues. These analyses challenge two common ideas in the emerging literature: that pseudoenzymes are ubiquitous across enzyme families and that mutations in the catalytic residues of enzyme homologues are always a good indication of lack of activity.
Collapse
Affiliation(s)
- Antonio J M Ribeiro
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Jonathan D Tyzack
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Neera Borkakoti
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Janet M Thornton
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK
| |
Collapse
|
15
|
Voss M, Toelzer C, Bhandari DD, Parker JE, Niefind K. Arabidopsis immunity regulator EDS1 in a PAD4/SAG101-unbound form is a monomer with an inherently inactive conformation. J Struct Biol 2019; 208:107390. [PMID: 31550533 DOI: 10.1016/j.jsb.2019.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022]
Abstract
In plant innate immunity, enhanced disease susceptibility 1 (EDS1) integrates all pathogen-induced signals transmitted by TIR-type NLR receptors. Driven by an N-terminal α/β-hydrolase-fold domain with a protruding interaction helix, EDS1 assembles with two homologs, phytoalexin-deficient 4 (PAD4) and senescence-associated gene 101 (SAG101). The resulting heterodimers are critical for EDS1 function and structurally well characterized. Here, we resolve solution and crystal structures of unbound Arabidopsis thaliana EDS1 (AtEDS1) using nanobodies for crystallization. These structures, together with gel filtration and immunoprecipitation data, show that PAD4/SAG101-unbound AtEDS1 is stable as a monomer and does not form the homodimers recorded in public databases. Its PAD4/SAG101 anchoring helix is disordered unless engaged in protein/protein interactions. As in the complex with SAG101, monomeric AtEDS1 has a substrate-inaccessible esterase triad with a blocked oxyanion hole and without space for a covalent acyl intermediate. These new structures suggest that the AtEDS1 monomer represents an inactive or pre-activated ground state.
Collapse
Affiliation(s)
- Martin Voss
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Zülpicher Str. 47, D-50674 Cologne, Germany
| | - Christine Toelzer
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Zülpicher Str. 47, D-50674 Cologne, Germany
| | - Deepak D Bhandari
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Karsten Niefind
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Zülpicher Str. 47, D-50674 Cologne, Germany.
| |
Collapse
|
16
|
New insights into the evolutionary conservation of the sole PIKK pseudokinase Tra1/TRRAP. Biochem Soc Trans 2019; 47:1597-1608. [DOI: 10.1042/bst20180496] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/25/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Phosphorylation by protein kinases is a fundamental mechanism of signal transduction. Many kinase families contain one or several members that, although evolutionarily conserved, lack the residues required for catalytic activity. Studies combining structural, biochemical, and functional approaches revealed that these pseudokinases have crucial roles in vivo and may even represent attractive targets for pharmacological intervention. Pseudokinases mediate signal transduction by a diversity of mechanisms, including allosteric regulation of their active counterparts, assembly of signaling hubs, or modulation of protein localization. One such pseudokinase, named Tra1 in yeast and transformation/transcription domain-associated protein (TRRAP) in mammals, is the only member lacking all catalytic residues within the phosphatidylinositol 3-kinase related kinase (PIKK) family of kinases. PIKKs are related to the PI3K family of lipid kinases, but function as Serine/Threonine protein kinases and have pivotal roles in diverse processes such as DNA damage sensing and repair, metabolic control of cell growth, nonsense-mediated decay, or transcription initiation. Tra1/TRRAP is the largest subunit of two distinct transcriptional co-activator complexes, SAGA and NuA4/TIP60, which it recruits to promoters upon transcription factor binding. Here, we review our current knowledge on the Tra1/TRRAP pseudokinase, focusing on its role as a scaffold for SAGA and NuA4/TIP60 complex assembly and recruitment to chromatin. We further discuss its evolutionary history within the PIKK family and highlight recent findings that reveal the importance of molecular chaperones in pseudokinase folding, function, and conservation.
Collapse
|
17
|
Dell'Aglio E, Dalvit I, Loubéry S, Fitzpatrick TB. Clarification of the dispensability of PDX1.2 for Arabidopsis viability using CRISPR/Cas9. BMC PLANT BIOLOGY 2019; 19:464. [PMID: 31684863 PMCID: PMC6829848 DOI: 10.1186/s12870-019-2071-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/09/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND PDX1.2 has recently been shown to be a regulator of vitamin B6 biosynthesis in plants and is implicated in biotic and abiotic stress resistance. PDX1.2 expression is strongly and rapidly induced by heat stress. Interestingly, PDX1.2 is restricted to eudicota, wherein it behaves as a non-catalytic pseudoenzyme and is suggested to provide an adaptive advantage to this clade. A first report on an Arabidopsis insertion mutant claims that PDX1.2 is indispensable for viability, being essential for embryogenesis. However, a later study using an independent insertion allele suggests that knockout mutants of pdx1.2 are viable. Therefore, the essentiality of PDX1.2 for Arabidopsis viability is a matter of debate. Given the important implications of PDX1.2 in stress responses, it is imperative to clarify if it is essential for plant viability. RESULTS We have studied the previously reported insertion alleles of PDX1.2, one of which is claimed to be essential for embryogenesis (pdx1.2-1), whereas the other is viable (pdx1.2-2). Our study shows that pdx1.2-1 carries multiple T-DNA insertions, but the T-DNA insertion in PDX1.2 is not responsible for the loss of embryogenesis. By contrast, the pdx1.2-2 allele is an overexpressor of PDX1.2 under standard growth conditions and not a null allele as previously reported. Nonetheless, upregulation of PDX1.2 expression under heat stress is impaired in this mutant line. In wild type Arabidopsis, studies of PDX1.2-YFP fusion proteins show that the protein is enhanced under heat stress conditions. To clarify if PDX1.2 is essential for Arabidopsis viability, we generated several independent mutant lines using the CRISPR-Cas9 gene editing technology. All of these lines are viable and behave similar to wild type under standard growth conditions. Reciprocal crosses of a subset of the CRISPR lines with pdx1.2-1 recovers viability of the latter line and demonstrates that knocking out the functionality of PDX1.2 does not impair embryogenesis. CONCLUSIONS Gene editing reveals that PDX1.2 is dispensable for Arabidopsis viability and resolves conflicting reports in the literature on its function.
Collapse
Affiliation(s)
- Elisa Dell'Aglio
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
- Present Address: Biologie Fonctionnelle, Insectes et Interactions, Institut National des Sciences Appliquées de Lyon, Institut National de la Recherche Agronomique, University of Lyon, F-69621, Villeurbanne, France
| | - Ivan Dalvit
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Sylvain Loubéry
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
18
|
Pseudokinases: From Allosteric Regulation of Catalytic Domains and the Formation of Macromolecular Assemblies to Emerging Drug Targets. Catalysts 2019. [DOI: 10.3390/catal9090778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pseudokinases are a member of the kinase superfamily that lack one or more of the canonical residues required for catalysis. Protein pseudokinases are widely distributed across species and are present in proteins that perform a great diversity of roles in the cell. They represent approximately 10% to 40% of the kinome of a multicellular organism. In the human, the pseudokinase subfamily consists of approximately 60 unique proteins. Despite their lack of one or more of the amino acid residues typically required for the productive interaction with ATP and metal ions, which is essential for the phosphorylation of specific substrates, pseudokinases are important functional molecules that can act as dynamic scaffolds, competitors, or modulators of protein–protein interactions. Indeed, pseudokinase misfunctions occur in diverse diseases and represent a new therapeutic window for the development of innovative therapeutic approaches. In this contribution, we describe the structural features of pseudokinases that are used as the basis of their classification; analyse the interactome space of human pseudokinases and discuss their potential as suitable drug targets for the treatment of various diseases, including metabolic, neurological, autoimmune, and cell proliferation disorders.
Collapse
|
19
|
Ribeiro AJM, Das S, Dawson N, Zaru R, Orchard S, Thornton JM, Orengo C, Zeqiraj E, Murphy JM, Eyers PA. Emerging concepts in pseudoenzyme classification, evolution, and signaling. Sci Signal 2019; 12:eaat9797. [PMID: 31409758 DOI: 10.1126/scisignal.aat9797] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 21st century is witnessing an explosive surge in our understanding of pseudoenzyme-driven regulatory mechanisms in biology. Pseudoenzymes are proteins that have sequence homology with enzyme families but that are proven or predicted to lack enzyme activity due to mutations in otherwise conserved catalytic amino acids. The best-studied pseudoenzymes are pseudokinases, although examples from other families are emerging at a rapid rate as experimental approaches catch up with an avalanche of freely available informatics data. Kingdom-wide analysis in prokaryotes, archaea and eukaryotes reveals that between 5 and 10% of proteins that make up enzyme families are pseudoenzymes, with notable expansions and contractions seemingly associated with specific signaling niches. Pseudoenzymes can allosterically activate canonical enzymes, act as scaffolds to control assembly of signaling complexes and their localization, serve as molecular switches, or regulate signaling networks through substrate or enzyme sequestration. Molecular analysis of pseudoenzymes is rapidly advancing knowledge of how they perform noncatalytic functions and is enabling the discovery of unexpected, and previously unappreciated, functions of their intensively studied enzyme counterparts. Notably, upon further examination, some pseudoenzymes have previously unknown enzymatic activities that could not have been predicted a priori. Pseudoenzymes can be targeted and manipulated by small molecules and therefore represent new therapeutic targets (or anti-targets, where intervention should be avoided) in various diseases. In this review, which brings together broad bioinformatics and cell signaling approaches in the field, we highlight a selection of findings relevant to a contemporary understanding of pseudoenzyme-based biology.
Collapse
Affiliation(s)
- António J M Ribeiro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sayoni Das
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Natalie Dawson
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rossana Zaru
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Christine Orengo
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, Molecular and Cellular Biology, Faculty of Biological Sciences, Astbury Building, Room 8.109, University of Leeds, Leeds LS2 9JT, UK
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|