1
|
Upadhyay P, Wu CW, Pham A, Zeki AA, Royer CM, Kodavanti UP, Takeuchi M, Bayram H, Pinkerton KE. Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:275-305. [PMID: 37183431 PMCID: PMC10718174 DOI: 10.1080/10937404.2023.2208886] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, and its global health burden is increasing. COPD is characterized by emphysema, mucus hypersecretion, and persistent lung inflammation, and clinically by chronic airflow obstruction and symptoms of dyspnea, cough, and fatigue in patients. A cluster of pathologies including chronic bronchitis, emphysema, asthma, and cardiovascular disease in the form of hypertension and atherosclerosis variably coexist in COPD patients. Underlying causes for COPD include primarily tobacco use but may also be driven by exposure to air pollutants, biomass burning, and workplace related fumes and chemicals. While no single animal model might mimic all features of human COPD, a wide variety of published models have collectively helped to improve our understanding of disease processes involved in the genesis and persistence of COPD. In this review, the pathogenesis and associated risk factors of COPD are examined in different mammalian models of the disease. Each animal model included in this review is exclusively created by tobacco smoke (TS) exposure. As animal models continue to aid in defining the pathobiological mechanisms of and possible novel therapeutic interventions for COPD, the advantages and disadvantages of each animal model are discussed.
Collapse
Affiliation(s)
- Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Alexa Pham
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Amir A. Zeki
- Department of Internal Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology and Medicine, School of Medicine; University of California, Davis, School of Medicine; U.C. Davis Lung Center; Davis, CA USA
| | - Christopher M. Royer
- California National Primate Research Center, University of California, Davis, Davis, CA 95616 USA
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Minoru Takeuchi
- Department of Animal Medical Science, Kyoto Sangyo University, Kyoto, Japan
| | - Hasan Bayram
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Istanbul, Turkey
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
2
|
Taylor EM, Robertson N, Lightfoot CJ, Smith AC, Jones CR. Nature-Based Interventions for Psychological Wellbeing in Long-Term Conditions: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063214. [PMID: 35328901 PMCID: PMC8954238 DOI: 10.3390/ijerph19063214] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/16/2022]
Abstract
Background: With the global burden of disease increasing, particularly in relation to often preventable chronic diseases, researchers and clinicians are keen to identify interventions that can mitigate ill health and enhance the psychological wellbeing of people living with long-term conditions (LTCs). It is long established that engagement with nature can support human health and wellbeing, and in recent years, nature-based interventions (NBIs) have been advanced as of potential benefit. This review thus sought to systematically appraise published evidence of the application of NBIs to address psychological wellbeing for those living with LTCs. Methods: A systematic search of three databases, PsycINFO, MEDLINE and SCOPUS, was undertaken, and the BestBETs quality assessment checklist was used to appraise methodological quality of elicited studies. Results: Of 913 studies identified, 13 studies (12 using quantitative methods, one qualitative) were used. Included papers reported use of a variety of psychological outcomes alongside more circumscribed physiological outcomes. Quality appraisal showed modest robustness, some methodological weaknesses and a dominance of application in developed countries, yet synthesis of studies suggested that reported psychological and physiological outcomes present a strong argument for NBIs having a promising and positive impact on psychological wellbeing. Conclusions: NBIs have positive psychological and physiological impacts on people with LTCs, suggesting they may be a suitable addition to current maintenance treatment. Future research should focus on minimising study bias and increasing the potential for cross-cultural applications.
Collapse
Affiliation(s)
- Eleanor M. Taylor
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester LE1 7HA, UK;
- Correspondence: (E.M.T.); (C.R.J.)
| | - Noelle Robertson
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester LE1 7HA, UK;
| | - Courtney J. Lightfoot
- Leicester Kidney Lifestyle Team, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK; (C.J.L.); (A.C.S.)
| | - Alice C. Smith
- Leicester Kidney Lifestyle Team, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK; (C.J.L.); (A.C.S.)
| | - Ceri R. Jones
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester LE1 7HA, UK;
- Correspondence: (E.M.T.); (C.R.J.)
| |
Collapse
|
3
|
Maté I, Martínez de Toda I, Arranz L, Álvarez-Sala JL, De la Fuente M. Accelerated immunosenescence, oxidation and inflammation lead to a higher biological age in COPD patients. Exp Gerontol 2021; 154:111551. [PMID: 34530106 DOI: 10.1016/j.exger.2021.111551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by inflammatory and oxidative alterations in the lung and extrapulmonary compartments, through involvement of the immune system. Several leukocyte functions are health markers and good predictors of longevity, and high pro-inflammatory and oxidative states are related to more aged profiles. Here, we aimed to investigate the aging rate in terms of immunosenescence in COPD men with respect to healthy age-matched controls. Several neutrophil (adherence, chemotaxis, phagocytosis, superoxide anion stimulated production) and lymphocyte (adherence, chemotaxis, lymphoproliferation, natural killer activity) functions, cytokine concentrations released in response to lipopolysaccharide (tumor necrosis factor-alpha, interleukin (IL)-6, IL-8, IL-10) and redox parameters (intracellular glutathione content, basal superoxide anion level) were assessed in circulating leukocytes of men with moderate and severe stages of COPD, and compared to healthy age-matched volunteers. The biological age or aging rate in each participant was determined using the values of leukocyte functions. The results indicated impairment of immune functions in COPD patients, both in innate and adaptive immunity, and higher pro-inflammatory and oxidative states in peripheral leukocytes than controls. In general, these changes were more remarkable at the severe stage of airway obstruction. Importantly, COPD patients were found to be aging at a faster rate than age-matched healthy counterparts.
Collapse
Affiliation(s)
- Ianire Maté
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Irene Martínez de Toda
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain; Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| | - Lorena Arranz
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain
| | - José Luis Álvarez-Sala
- Department of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Madrid, Spain; Department of Pneumology, Hospital Clinico San Carlos, Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain; Institute of Investigation Hospital 12 Octubre, Madrid, Spain.
| |
Collapse
|
4
|
Pascual-Guardia S, Ataya M, Ramírez-Martínez I, Yélamos J, Chalela R, Bellido S, López-Botet M, Gea J. Adaptive NKG2C+ natural killer cells are related to exacerbations and nutritional abnormalities in COPD patients. Respir Res 2020; 21:63. [PMID: 32131843 PMCID: PMC7057582 DOI: 10.1186/s12931-020-1323-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/14/2020] [Indexed: 12/17/2022] Open
Abstract
Abstract Chronic obstructive pulmonary disease (COPD) is a chronic and often progressive disorder with a heterogeneous presentation and frequent systemic manifestations. Several aspects like persistence in smoking habit, continuous exacerbations, alpha-1-antitrypsin deficiency and inflammatory-immune response, are involved in the pathophysiology and progression of the disease. However, the role of natural killer (NK) cells remains controversial. Otherwise, human cytomegalovirus (HCMV) infection has been reported to induce an adaptive differentiation and expansion of an NK cell subset which carries the CD94/NKG2C receptor, which may contribute to an upset immune defense. For these reasons, our objective is to assess the distribution of NK cells and their subset in COPD patients and some of its phenotypes. Methods Peripheral blood samples were obtained from 66 COPD patients. HCMV serology and the proportions of total NK cells and the NKG2C+ and NKG2A+ subsets were evaluated by flow cytometry. The NKG2C genotype was also assessed. Results Eighty-eight per cent of COPD patients were HCMV(+), and the proportions of total NK cells were higher in patients with severe-very severe airway obstruction than in those with only mild-moderate involvement. There were no differences in the proportions of NKG2C+ cells between controls and COPD, either among COPD patients classified by severity of the disease. However, the percentage of NKG2C+ cells were higher in COPD patients with frequent exacerbations than in occasional exacerbators, and higher in cases with reduced lean mass (Fat free mass index) than in those with normal nutritional status. Conclusion These results suggest a relationship between levels of NKG2C+ cells in COPD patients and clinical variables closely linked to a poor/worse prognosis.
Collapse
Affiliation(s)
- Sergi Pascual-Guardia
- Respiratory Department, Hospital del Mar, Pg. Marítim 27, 08003, Barcelona, Spain. .,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain. .,CIBERES, ISCIII, Barcelona, Spain. .,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona, Spain.
| | - Michelle Ataya
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Isabel Ramírez-Martínez
- Immunology Department, Hospital del Mar, Barcelona, Spain.,Psychiatry department, Hospital Torrecardenas, Almería, Spain
| | - José Yélamos
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Immunology Department, Hospital del Mar, Barcelona, Spain
| | - Roberto Chalela
- Respiratory Department, Hospital del Mar, Pg. Marítim 27, 08003, Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,CIBERES, ISCIII, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Salomé Bellido
- Respiratory Department, Hospital del Mar, Pg. Marítim 27, 08003, Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,CIBERES, ISCIII, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona, Spain.,Immunology Department, Hospital del Mar, Barcelona, Spain
| | - Joaquim Gea
- Respiratory Department, Hospital del Mar, Pg. Marítim 27, 08003, Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,CIBERES, ISCIII, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona, Spain.,Barcelona Respiratory Network, Barcelona, Spain
| |
Collapse
|
5
|
Liu H, Osterburg AR, Flury J, Swank Z, McGraw DW, Gupta N, Wikenheiser-Brokamp KA, Kumar A, Tazi A, Inoue Y, Hirose M, McCormack FX, Borchers MT. MAPK mutations and cigarette smoke promote the pathogenesis of pulmonary Langerhans cell histiocytosis. JCI Insight 2020; 5:132048. [PMID: 31961828 DOI: 10.1172/jci.insight.132048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary Langerhans cell histiocytosis (PLCH) is a rare smoking-related lung disease characterized by dendritic cell (DC) accumulation, bronchiolocentric nodule formation, and cystic lung remodeling. Approximately 50% of patients with PLCH harbor somatic BRAF-V600E mutations in cells of the myeloid/monocyte lineage. However, the rarity of the disease and lack of animal models have impeded the study of PLCH pathogenesis. Here, we establish a cigarette smoke-exposed (CS-exposed) BRAF-V600E-mutant mouse model that recapitulates many hallmark characteristics of PLCH. We show that CD11c-targeted expression of BRAF-V600E increases DC responsiveness to stimuli, including the chemokine CCL20, and that mutant cell accumulation in the lungs of CS-exposed mice is due to both increased cellular viability and enhanced recruitment. Moreover, we report that the chemokine CCL7 is secreted from DCs and human peripheral blood monocytes in a BRAF-V600E-dependent manner, suggesting a possible mechanism for recruitment of cells known to dominate PLCH lesions. Inflammatory lesions and airspace dilation in BRAF-V600E mice in response to CS are attenuated by transitioning animals to filtered air and treatment with a BRAF-V600E inhibitor, PLX4720. Collectively, this model provides mechanistic insights into the role of myelomonocytic cells and the BRAF-V600E mutation and CS exposure in PLCH pathogenesis and provides a platform to develop biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Huan Liu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrew R Osterburg
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jennifer Flury
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Zulma Swank
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Dennis W McGraw
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Nishant Gupta
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology and Laboratory Medicine and.,Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ashish Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Abdellatif Tazi
- INSERM UMR-S 976, University Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Yoshikazu Inoue
- National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Masaki Hirose
- National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Michael T Borchers
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Kim JH, Jang YJ. Role of Natural Killer Cells in Airway Inflammation. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:448-456. [PMID: 30088365 PMCID: PMC6082815 DOI: 10.4168/aair.2018.10.5.448] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/31/2018] [Accepted: 02/23/2018] [Indexed: 12/16/2022]
Abstract
Natural killer (NK) cells have an immune regulatory function as well as cytotoxicity against tumor or infected cells. In the airway, although NK cells constitute a small proportion of the resident lymphocytes, they play an important role in the pathogenesis of chronic inflammatory airway diseases by modulating immune responses. NK cells can promote allergic airway inflammation by increasing the production of type 2 cytokines and inducing eosinophil migration. The increased activity of NK cells can develop or aggravate the destruction of lung parenchymal cells. On the other hand, decreased apoptotic activity of NK cells in eosinophils can serve as an aggravating factor for allergic airway inflammation. The increase in interferon-γ-producing NK cells and the inhibition of type 2 immune response by NK cells can alleviate allergic airway inflammation. This review aims to define the roles of NK cells in chronic inflammatory diseases of lower and upper airways.
Collapse
Affiliation(s)
- Ji Heui Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Ju Jang
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Szabó M, Sárosi V, Balikó Z, Bodó K, Farkas N, Berki T, Engelmann P. Deficiency of innate-like T lymphocytes in chronic obstructive pulmonary disease. Respir Res 2017; 18:197. [PMID: 29179729 PMCID: PMC5704534 DOI: 10.1186/s12931-017-0671-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/22/2017] [Indexed: 02/06/2023] Open
Abstract
Background Based on the phenotypic and functional characteristics unconventional T-lymphocytes such as invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells link the innate and adaptive immune responses. Up to now data are scarce about their involvement in pulmonary disorders including chronic obstructive pulmonary disease (COPD). This study explores simultaneously the frequencies of iNKT and MAIT cells in the peripheral blood and sputum of stable and exacerbating COPD patients. Methods By means of multicolor flow cytometry frequencies of total iNKT and MAIT cells and their subsets were enumerated in peripheral blood and sputum samples of healthy controls, and COPD patients. In addition, gene expression of TCR for iNKT, MAIT cells, and CD1d, MR1 were assessed by qPCR in the study cohorts. Results Percentages of total iNKT and MAIT cells were dramatically dropped in blood, and reduced numbers of iNKT cells were observed in the sputum of COPD patients. Furthermore decreased DN and increased CD4+ iNKT subsets, while increased DN and decreased CD8+ MAIT subpopulations were measured in the blood of COPD patients. Reduced invariant TCR mRNA levels in COPD patients had confirmed these previous findings. The mRNA expression of CD1d and MR1 were increased in stable and exacerbating COPD patients; however both molecules were decreased upon antibiotic and systemic steroid treatments. Conclusions Our results support the notion that both invariant T-cell populations are affected in COPD. Further detailed analysis of invariant T cells could shed more light into the complex interactions of these lymphocyte groups in COPD pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12931-017-0671-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariann Szabó
- Division of Pulmonology, 1st Department of Internal Medicine, Clinical Center, University of Pécs, Rákóczi u. 2, Pécs, H-7623, Hungary.
| | - Veronika Sárosi
- Division of Pulmonology, 1st Department of Internal Medicine, Clinical Center, University of Pécs, Rákóczi u. 2, Pécs, H-7623, Hungary
| | - Zoltán Balikó
- Division of Pulmonology, 1st Department of Internal Medicine, Clinical Center, University of Pécs, Rákóczi u. 2, Pécs, H-7623, Hungary
| | - Kornélia Bodó
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Szigeti u. 12, Pécs, H-7643, Hungary
| | - Nelli Farkas
- Department of Bioanalysis, Medical School, University of Pécs, Szigeti u. 12, Pécs, H-7643, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Szigeti u. 12, Pécs, H-7643, Hungary
| | - Péter Engelmann
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Szigeti u. 12, Pécs, H-7643, Hungary.
| |
Collapse
|
8
|
Kropski JA, Richmond BW, Gaskill CF, Foronjy RF, Majka SM. Deregulated angiogenesis in chronic lung diseases: a possible role for lung mesenchymal progenitor cells (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217739807. [PMID: 29040010 PMCID: PMC5731726 DOI: 10.1177/2045893217739807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic lung disease (CLD), including pulmonary fibrosis (PF) and chronic obstructive pulmonary disease (COPD), is the fourth leading cause of mortality worldwide. Both are debilitating pathologies that impede overall tissue function. A common co-morbidity in CLD is vasculopathy, characterized by deregulated angiogenesis, remodeling, and loss of microvessels. This substantially worsens prognosis and limits survival, with most current therapeutic strategies being largely palliative. The relevance of angiogenesis, both capillary and lymph, to the pathophysiology of CLD has not been resolved as conflicting evidence depicts angiogenesis as both reparative or pathologic. Therefore, we must begin to understand and model the underlying pathobiology of pulmonary vascular deregulation, alone and in response to injury induced disease, to define cell interactions necessary to maintain normal function and promote repair. Capillary and lymphangiogenesis are deregulated in both PF and COPD, although the mechanisms by which they co-regulate and underlie early pathogenesis of disease are unknown. The cell-specific mechanisms that regulate lung vascular homeostasis, repair, and remodeling represent a significant gap in knowledge, which presents an opportunity to develop targeted therapies. We have shown that that ABCG2pos multipotent adult mesenchymal stem or progenitor cells (MPC) influence the function of the capillary microvasculature as well as lymphangiogenesis. A balance of both is required for normal tissue homeostasis and repair. Our current models suggest that when lymph and capillary angiogenesis are out of balance, the non-equivalence appears to support the progression of disease and tissue remodeling. The angiogenic regulatory mechanisms underlying CLD likely impact other interstitial lung diseases, tuberous sclerosis, and lymphangioleiomyomatosis.
Collapse
Affiliation(s)
- Jonathan A Kropski
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley W Richmond
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christa F Gaskill
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert F Foronjy
- 3 5718 Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Susan M Majka
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,2 74498 Department of Medicine, Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
9
|
Shindi R, Almehairi A, Negm OH, Kalsheker N, Gale NS, Shale DJ, Harrison TW, Bolton CE, John M, Todd I, Tighe PJ, Fairclough LC. Autoantibodies of IgM and IgG classes show differences in recognition of multiple autoantigens in chronic obstructive pulmonary disease. Clin Immunol 2017; 183:344-353. [DOI: 10.1016/j.clim.2017.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/10/2017] [Accepted: 09/22/2017] [Indexed: 12/22/2022]
|
10
|
IL-12 and IL-7 synergize to control mucosal-associated invariant T-cell cytotoxic responses to bacterial infection. J Allergy Clin Immunol 2017; 141:2182-2195.e6. [PMID: 28870466 DOI: 10.1016/j.jaci.2017.08.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/19/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Bacterial respiratory tract infections and exacerbations of chronic lung diseases are commonly caused by nontypeable Haemophilus influenzae (NTHi). Cell-mediated cytotoxicity might be key to controlling infection, but the responses of NTHi-specific T-cell populations are not well understood. Mucosal-associated invariant T (MAIT) cells are a recently discovered, innate-like subset of T cells with cytotoxic function, the role of which in lung immunity is unclear. OBJECTIVE The aim of this study was to determine the mechanisms behind conventional T-cell and MAIT cell cytotoxic responses to NTHi. METHODS Human ex vivo lung explants were infected with a clinical strain of NTHi. Monocyte-derived macrophages were also infected with NTHi in vitro and cocultured with autologous T cells. Cytotoxic responses of T-cell subsets were measured by using flow cytometry. RESULTS We found significant upregulation of the cytotoxic markers CD107a and granzyme B in lung CD4+, CD8+, and MAIT cell populations. We show that MAIT cell cytotoxic responses were upregulated by a combination of both time-dependent antigen presentation and a novel mechanism through which IL-12 and IL-7 synergistically control granzyme B through upregulation of the IL-12 receptor. CONCLUSIONS Overall, our data provide evidence for a cytotoxic role of MAIT cells in the lung and highlight important differences in the control of adaptive and innate-like T-cell responses. Understanding these mechanisms might lead to new therapeutic opportunities to modulate the antibacterial response and improve clinical outcome.
Collapse
|
11
|
Tubby C, Negm OH, Harrison T, Tighe PJ, Todd I, Fairclough LC. Peripheral killer cells do not differentiate between asthma patients with or without fixed airway obstruction. J Asthma 2016; 54:456-466. [PMID: 27736259 DOI: 10.1080/02770903.2016.1236941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The three main types of killer cells - CD8+ T cells, NK cells and NKT cells - have been linked to asthma and chronic obstructive pulmonary disease (COPD). However, their role in a small subset of asthma patients displaying fixed airway obstruction (FAO), similar to that seen in COPD, has not been explored. The objective of the present study was to investigate killer cell numbers, phenotype and function in peripheral blood from asthma patients with FAO, asthma patients without FAO, and healthy individuals. METHODS Peripheral CD8+ T cells (CD8+CD3+CD56-), NK cells (CD56+CD3-) and NKT-like cells (CD56+CD3+) of 14 asthma patients with FAO (post-bronchodilator FEV/FVC <0.7, despite clinician-optimised treatment), 7 asthma patients without FAO (post-bronchodilator FEV/FVC ≥ 0.7), and 9 healthy individuals were studied. RESULTS No significant differences were seen between the number, receptor expression, MAPK signalling molecule expression, cytotoxic mediator expression, and functional cytotoxicity of peripheral killer cells from asthma patients with FAO, asthma patients without FAO and healthy individuals. CONCLUSIONS Peripheral killer cell numbers or functions do not differentiate between asthma patients with or without fixed airway obstruction.
Collapse
Affiliation(s)
- Carolyn Tubby
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Ola H Negm
- a School of Life Sciences, University of Nottingham , Nottingham , UK.,b Medical Microbiology and Immunology Department , Faculty of Medicine, Mansoura University , Mansoura , Egypt
| | - Timothy Harrison
- c Nottingham Respiratory Research Unit, Division of Respiratory Medicine , School of Medicine, University of Nottingham , Nottingham , UK
| | - Patrick J Tighe
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Ian Todd
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Lucy C Fairclough
- a School of Life Sciences, University of Nottingham , Nottingham , UK
| |
Collapse
|
12
|
Choudhury G, MacNee W. Role of Inflammation and Oxidative Stress in the Pathology of Ageing in COPD: Potential Therapeutic Interventions. COPD 2016; 14:122-135. [DOI: 10.1080/15412555.2016.1214948] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gourab Choudhury
- MRC Centre for Inflammation Research, Queens Medical Research Institute, 47 little France Crescent Edinburgh, United Kingdom
| | - William MacNee
- MRC Centre for Inflammation Research, Queens Medical Research Institute, 47 little France Crescent Edinburgh, United Kingdom
| |
Collapse
|
13
|
Multiple Circulating Cytokines Are Coelevated in Chronic Obstructive Pulmonary Disease. Mediators Inflamm 2016; 2016:3604842. [PMID: 27524865 PMCID: PMC4976159 DOI: 10.1155/2016/3604842] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/23/2016] [Indexed: 01/05/2023] Open
Abstract
Inflammatory biomarkers, including cytokines, are associated with COPD, but the association of particular circulating cytokines with systemic pathology remains equivocal. To investigate this, we developed a protein microarray system to detect multiple cytokines in small volumes of serum. Fourteen cytokines were measured in serum from never-smokers, ex-smokers, current smokers, and COPD patients (GOLD stages 1–3). Certain individual circulating cytokines (particularly TNFα and IL-1β) were significantly elevated in concentration in the serum of particular COPD patients (and some current/ex-smokers without COPD) and may serve as markers of particularly significant systemic inflammation. However, numerous circulating cytokines were raised such that their combined, but not individual, elevation was significantly associated with severity of disease, and these may be further indicators of, and contributors to, the systemic inflammatory manifestations of COPD. The coelevation of numerous circulating cytokines in COPD is consistent with the insidious development, chronic nature, and systemic comorbidities of the disease.
Collapse
|
14
|
Daffa NI, Tighe PJ, Corne JM, Fairclough LC, Todd I. Natural and disease-specific autoantibodies in chronic obstructive pulmonary disease. Clin Exp Immunol 2015; 180:155-63. [PMID: 25469980 PMCID: PMC4367103 DOI: 10.1111/cei.12565] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 12/01/2022] Open
Abstract
Autoimmunity may contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD). Studies have identified disease-specific autoantibodies (DSAAbs) in COPD patients, but natural autoantibodies (NAAbs) may also play a role. Previous studies have concentrated on circulating autoantibodies, but lung-associated autoantibodies may be most important. Our aim was to investigate NAAbs and DSAAbs in the circulation and lungs of COPD smoking (CS) patients compared to smokers (S) without airway obstruction and subjects who have never smoked (NS). Immunoglobulin (Ig)G antibodies that bind to lung tissue components were significantly lower in the circulation of CS patients than NS (with intermediate levels in S), as detected by enzyme-linked immunosorbent assay (ELISA). The levels of antibodies to collagen-1 (the major lung collagen) detected by ELISA were also reduced significantly in CS patients’ sera compared to NS. The detection of these antibodies in NS subjects indicates that they are NAAbs. The occurrence of DSAAbs in some CS patients and S subjects was indicated by high levels of serum IgG antibodies to cytokeratin-18 and collagen-5; furthermore, antibodies to collagen-5 eluted from homogenized lung tissue exposed to low pH (0·1 M glycine, pH 2·8) were raised significantly in CS compared to S and NS. Thus, this study supports a role in COPD for both NAAbs and DSAAbs.
Collapse
Affiliation(s)
- N I Daffa
- School of Life Sciences, University of Nottingham, Nottingham, UK; Medical Microbiology Department, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | | | | | | | | |
Collapse
|
15
|
Forsslund H, Mikko M, Karimi R, Grunewald J, Wheelock ÅM, Wahlström J, Sköld CM. Distribution of T-cell subsets in BAL fluid of patients with mild to moderate COPD depends on current smoking status and not airway obstruction. Chest 2014; 145:711-722. [PMID: 24264182 DOI: 10.1378/chest.13-0873] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND COPD is characterized by chronic inflammation. CD8+ T cells and CD4+ T cells have both been implicated in the inflammatory response. We investigated whether the lymphocyte and T-cell subpopulations in BAL differ between patients with COPD who are current smokers and those who are ex-smokers. METHODS Forty never smokers, 40 smokers with normal lung function, and 38 patients with COPD, GOLD (Global Initiative for Chronic Obstructive Pulmonary Disease) stage I-II (27 smokers and 11 ex-smokers) underwent BAL. Using flow cytometry, cells were analyzed from BAL and blood for T-cell subsets, B cells, natural killer cells, and natural killer T (NKT)-like cells. The differentiation status of CD4+ T cells was also determined. RESULTS Smokers with or without COPD had higher percentages of CD8+ T cells and NKT-like cells in BAL than did never smokers and ex-smokers with COPD. Most of the NKT-like cells were CD8+. In contrast, the percentages of CD4+ T cells were lower in the smoking than in the nonsmoking groups. In blood, the frequency of CD4+ T cells was increased in the two smoking groups. Current smokers also had increased numbers of activated (CD69+) naive and effector CD4+ T cells in BAL compared with nonsmokers, particularly in patients with COPD. In male smokers with COPD, the percentage of CD8+ T cells in BAL positively correlated with the number of cigarettes per day. CONCLUSIONS Current smoking status has a greater impact than airway obstruction on the distribution of T-cell subsets in BAL of patients with mild to moderate COPD. This fact must be considered when the role of T cells in COPD is evaluated. Our results stress the importance of subgrouping patients with COPD in terms of smoking.
Collapse
Affiliation(s)
- Helena Forsslund
- Respiratory Medicine Unit, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden.
| | - Mikael Mikko
- Respiratory Medicine Unit, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Reza Karimi
- Respiratory Medicine Unit, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Jan Wahlström
- Respiratory Medicine Unit, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - C Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
16
|
Choudhury G, Rabinovich R, MacNee W. Comorbidities and Systemic Effects of Chronic Obstructive Pulmonary Disease. Clin Chest Med 2014; 35:101-30. [DOI: 10.1016/j.ccm.2013.10.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Long term impact of sulfur mustard exposure on peripheral blood mononuclear subpopulations — Sardasht-Iran Cohort Study (SICS). Int Immunopharmacol 2013; 17:931-5. [DOI: 10.1016/j.intimp.2012.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 11/29/2012] [Accepted: 12/27/2012] [Indexed: 11/21/2022]
|
18
|
Natural killer cells from patients with chronic rhinosinusitis have impaired effector functions. PLoS One 2013; 8:e77177. [PMID: 24204766 PMCID: PMC3799692 DOI: 10.1371/journal.pone.0077177] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/31/2013] [Indexed: 11/21/2022] Open
Abstract
Natural killer (NK) cells are multicompetent lymphocytes of the innate immune system that play a central role in host defense and immune regulation. Although increasing evidence suggests that innate immunity plays a key role in the pathogenesis of chronic rhinosinusitis (CRS), the role of NK cells in CRS has been poorly studied. This study aimed to characterize the peripheral blood NK cells from patients with CRS, and to compare the functions of these cells with those from non-CRS controls. The correlation between NK cell functional activity and prognosis was also assessed. Eighteen CRS patients and 19 healthy non-CRS controls were included. The patients with CRS were classified into two subgroups, namely a treatment-responsive group and recalcitrant group. NK cell degranulation was determined by measuring the cell surface expression of CD107a against 721.221 and K562 cells. Intracytoplasmic cytokine production was determined by flow cytometry. Compared to the controls, the NK cells of CRS group had an impaired ability to degranulate and to produce cytokines such as IFN-γ and TNF-α. The recalcitrant subgroup showed the most severe defects in NK cell effector functions. Moreover, the decreased NK cell functions in patients with CRS were associated with poor prognostic factors such as concomitant asthma and peripheral blood eosinophilia. NK cells, which were originally named for their ability to mediate spontaneous cytotoxicity towards diseased cells including infected cells, may play an important role in regulating the inflammatory process in CRS pathogenesis.
Collapse
|
19
|
Differential activation of killer cells in the circulation and the lung: a study of current smoking status and chronic obstructive pulmonary disease (COPD). PLoS One 2013; 8:e58556. [PMID: 23505535 PMCID: PMC3594304 DOI: 10.1371/journal.pone.0058556] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/05/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND CD8(+) T-lymphocytes, natural killer T-like cells (NKT-like cells, CD56(+)CD3(+)) and natural killer cells (NK cells, CD56(+)CD3(-)) are the three main classes of human killer cells and they are implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Activation of these cells can initiate immune responses by virtue of their production of inflammatory cytokines and chemokines that cause lung tissue damage, mucus hypersecretion and emphysema. The objective of the current study was to investigate the activation levels of human killer cells in healthy non-smokers, healthy smokers, ex-smokers with COPD and current smokers with COPD, in both peripheral blood and induced sputum. METHODS/PRINCIPAL FINDINGS After informed consent, 124 participants were recruited into the study and peripheral blood or induced sputum was taken. The activation states and receptor expression of killer cells were measured by flow cytometry. In peripheral blood, current smokers, regardless of disease state, have the highest proportion of activated CD8(+) T-lymphocytes, NKT-like cells and NK cells compared with ex-smokers with COPD and healthy non-smokers. Furthermore, CD8(+) T-lymphocyte and NK cell activation is positively correlated with the number of cigarettes currently smoked. Conversely, in induced sputum, the proportion of activated killer cells was related to disease state rather than current smoking status, with current and ex-smokers with COPD having significantly higher rates of activation than healthy smokers and healthy non-smokers. CONCLUSIONS A differential effect in systemic and lung activation of killer cells in COPD is evident. Systemic activation appears to be related to current smoking whereas lung activation is related to the presence or absence of COPD, irrespective of current smoking status. These findings suggest that modulating killer cell activation may be a new target for the treatment of COPD.
Collapse
|
20
|
Sarcopenia, obesity, and natural killer cell immune senescence in aging: altered cytokine levels as a common mechanism. Aging (Albany NY) 2013; 4:535-46. [PMID: 22935594 PMCID: PMC3461341 DOI: 10.18632/aging.100482] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human aging is characterized by both physical and physiological frailty. A key feature of frailty, sarcopenia is the age-associated decline in skeletal muscle mass, strength, and endurance that characterize even the healthy elderly. Increases in adiposity, particularly in visceral adipose tissue, are almost universal in aging individuals and can contribute to sarcopenia and insulin resistance by increasing levels of inflammatory cytokines known collectively as adipokines. Aging also is associated with declines in adaptive and innate immunity, known as immune senescence, which are risk factors for cancer and all-cause mortality. The cytokine interleukin-15 (IL-15) is highly expressed in skeletal muscle tissue and declines in aging rodent models. IL-15 inhibits fat deposition and insulin resistance, is anabolic for skeletal muscle in certain situations, and is required for the development and survival of natural killer (NK) lymphocytes. We review the effect that adipokines and myokines have on NK cells, with special emphasis on IL-15. We posit that increased adipokine and decreased IL-15 levels during aging constitute a common mechanism for sarcopenia, obesity, and immune senescence.
Collapse
|
21
|
Decreased soluble dipeptidyl peptidase IV activity as a potential serum biomarker for COPD. Clin Biochem 2012; 45:1245-50. [PMID: 22580392 DOI: 10.1016/j.clinbiochem.2012.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/19/2012] [Accepted: 04/22/2012] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The objective of this study was to measure soluble dipeptidyl peptidase IV (sDPPIV) activity in sera of patients with stable chronic obstructive pulmonary disease (COPD) in comparison to healthy controls. The main goal was to assess changes in the enzyme activity in relation to severity of the disease, age and smoking history and to evaluate diagnostic accuracy for prediction of COPD by level of serum sDPPIV activity. DESIGN AND METHODS The study included 106 patients with stable COPD (GOLD II-GOLD IV stages) and 38 healthy controls. Serum sDPPIV activity as well as some inflammatory markers (CRP, total and differential leukocyte counts) was measured. Multivariate logistic regression models were applied to analyze association of sDPPIV activity and inflammatory markers in risk estimation for COPD development. RESULTS sDPPIV activity in COPD patients was significantly reduced when compared to healthy controls. Decrease was observed already in GOLD II stage. Age and smoking history did not influence sDPPIV activity. Very good diagnostic accuracy (AUC=0.833; sensitivity and specificity of 85.7% and 78.9%, respectively) for GOLD II and good diagnostic accuracy (AUC=0.801; sensitivity and specificity of 65.1% and 86.8%, respectively) for total cohort of COPD patients were found. The multivariate logistic regression model showed that the use of sDPPIV in combination with CRP and lymphocyte proportion improved diagnostic strength and gave an AUC of 0.933. CONCLUSIONS sDPPIV activity is decreased in COPD patients as early as in GOLD II stage. Very good diagnostic accuracy of sDPPIV activity suggests it as a candidate biomarker for early diagnosis of COPD.
Collapse
|
22
|
CHI SUYOUNG, BAN HEEJUNG, KWON YONGSOO, OH INJAE, KIM KYUSIK, KIM YUIL, KIM YOUNGCHUL, LIM SUNGCHUL. Invariant natural killer T cells in chronic obstructive pulmonary disease. Respirology 2012; 17:486-92. [DOI: 10.1111/j.1440-1843.2011.02104.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Abstract
Asthma is characterized by airflow obstruction that is usually completely reversible either spontaneously or in response to treatment. However, a small subset of patients with asthma display FAO (fixed airflow obstruction) despite optimal treatment, a feature more commonly associated with smoking-induced COPD (chronic obstructive pulmonary disease). Why some asthma patients develop FAO is not understood, and it is not clear whether (i) they represent a subset of patients with more severe disease, (ii) they share some characteristics of patients who develop COPD, or (iii) they represent a different disease entity altogether. The present review compares the pulmonary inflammatory profile of asthma patients with FAO with those without FAO, as well as COPD sufferers. The inflammation in asthma patients with FAO can vary from neutrophilic with CD8 T-cell involvement, similar to that of COPD, to eosinophilic with CD4 Th2 cell involvement, akin to that of asthma patients without FAO. Although studies of FAO in asthma sufferers would benefit hugely from consistent inclusion criteria, further research work is also required to shed more light on the immunological processes involved.
Collapse
|
24
|
[Structural abnormalities and inflammation in COPD: a focus on small airways]. Rev Mal Respir 2011; 28:749-60. [PMID: 21742236 DOI: 10.1016/j.rmr.2011.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/13/2011] [Indexed: 11/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by poorly reversible airflow limitation associated with airway remodelling and inflammation of both large and small airways. The site of airflow obstruction in COPD is located in the small airways, justifying a focus on this compartment. The structural abnormalities that are found in bronchioles with a diameter less than 2mm are characterized by increased airway wall thickness with peribronchial fibrosis, and by luminal obstruction by mucous exudates. Destruction of alveolar walls, the hallmark of emphysema, may be related to protease-antiprotease imbalance, and to mechanisms involving apoptosis, senescence, and autoimmunity. Cigarette smoke inhalation triggers the recruitment of innate immune cells (neutrophils and macrophages) and putatively adaptive immunity mediated via T and B lymphocytes and lymphoid follicles in the small airways. These data suggest a potential role for therapies that can target remodelling and inflammation in the small airways of patients with COPD.
Collapse
|
25
|
Urbanowicz RA, Lamb JR, Todd I, Corne JM, Fairclough LC. Enhanced effector function of cytotoxic cells in the induced sputum of COPD patients. Respir Res 2010; 11:76. [PMID: 20540777 PMCID: PMC2891678 DOI: 10.1186/1465-9921-11-76] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/11/2010] [Indexed: 11/25/2022] Open
Abstract
Background We have previously shown that NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells are reduced in both numbers and cytotoxicity in peripheral blood. The aim of the present study was to investigate their numbers and function within induced sputum. Methods Induced sputum cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD56+ cells (NK and NKT-like cells) were used in an LDH release assay to determine cytotoxicity. Results The proportion of NK cells and NKT-like cells in smokers with COPD (COPD subjects) was significantly higher (12.7% and 3%, respectively) than in healthy smokers (smokers) (5.7%, p < 0.01; 1%, p < 0.001) and non-smoking healthy subjects (HNS) (4.2%, p < 0.001; 0.8%, p < 0.01). The proportions of NK cells and NKT-like cells expressing both perforin and granzyme B were also significantly higher in COPD subjects compared to smokers and HNS. CD56+ cells from COPD subjects were significantly more cytotoxic (1414 biological lytic activity) than those from smokers (142.5; p < 0.01) and HNS (3.8; p < 0.001) and were inversely correlated to FEV1. (r = -0.75; p = 0.0098). Conclusion We have shown an increased proportion of NK and NKT-like cells in the induced sputum of COPD subjects and have demonstrated that these cells are significantly more cytotoxic in COPD subjects than smokers and HNS.
Collapse
Affiliation(s)
- Richard A Urbanowicz
- COPD Research Group, Nottingham Respiratory Biomedical Research Unit, The University of Nottingham, UK
| | | | | | | | | |
Collapse
|
26
|
Somatic DNA alterations in lung epithelial barrier cells in COPD patients. Pulm Pharmacol Ther 2010; 23:208-14. [DOI: 10.1016/j.pupt.2009.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 10/22/2009] [Accepted: 12/05/2009] [Indexed: 11/21/2022]
|
27
|
Regulation in chronic obstructive pulmonary disease: the role of regulatory T-cells and Th17 cells. Clin Sci (Lond) 2010; 119:75-86. [PMID: 20402669 DOI: 10.1042/cs20100033] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
COPD (chronic obstructive pulmonary disease) is an inflammatory disorder of the airways, which is associated with irreversible airway obstruction. The pathological hallmarks of COPD are destruction of the lung parenchyma (pulmonary emphysema), inflammation of the central airways (chronic bronchitis) and inflammation of the peripheral airways (respiratory bronchiolitis). Tobacco smoking is established as the main aetiological factor for COPD. A maladaptive modulation of inflammatory responses to inhalation of noxious particles and gases is generally accepted as being a key central pathogenic process; however, the precise regulatory mechanisms of the disease are poorly understood. Two cell types are known to be important in immune regulation, namely regulatory T-cells and the newly identified Th17 (T-helper 17) cells. Both types of cells are subsets of CD4 T-lymphocytes and modulate the immune response through secretion of cytokines, for example IL (interleukin)-10 and IL-17 respectively. The present review will begin by describing the current understanding of inflammatory cell involvement in the disease process, and then focus on the possible role of subsets of regulatory and helper T-cells in COPD.
Collapse
|
28
|
Abstract
The lungs are a major site of entry of pathogens into the body and thus require rapid and effective innate responses to prevent pathogens establishing infection and to limit their spread. Additionally, the immune response in the lung must be tightly regulated such that pathogens are cleared, but immunopathology and chronic inflammation are prevented. In this review, I consider the role of natural killer (NK) cells in pulmonary infection and inflammation, specifically their contributions to influenza, tuberculosis, asthma and chronic obstructive pulmonary disease (COPD), which are major causes of morbidity and mortality world-wide. Despite evidence of the importance of NK cells in these diseases, there are still major gaps in our understanding of how their function is regulated in this unique tissue environment. Understanding how different beneficial and detrimental effector functions of NK cells are triggered will be crucial if NK cells are to be exploited therapeutically in respiratory disease.
Collapse
Affiliation(s)
- Fiona J Culley
- Respiratory Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W21PG, UK.
| |
Collapse
|
29
|
Ngan DA, Vickerman SV, Granville DJ, Man SFP, Sin DD. The possible role of granzyme B in the pathogenesis of chronic obstructive pulmonary disease. Ther Adv Respir Dis 2009; 3:113-29. [PMID: 19638369 DOI: 10.1177/1753465809341965] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent inflammatory lung condition characterized by airways disease and emphysema, and the precise mechanism of pathogenesis is poorly understood. The consistent features of COPD include protease-antiprotease imbalance, inflammation and accelerated aging caused by apoptosis or senescence. One family of molecules involved in all of these processes is the granzymes, serine proteases with the best-known member being granzyme B (GzmB). The majority of GzmB is released unidirectionally towards target cells, but GzmB can also be released nonspecifically and escape into the extracellular environment. GzmB is capable of cleaving extracellular matrix (ECM) proteins in vitro, and the accumulation of GzmB in the extracellular milieu during chronic inflammation in COPD could contribute to ECM degradation and remodelling and, consequently, the emphysematous phenotype in the lung. Preliminary studies suggest that increased GzmB expression is associated with increased COPD severity, and this may represent a promising new target for drug and biomarker discovery in COPD. In this paper, we review the potential pathogenic contributions of GzmB to the pathogenesis of COPD.
Collapse
Affiliation(s)
- David A Ngan
- James Hogg Research Laboratories, Providence Heart + Lung Institute at St. Paul's Hospital and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Altered effector function of peripheral cytotoxic cells in COPD. Respir Res 2009; 10:53. [PMID: 19545425 PMCID: PMC2705911 DOI: 10.1186/1465-9921-10-53] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 06/22/2009] [Indexed: 11/27/2022] Open
Abstract
Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3-) cells and NKT-like (CD56+CD3+) cells. Methods Peripheral blood mononuclear cells (PBMCs) were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+) cells in smokers with COPD (COPD subjects) was significantly lower (0.6%) than in healthy smokers (smokers) (2.8%, p < 0.001) and non-smoking healthy participants (HNS) (3.3%, p < 0.001). NK (CD56+CD3-) cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p < 0.001) as were NKT-like (CD56+CD3+) cells (16.7% vs 52.4% specific lysis, p < 0.001). Both cell types had lower proportions expressing both perforin and granzyme B. Blocking the action of perforin and granzyme B reduced the cytotoxic activity of NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3-) and NKT-like (CD56+CD3+) cells in COPD subjects are reduced and that their cytotoxic effector function is defective.
Collapse
|
32
|
Murrell RN, Gibson JE. Brevetoxins 2, 3, 6, and 9 show variability in potency and cause significant induction of DNA damage and apoptosis in Jurkat E6-1 cells. Arch Toxicol 2009; 83:1009-19. [PMID: 19536525 DOI: 10.1007/s00204-009-0443-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/03/2009] [Indexed: 11/27/2022]
Abstract
Brevetoxins (PbTx) are potent lipid soluble polyether neurotoxins produced by the marine dinoflagellate Karenia brevis, an organism linked to periodic red tide blooms. Brevetoxins exert their toxicity by interacting with neurotoxin receptor site five associated with domain IV of the alpha subunit of the voltage gated sodium channel. Brevetoxin binding to tissues that contain voltage gated sodium channels on excitable cells results in membrane depolarization, repetitive firing, and increase in sodium currents. Brevetoxins have been linked to deaths in marine mammals, which are exposed through ingestion of organisms harboring high brevetoxin concentrations and through the inhalation of aerosolized brevetoxins. Humans are also at risk, primarily through respiratory exposure which can result in a severe inflammatory response. The purpose of this study was to determine the effect of four brevetoxins on Jurkat E6-1 cell proliferation, to assess their variability in potency, genotoxicity, and to determine if brevetoxin causes cell death, specifically through an apoptotic or necrotic mechanism. PbTx 2, 3, 6, and 9 were tested at concentrations of 10(-4)-10(-12) M to determine the IC(50) values and effect on cell proliferation. The IC(50) concentration was then used in the single cell gel electrophoresis assay to determine genotoxicity. The ability to induce apoptosis was then assessed with the Vybrant apoptosis assay, caspase activation assays and PARP cleavage. Results from the cellular proliferation assays demonstrated that high doses of PbTxs inhibit the ability of Jurkat cells to proliferate while lower doses caused an increase in proliferation and that PbTx2 is the most cytotoxic brevetoxin followed by brevetoxins 6, 3, and 9. Brevetoxins 2, 3, and 6 all caused significant DNA damage. A 4 h exposure to brevetoxins 2, 3, 6, and 9 at values close to the IC(50) values resulted in apoptosis positive staining in Jurkat E6-1 cells. High doses of brevetoxins 2 and 6 resulted in activation of caspases 3/7 and 8 and cleavage of poly (ADP-ribose) polymerase (PARP). The conclusions are that brevetoxins affect cell proliferation in a dose-dependent fashion, are genotoxic, and cause cell death through an apoptotic mechanism.
Collapse
Affiliation(s)
- Rachel N Murrell
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC, 27695-7633, USA.
| | | |
Collapse
|