1
|
Abstract
Identifying genes involved in behavioural disorders in man is a challenge as the cause is often multigenic and the phenotype is modulated by environmental cues. Mouse mutants are a valuable tool for identifying novel pathways underlying specific neurological phenotypes and exploring the influence both genetic and non-genetic factors. Many human variants causing behavioural disorders are not gene deletions but changes in levels of expression or activity of a gene product; consequently, large-scale mouse ENU mutagenesis has the advantage over the study of null mutants in that it generates a range of point mutations that frequently mirror the subtlety and heterogeneity of human genetic lesions. ENU mutants have provided novel and clinically relevant functional information on genes that influence many aspects of mammalian behaviour, from neuropsychiatric endophenotypes to circadian rhythms. This review will highlight some of the most important findings that have been made using this method in several key areas of neurological disease research.
Collapse
Affiliation(s)
- Peter L Oliver
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | | |
Collapse
|
2
|
Klein JC, Lorenz B, Kang JS, Baudrexel S, Seifried C, van de Loo S, Steinmetz H, Deichmann R, Hilker R. Diffusion tensor imaging of white matter involvement in essential tremor. Hum Brain Mapp 2010; 32:896-904. [PMID: 20572209 DOI: 10.1002/hbm.21077] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 11/09/2022] Open
Abstract
This study set out to determine whether there is white matter involvement in essential tremor (ET), the most common movement disorder. We collected diffusion MRI and analysed differences in fractional anisotropy (FA) and mean diffusivity (MD) between ET patients and control subjects as markers of white matter integrity. We used both classical ROI-based statistics and whole-brain analysis techniques, including voxel-wise analysis with SPM5 and tract-based spatial statistics (TBSS). Using region of interest (ROI) analysis, we found increased MD bilaterally in the inferior cerebellar peduncles (ICP) and reduced FA in the right-sided ICP of ET patients. Whole-brain analyses with TBSS detected increased MD distributed in both motor and nonmotor white matter fibers of ET patients predominantly in the left parietal white matter, while there were no significant FA differences in these areas between ET patients and controls. Voxel-wise analysis with SPM detected significant increase of MD congruent with the highest probability of difference as detected by TBSS. VBM analysis of T1 images did not detect significant differences in either gray or white matter density between our study groups. In summary, we found evidence for changes in white matter MRI properties in ET. The circumscript pathology of the ICP corroborates the pathogenetic concept of the cerebellum and its projections as key structures for tremor generation in ET. Moreover, increased diffusivity in white matter structures of both hemispheres suggests widespread alterations of fiber integrity in motor and nonmotor networks in ET patients. The underlying cause of the DTI changes observed remains to be elucidated.
Collapse
Affiliation(s)
- Johannes C Klein
- Department of Neurology, Goethe-University, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Cazzin C, Ring CJA. Recent advances in the manipulation of murine gene expression and its utility for the study of human neurological disease. Biochim Biophys Acta Mol Basis Dis 2009; 1802:796-807. [PMID: 20004244 DOI: 10.1016/j.bbadis.2009.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 12/11/2022]
Abstract
Transgenic mouse models have vastly contributed to our knowledge of the genetic and molecular pathways underlying the pathogenesis of neurological disorders that affect millions of people worldwide. Not only have they allowed the generation of disease models mimicking the human pathological state but they have also permitted the exploration of the pathological role of specific genes through the generation of knock-out and knock-in models. Classical constitutive transgenic mice have several limitations however, due to behavioral adaptation process occurring and conditional mouse models are time-consuming and often lack extensive spatial or temporal control of gene manipulation. These limitations could be overcome by means of innovative methods that are now available such as RNAi, viral vectors and large cloning DNA vectors. These tools have been extensively used for the generation of mouse models and are characterized by the superior control of transgene expression that has been proven invaluable in the assessment of novel treatments for neurological diseases and to further investigate the molecular processes underlying the etiopathology of neurological disorders. Furthermore, in association with classical transgenic mouse models, they have allowed the validation of innovative therapeutic strategies for the treatment of human neurological disorders. This review describes how these tools have overcome the limitations of classical transgenic mouse models and how they have been of value for the study of human neurological diseases.
Collapse
Affiliation(s)
- Chiara Cazzin
- Biology Department A&S DPU, Neuroscience CEDD, GlaxoSmithKline, Medicines Research Center, Verona, Italy.
| | | |
Collapse
|
4
|
A Novel Caspr Mutation Causes the Shambling Mouse Phenotype by Disrupting Axoglial Interactions of Myelinated Nerves. J Neuropathol Exp Neurol 2009; 68:1207-18. [DOI: 10.1097/nen.0b013e3181be2e96] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Stefansson H, Steinberg S, Petursson H, Gustafsson O, Gudjonsdottir IH, Jonsdottir GA, Palsson ST, Jonsson T, Saemundsdottir J, Bjornsdottir G, Böttcher Y, Thorlacius T, Haubenberger D, Zimprich A, Auff E, Hotzy C, Testa CM, Miyatake LA, Rosen AR, Kristleifsson K, Rye D, Asmus F, Schöls L, Dichgans M, Jakobsson F, Benedikz J, Thorsteinsdottir U, Gulcher J, Kong A, Stefansson K. Variant in the sequence of the LINGO1 gene confers risk of essential tremor. Nat Genet 2009; 41:277-9. [PMID: 19182806 DOI: 10.1038/ng.299] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/12/2008] [Indexed: 01/06/2023]
Abstract
We identified a marker in LINGO1 showing genome-wide significant association (P = 1.2 x 10(-9), odds ratio = 1.55) with essential tremor. LINGO1 has potent, negative regulatory influences on neuronal survival and is also important in regulating both central-nervous-system axon regeneration and oligodendrocyte maturation. Increased axon integrity observed in Lingo1 mouse [corrected] knockout models highlights the potential role of LINGO1 in the pathophysiology of ET [corrected]
Collapse
|
6
|
Gailus-Durner V, Fuchs H, Adler T, Aguilar Pimentel A, Becker L, Bolle I, Calzada-Wack J, Dalke C, Ehrhardt N, Ferwagner B, Hans W, Hölter SM, Hölzlwimmer G, Horsch M, Javaheri A, Kallnik M, Kling E, Lengger C, Mörth C, Mossbrugger I, Naton B, Prehn C, Puk O, Rathkolb B, Rozman J, Schrewe A, Thiele F, Adamski J, Aigner B, Behrendt H, Busch DH, Favor J, Graw J, Heldmaier G, Ivandic B, Katus H, Klingenspor M, Klopstock T, Kremmer E, Ollert M, Quintanilla-Martinez L, Schulz H, Wolf E, Wurst W, de Angelis MH. Systemic first-line phenotyping. Methods Mol Biol 2009; 530:463-509. [PMID: 19266331 DOI: 10.1007/978-1-59745-471-1_25] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
With the completion of the mouse genome sequence an essential task for biomedical sciences in the twenty-first century will be the generation and functional analysis of mouse models for every gene in the mammalian genome. More than 30,000 mutations in ES cells will be engineered and thousands of mouse disease models will become available over the coming years by the collaborative effort of the International Mouse Knockout Consortium. In order to realize the full value of the mouse models proper characterization, archiving and dissemination of mouse disease models to the research community have to be performed. Phenotyping centers (mouse clinics) provide the necessary capacity, broad expertise, equipment, and infrastructure to carry out large-scale systemic first-line phenotyping. Using the example of the German Mouse Clinic (GMC) we will introduce the reader to the different aspects of the organization of a mouse clinic and present selected methods used in first-line phenotyping.
Collapse
|
7
|
Douglas DS, Popko B. Mouse forward genetics in the study of the peripheral nervous system and human peripheral neuropathy. Neurochem Res 2008; 34:124-37. [PMID: 18481175 DOI: 10.1007/s11064-008-9719-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/15/2008] [Indexed: 12/16/2022]
Abstract
Forward genetics, the phenotype-driven approach to investigating gene identity and function, has a long history in mouse genetics. Random mutations in the mouse transcend bias about gene function and provide avenues towards unique discoveries. The study of the peripheral nervous system is no exception; from historical strains such as the trembler mouse, which led to the identification of PMP22 as a human disease gene causing multiple forms of peripheral neuropathy, to the more recent identification of the claw paw and sprawling mutations, forward genetics has long been a tool for probing the physiology, pathogenesis, and genetics of the PNS. Even as spontaneous and mutagenized mice continue to enable the identification of novel genes, provide allelic series for detailed functional studies, and generate models useful for clinical research, new methods, such as the piggyBac transposon, are being developed to further harness the power of forward genetics.
Collapse
|
8
|
Mack JT, Brown CB, Tew KD. ABCA2 as a therapeutic target in cancer and nervous system disorders. Expert Opin Ther Targets 2008; 12:491-504. [PMID: 18348684 DOI: 10.1517/14728222.12.4.491] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Overexpression of ATP-binding cassette (ABC) transporters is a major adaptive advantage used by tumor cells to evade the accumulation of cytotoxic agents. ABCA2, a transporter highly expressed in the cells of the nervous and haematopoetic systems, is associated with lipid transport and drug resistance in cancer cells, including tumor stem cells. Recently, a single nucleotide polymorphism (SNP) in Abca2 was linked to early onset Alzheimer's disease (AD). The characterization of two independent knockout mouse models has shed light on putative in vivo functions of this transporter in the development and maintenance of myelin membrane lipids in the CNS. OBJECTIVE The objective of this review is to guide the reader through the existing scope of literature on the ABCA2 transporter, focusing on its potential as a future target in human pathologies, specifically cancer and neurological disease. METHODS An NCBI PubMed literature search was conducted to address the growing body of ABCA2 literature that, at the time of publication, included 39 reports. From these, we focused on papers that provided insight into the functional importance of this transporter in tumor stem cells, cancer, drug resistance, Alzheimer's disease and myelination. RESULTS/CONCLUSION These studies have implicated ABCA2 as a therapeutic target in modulating the drug resistance phenotype prevalent in human cancers and in the treatment of neuropathies, including Alzheimer's disease and myelin-related disorders.
Collapse
Affiliation(s)
- Jody T Mack
- Medical University of South Carolina, Department of Cell and Molecular Pharmacology and Experimental Therapeutics, 173 Ashley Avenue, BSB 303, MSC 505, Charleston, South Carolina 29425-5050, USA
| | | | | |
Collapse
|
9
|
Cook MN, Dunning JP, Wiley RG, Chesler EJ, Johnson DK, Miller DR, Goldowitz D. Neurobehavioral mutants identified in an ENU-mutagenesis project. Mamm Genome 2007; 18:559-72. [PMID: 17629744 DOI: 10.1007/s00335-007-9035-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
We report on a battery of behavioral screening tests that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU-mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and used a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open-field mutants (one displaying hyperlocomotion, the other hypolocomotion), four tail-suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsiveness to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning-and-memory mutant (displaying reduced response to the conditioned stimulus). These findings highlight the utility of a set of behavioral tasks used in a high-throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Melloni N Cook
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152, and VA Tennessee Valley Healthcare System, Nashville 37212, USA.
| | | | | | | | | | | | | |
Collapse
|