1
|
Włoch A, Sengupta P, Szulc N, Kral T, Pawlak A, Henklewska M, Pruchnik H, Sykora J, Hof M, Gładkowski W. Biophysical and molecular interactions of enantiomeric piperonal-derived trans β-aryl-δ-iodo-γ-lactones with cancer cell membranes, protein and DNA: Implications for anticancer activity. Int J Biol Macromol 2025; 303:140476. [PMID: 39900147 DOI: 10.1016/j.ijbiomac.2025.140476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
Developing novel anticancer agents requires understanding their interactions with biological systems at both the cellular and molecular levels. Enantiomeric lactones have demonstrated notable cytotoxic activities against various cancer cell lines. Building on this foundation, we investigated enantiomeric piperonal-derived trans-β-aryl-δ-iodo-γ-lactones ((-)-(4S,5R,6S) and (+)-(4R,5S,6R)), focusing on their impact on cancer cells membrane (Jurkat and GL-1), model membranes, and biomacromolecules such as human serum albumin (HSA) and DNA. Also, the cytotoxicity toward red blood cells and the antitumor activity of the compounds were evaluated against a set of canine lymphoma and/or leukemia cell lines. Membrane interaction studies revealed that both enantiomers interact with the hydrophobic core of lipid bilayers, enhancing lipid acyl chain packing, with the (-)-(4S,5R,6S) isomer showing a stronger impact on membrane fluidity. Comprehensive spectroscopic and theoretical studies revealed distinct stereochemical differences in binding affinities to HSA, where the (-)-(4S,5R,6S) isomer showed higher binding affinity and significant hydrophobic interactions. Detailed biological studies demonstrated that both enantiomers exhibit antiproliferative and proapoptotic activities, with the (-)-(4S,5R,6S) enantiomer showing higher activity. This study underscores the biological activity and interactions of enantiomeric iodolactones derived from piperonal with biomacromolecules, providing comprehensive insights into their biophysical behavior and potential anticancer properties.
Collapse
Affiliation(s)
- Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Priti Sengupta
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Natalia Szulc
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Teresa Kral
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 18223 Prague, Czech Republic
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Marta Henklewska
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Hanna Pruchnik
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Jan Sykora
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 18223 Prague, Czech Republic
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejskova 3, 18223 Prague, Czech Republic
| | - Witold Gładkowski
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
2
|
Zhang Q, Choi K, Wang X, Xi L, Lu S. The Contribution of Human Antimicrobial Peptides to Fungi. Int J Mol Sci 2025; 26:2494. [PMID: 40141139 PMCID: PMC11941821 DOI: 10.3390/ijms26062494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Various species of fungi can be detected in the environment and within the human body, many of which may become pathogenic under specific conditions, leading to various forms of fungal infections. Antimicrobial peptides (AMPs) are evolutionarily ancient components of the immune response that are quickly induced in response to infections with many pathogens in almost all tissues. There is a wide range of AMP classes in humans, many of which exhibit broad-spectrum antimicrobial function. This review provides a comprehensive overview of the mechanisms of action of AMPs, their distribution in the human body, and their antifungal activity against a range of both common and rare clinical fungal pathogens. It also discusses the current research status of promising novel antifungal strategies, highlighting the challenges that must be overcome in the development of these therapies. The hope is that antimicrobial peptides, as a class of antimicrobial agents, will soon progress through large-scale clinical trials and be implemented in clinical practice, offering new treatment options for patients suffering from infections.
Collapse
Affiliation(s)
| | | | | | | | - Sha Lu
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, #107 Yanjiang West Rd., Guangzhou 510120, China; (Q.Z.); (K.C.); (X.W.); (L.X.)
| |
Collapse
|
3
|
Kharrat O, Yamaryo-Botté Y, Nasreddine R, Voisin S, Aumer T, Cammue BPA, Madinier JB, Knobloch T, Thevissen K, Nehmé R, Aucagne V, Botté C, Bulet P, Landon C. The antimicrobial activity of ETD151 defensin is dictated by the presence of glycosphingolipids in the targeted organisms. Proc Natl Acad Sci U S A 2025; 122:e2415524122. [PMID: 39937853 PMCID: PMC11848316 DOI: 10.1073/pnas.2415524122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/08/2025] [Indexed: 02/14/2025] Open
Abstract
Fungal infections represent a significant global health concern, with a growing prevalence of antifungal drug resistance. Targeting glucosylceramides (GlcCer), which are functionally important glycosphingolipids (GSL) present in fungal membranes, represents a promising strategy for the development of antifungal drugs. GlcCer are associated with the antifungal activity of certain plant and insect defensins. The 44-residue ETD151 peptide, optimized from butterfly defensins, is active against several fungal pathogens. ETD151 has been shown to induce a multifaceted mechanism of action (MOA) in Botrytis cinerea, a multiresistant phytopathogenic fungus. However, the target has yet to be identified. Our findings demonstrate that the presence of GlcCer in membranes determines the susceptibility of Pichia pastoris and Candida albicans toward ETD151. To ascertain whether this is due to direct molecular recognition, we demonstrate that ETD151 selectively recognizes liposomes containing GlcCer from B. cinerea, which reveals a methylated-sphingoid base structure. The dissociation constant was estimated by microscale thermophoresis to be in the µM range. Finally, fluorescence microscopy revealed that ETD151 localizes preferentially at the surface of B. cinerea. Furthermore, the majority of prokaryotic cells do not contain GSL, which explains their resistance to ETD151. We investigated the susceptibility of Novosphingobium capsulatum, one of the rare GSL-containing bacteria, to ETD151. ETD151 demonstrated transient morphological changes and inhibitory growth activity (IC50 ~75 µM) with an affinity for the cell surface, emphasizing the critical importance of GSL as target. Understanding the MOA of ETD151 could pave the way for new perspectives in human health and crop protection.
Collapse
Affiliation(s)
- Ons Kharrat
- Centre for Molecular Biophysics, CNRS, Orléans45071, France
| | - Yoshiki Yamaryo-Botté
- Institute for Advanced Biosciences, University of Grenoble Alpes, Grenoble38700, France
| | - Rouba Nasreddine
- Institute of Organic and Analytical Chemistry, University of Orléans, CNRS, Orléans45069, France
| | | | - Thomas Aumer
- Plateform BioPark Archamps, Archamps74160, France
- Bayer CropScience, Lyon69263, France
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven3001, Belgium
| | | | | | - Karin Thevissen
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven3001, Belgium
| | - Reine Nehmé
- Institute of Organic and Analytical Chemistry, University of Orléans, CNRS, Orléans45069, France
| | | | - Cyrille Botté
- Institute for Advanced Biosciences, University of Grenoble Alpes, Grenoble38700, France
| | - Philippe Bulet
- Institute for Advanced Biosciences, University of Grenoble Alpes, Grenoble38700, France
- Plateform BioPark Archamps, Archamps74160, France
| | - Céline Landon
- Centre for Molecular Biophysics, CNRS, Orléans45071, France
| |
Collapse
|
4
|
de Oliveira SSS, Cherene MB, Taveira GB, de Oliveira Mello É, de Oliveira Carvalho A, Gomes VM. Plant Antimicrobial Peptides and Their Main Families and Roles: A Review of the Literature. Curr Issues Mol Biol 2024; 47:1. [PMID: 39852116 PMCID: PMC11840293 DOI: 10.3390/cimb47010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
Antimicrobial peptides (AMPs) are constituent molecules of the innate defense system and are naturally produced by all organisms. AMPs are characterized by a relatively low molecular weight (less than 10 kDa) and a variable number of cysteine residues that form disulfide bonds and contribute to the stabilization of the tertiary structure. In addition, there is a wide repertoire of antimicrobial agents against bacteria, viruses, fungi, and protozoa that can provide a large number of prototype peptides for study and biochemical manipulation. In this sense, plant AMPs stand out because they have a wide range of biological functions against microorganisms and potential applications in medicine and agriculture. Herein, we describe a mini-review of the principal AMP families, such as defensins, lipid transfer proteins (LTPs), thionins, heveins, and cyclotides. The objective of this work was to present the main discoveries regarding the biological activities of these plant AMP families, especially in the last 20 years. We also discuss the current knowledge of their biological activities, gene expression, and possible uses as antimicrobial molecules and in plant biotechnology.
Collapse
Affiliation(s)
| | | | | | | | | | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro 28013-602, Brazil; (S.S.S.d.O.); (M.B.C.); (G.B.T.); (É.d.O.M.); (A.d.O.C.)
| |
Collapse
|
5
|
Kuratani Y, Abematsu C, Ekino K, Oka T, Shin M, Iwata M, Ohta H, Ando S. Cylindracin, a Cys-rich protein expressed in the fruiting body of Cyclocybe cylindracea, inhibits growth of filamentous fungi but not yeasts or bacteria. FEBS Open Bio 2024; 14:1805-1824. [PMID: 39380157 PMCID: PMC11532979 DOI: 10.1002/2211-5463.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Mushrooms are the fruiting bodies of fungi and are important reproductive structures that produce and disseminate spores. The Pri3 gene was originally reported to be specifically expressed in the primordia (a precursor to the mature fruiting body) of the edible mushroom Cyclocybe aegerita. Here, we cloned a Pri3-related cDNA from Cyclocybe cylindracea, another species in the same genus, and showed that the gene is specifically expressed at the pileus surface of the immature fruiting body but not in the primordia. Immunohistochemistry showed that the translated protein is secreted into a polysaccharide layer of the pileus surface. The recombinant C-terminal Cys-rich domain of the protein showed antifungal activity against three filamentous fungi and inhibited hyphal growth and conidiogenesis. These results suggest that the PRI3-related protein of C. cylindracea, named cylindracin, plays an important role in the defense against pathogens.
Collapse
Affiliation(s)
- Yamato Kuratani
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Chika Abematsu
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Keisuke Ekino
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Takuji Oka
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Masashi Shin
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | | | - Hiroto Ohta
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Shoji Ando
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| |
Collapse
|
6
|
Retzinger AC, Retzinger GS. The Acari Hypothesis, V: deciphering allergenicity. FRONTIERS IN ALLERGY 2024; 5:1454292. [PMID: 39552700 PMCID: PMC11565521 DOI: 10.3389/falgy.2024.1454292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
The Acari Hypothesis posits that acarians, i.e., mites and ticks, are operative agents of allergy. It derived from observations that allergens are molecular elements of acarians or acarian foodstuffs. A corollary of The Hypothesis provides how acarian dietary elements are selected as allergens; namely, a pattern recognition receptor native to the acarian digestive tract complexes with dietary molecules problematic to the acarian. By virtue of its interspecies operability, the receptor then enables not only removal of the dietary elements by the acarian immune system, but also-should such a complex be inoculated into a human-production of an element-specific IgE. Because pattern recognition receptors bind to molecules problematic to the organism from which the receptors originate, it follows that molecules targeted by adaptive IgE, i.e., allergens, must be problematic to acarians. This claim is supported by evidence that host organisms, when infested by acarians, upregulate representative members of allergenic molecular families. Appreciation of the relationship between allergens and acarians provides insight well beyond allergy, shedding light also on the anti-acarian defenses of many living things, especially humans.
Collapse
Affiliation(s)
- Andrew C. Retzinger
- Department of Emergency Medicine, Camden Clark Medical Center, West Virginia University, Parkersburg, WV, United States
| | - Gregory S. Retzinger
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
7
|
Yang X, Zhang H, Zuo Z, Qin C, Liu Y, Cao Z, Wu Y. Novel structural determinants and bacterial death-related regulatory effects of the scorpion defensin BmKDfsin4 against gram-positive bacteria. Int J Biol Macromol 2024; 282:137151. [PMID: 39488304 DOI: 10.1016/j.ijbiomac.2024.137151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Numerous defensins constitute a family of cationic antimicrobial peptides with high degrees of sequence variability, and in-depth characterization of their structural basis and antibacterial mechanisms remains limited. Here, a representative scorpion defensin, BmKDfsin4, with two distinct hydrophobic and basic residue clusters, was extensively investigated. The hydrophobic residue cluster, formed by Phe2, Pro5, Phe6, Phe28 and Leu29 residues, strongly influences the antibacterial activity of BmKDfsin4 against Gram-positive bacteria. Compared with the three scattered Lys13, Lys30 and Arg32 residues, the basic residue cluster, consisting of the Arg19, Arg20, Arg21 and Arg37 residues, played a less important role. The synergistic interaction between the basic residue cluster and Arg32 significantly affected BmKDfsin4 function. The bacterial growth inhibition by BmKDfsin4 was associated with regulating expression levels of cell division-related genes, cell wall synthesis-related genes and bacterial autolysis-related genes rather than destroying the bacterial cell membrane. The coincubation of BmKDfsin4 with the bacterial strains induced gradual changes in the bacterial surface from a rough and thin surface to a noticeably wrinkled surface together with abundant white spots and even complete cavities within the bacteria. These findings revealed novel structural determinants and bacterial death-related regulatory effects of the defensin BmKDfsin4 and highlighted diverse antibacterial mechanisms of defensins.
Collapse
Affiliation(s)
- Xuhua Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Haozhen Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zheng Zuo
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chenhu Qin
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Yishuo Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhijian Cao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Sabit H, Pawlik TM, Abdel-Ghany S, Arneth B. Defensins: Exploring Their Opposing Roles in Colorectal Cancer Progression. Cancers (Basel) 2024; 16:2622. [PMID: 39123348 PMCID: PMC11311076 DOI: 10.3390/cancers16152622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global healthcare burden, with a particularly concerning rising incidence among younger adults. This trend may highlight potential links between diet, gut microbiome, and CRC risk. Novel therapeutic options have been increasingly based on the understanding of molecular mechanisms and pathways. The PI3K/AKT/mTOR pathway, a crucial cell growth regulator, offers a promising target for CRC therapy. mTOR, a key component within this pathway, controls cell growth, survival, and metabolism. Understanding the specific roles of defensins, particularly human β-Defensin 1 (HBD-1), in CRC is crucial. HBD-1 exhibits potent antimicrobial activity and may influence CRC development. Deciphering defensin expression patterns in CRC holds the promise of improved understanding of tumorigenesis, which may pave the way for improved diagnostics and therapies. This article reviews recent advances in understanding regarding how HBD-1 influences CRC initiation and progression, highlighting the molecular mechanisms by which it impacts CRC. Further, we describe the interaction between defensins and mTOR pathway in CRC.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, 250 Cunz Hall, 1841 Neil Ave. Columbus, OH 43210, USA;
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
| |
Collapse
|
9
|
Andrés MT, Fierro P, Antuña V, Fierro JF. The Antimicrobial Activity of Human Defensins at Physiological Non-Permeabilizing Concentrations Is Caused by the Inhibition of the Plasma Membrane H +-ATPases. Int J Mol Sci 2024; 25:7335. [PMID: 39000442 PMCID: PMC11242853 DOI: 10.3390/ijms25137335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Human defensins are cysteine-rich peptides (Cys-rich peptides) of the innate immune system. Defensins contain an ancestral structural motif (i.e., γ-core motif) associated with the antimicrobial activity of natural Cys-rich peptides. In this study, low concentrations of human α- and β-defensins showed microbicidal activity that was not associated with cell membrane permeabilization. The cell death pathway was similar to that previously described for human lactoferrin, also an immunoprotein containing a γ-core motif. The common features were (1) cell death not related to plasma membrane (PM) disruption, (2) the inhibition of microbicidal activity via extracellular potassium, (3) the influence of cellular respiration on microbicidal activity, and (4) the influence of intracellular pH on bactericidal activity. In addition, in yeast, we also observed (1) partial K+-efflux mediated via Tok1p K+-channels, (2) the essential role of mitochondrial ATP synthase in cell death, (3) the increment of intracellular ATP, (4) plasma membrane depolarization, and (5) the inhibition of external acidification mediated via PM Pma1p H+-ATPase. Similar features were also observed with BM2, an antifungal peptide that inhibits Pma1p H+-ATPase, showing that the above coincident characteristics were a consequence of PM H+-ATPase inhibition. These findings suggest, for the first time, that human defensins inhibit PM H+-ATPases at physiological concentrations, and that the subsequent cytosolic acidification is responsible for the in vitro microbicidal activity. This mechanism of action is shared with human lactoferrin and probably other antimicrobial peptides containing γ-core motifs.
Collapse
Affiliation(s)
- María T. Andrés
- Laboratory of Oral Microbiology (LMO), University Clinic of Dentistry (CLUO), University of Oviedo, 33006 Oviedo, Asturias, Spain; (M.T.A.); (P.F.); (V.A.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- SamerLabs SL, Asturias Technology Park, 33428 Llanera, Spain
| | - Patricia Fierro
- Laboratory of Oral Microbiology (LMO), University Clinic of Dentistry (CLUO), University of Oviedo, 33006 Oviedo, Asturias, Spain; (M.T.A.); (P.F.); (V.A.)
- Primary Care Emergency Service, Cantabrian Health Service, 39000 Santander, Spain
| | - Victoria Antuña
- Laboratory of Oral Microbiology (LMO), University Clinic of Dentistry (CLUO), University of Oviedo, 33006 Oviedo, Asturias, Spain; (M.T.A.); (P.F.); (V.A.)
| | - José F. Fierro
- Laboratory of Oral Microbiology (LMO), University Clinic of Dentistry (CLUO), University of Oviedo, 33006 Oviedo, Asturias, Spain; (M.T.A.); (P.F.); (V.A.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Deparment of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
10
|
Gao X, Feng J, Wei L, Dong P, Chen J, Zhang L, Yang Y, Xu L, Wang H, Luo J, Qin M. Defensins: A novel weapon against Mycobacterium tuberculosis? Int Immunopharmacol 2024; 127:111383. [PMID: 38118315 DOI: 10.1016/j.intimp.2023.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
Tuberculosis (TB) is a serious airborne communicable disease caused by organisms of the Mycobacterium tuberculosis (Mtb) complex. Although the standard treatment antimicrobials, including isoniazid, rifampicin, pyrazinamide, and ethambutol, have made great progress in the treatment of TB, problems including the rising incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the severe toxicity and side effects of antimicrobials, and the low immunity of TB patients have become the bottlenecks of the current TB treatments. Therefore, both safe and effective new strategies to prevent and treat TB have become a top priority. As a subfamily of cationic antimicrobial peptides, defensins are rich in cysteine and play a vital role in resisting the invasion of microorganisms and regulating the immune response. Inspired by studies on the roles of defensins in host defence, we describe their research history and then review their structural features and antimicrobial mechanisms, specifically for fighting Mtb in detail. Finally, we discuss the clinical relevance, therapeutic potential, and potential challenges of defensins in anti-TB therapy. We further debate the possible solutions of the current application of defensins to provide new insights for eliminating Mtb.
Collapse
Affiliation(s)
- Xuehan Gao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jihong Feng
- Department of Oncology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Linna Wei
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Pinzhi Dong
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jin Chen
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Langlang Zhang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yuhan Yang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haiyan Wang
- Department of Epidemiology and Health Statistics, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Junmin Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Ming Qin
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
11
|
Kimura S, Vaattovaara A, Ohshita T, Yokoyama K, Yoshida K, Hui A, Kaya H, Ozawa A, Kobayashi M, Mori IC, Ogata Y, Ishino Y, Sugano SS, Nagano M, Fukao Y. Zinc deficiency-induced defensin-like proteins are involved in the inhibition of root growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1071-1083. [PMID: 37177878 DOI: 10.1111/tpj.16281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The depletion of cellular zinc (Zn) adversely affects plant growth. Plants have adaptation mechanisms for Zn-deficient conditions, inhibiting growth through the action of transcription factors and metal transporters. We previously identified three defensin-like (DEFL) proteins (DEFL203, DEFL206 and DEFL208) that were induced in Arabidopsis thaliana roots under Zn-depleted conditions. DEFLs are small cysteine-rich peptides involved in defense responses, development and excess metal stress in plants. However, the functions of DEFLs in the Zn-deficiency response are largely unknown. Here, phylogenetic tree analysis revealed that seven DEFLs (DEFL202-DEFL208) were categorized into one subgroup. Among the seven DEFLs, the transcripts of five (not DEFL204 and DEFL205) were upregulated by Zn deficiency, consistent with the presence of cis-elements for basic-region leucine-zipper 19 (bZIP19) or bZIP23 in their promoter regions. Microscopic observation of GFP-tagged DEFL203 showed that DEFL203-sGFP was localized to the apoplast and plasma membrane. Whereas a single mutation of the DEFL202 or DEFL203 genes only slightly affected root growth, defl202 defl203 double mutants showed enhanced root growth under all growth conditions. We also showed that the size of the root meristem was increased in the double mutants compared with the wild type. Our results suggest that DEFL202 and DEFL203 are redundantly involved in the inhibition of root growth under Zn-deficient conditions through a reduction in root meristem length and cell number.
Collapse
Affiliation(s)
- Sachie Kimura
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Aleksia Vaattovaara
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, University of Helsinki, Helsinki, FI-00014, Finland
| | - Tomoya Ohshita
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Kotomi Yokoyama
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Kota Yoshida
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Agnes Hui
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Hidetaka Kaya
- Department of Food Production Science, Ehime University, Ehime, 790-8566, Japan
| | - Ai Ozawa
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Mami Kobayashi
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Okayama, 710-0046, Japan
| | - Yoshiyuki Ogata
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, Osaka, 599-8531, Japan
| | - Yoko Ishino
- Graduate School of Innovation and Technology Management, Yamaguchi University, Yamaguchi, 755-8611, Japan
| | - Shigeo S Sugano
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, 525-8577, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, 305-8566, Japan
| | - Minoru Nagano
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Yoichiro Fukao
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| |
Collapse
|
12
|
Transcriptome Analysis Reveals the Multiple Functions of pBD2 in IPEC-J2 Cells against E. coli. Int J Mol Sci 2022; 23:ijms23179754. [PMID: 36077151 PMCID: PMC9456188 DOI: 10.3390/ijms23179754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Defensins play an important role in fighting bacteria, and are a good candidate for bactericidal agents. However, the function and mechanism of defensins in regulating host responses against bacteria is unclear. In this study, transcriptome analysis was used to study the comprehensive functions of pBD2 in IPEC-J2 cells against E. coli. In total, 230 differentially expressed genes (DEGs) were identified in IPEC-J2 cells between the control and E. coli groups, and were found by KEGG analysis to be involved in many signaling pathways related to immunity. Furthermore, 812 DEGs were observed between E. coli and E. coli +pBD2 groups, involved in the ribosome, oxidative phosphorylation, and certain disease pathways. Among these, 94 overlapping DEGs were in the two DEG groups, and 85 DEGs were reverse expression, which is involved in microRNA in cancer, while PTEN and CDC6 were key genes according to PPI net analysis. The results of qRT-PCR verified those of RNA-seq. The results indicated that pBD2 plays an important role against E. coli by acting on the genes related to immune response, cell cycle, ribosomes, oxidative phosphorylation, etc. The results provide new insights into the potential function and mechanism of pBD2 against E. coli. Meanwhile, this study provides a certain theoretical basis for research and the development of novel peptide drugs.
Collapse
|
13
|
Bindra GK, Williams SA, Lay FT, Baxter AA, Poon IKH, Hulett MD, Phan TK. Human β-Defensin 2 (HBD-2) Displays Oncolytic Activity but Does Not Affect Tumour Cell Migration. Biomolecules 2022; 12:biom12020264. [PMID: 35204765 PMCID: PMC8961614 DOI: 10.3390/biom12020264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 01/01/2023] Open
Abstract
Defensins form an integral part of the cationic host defence peptide (HDP) family, a key component of innate immunity. Apart from their antimicrobial and immunomodulatory activities, many HDPs exert multifaceted effects on tumour cells, notably direct oncolysis and/or inhibition of tumour cell migration. Therefore, HDPs have been explored as promising anticancer therapeutics. Human β-defensin 2 (HBD-2) represents a prominent member of human HDPs, being well-characterised for its potent pathogen-killing, wound-healing, cytokine-inducing and leukocyte-chemoattracting functions. However, its anticancer effects remain largely unknown. Recently, we demonstrated that HBD-2 binds strongly to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), a key mediator of defensin-induced cell death and an instructional messenger during cell migration. Hence, in this study, we sought to investigate the lytic and anti-migratory effects of HBD-2 on tumour cells. Using various cell biological assays and confocal microscopy, we showed that HBD-2 killed tumour cells via acute lytic cell death rather than apoptosis. In addition, our data suggested that, despite the reported PI(4,5)P2 interaction, HBD-2 does not affect cytoskeletal-dependent tumour cell migration. Together, our findings provide further insights into defensin biology and informs future defensin-based drug development.
Collapse
|