1
|
Duque-Wilckens N, Joseph D, Syed M, Smith B, Maradiaga N, Yeh SY, Srinivasan V, Sotomayor F, Durga K, Nestler E, Moesers AJ, Robison AJ. FosB/ΔFosB activation in mast cells regulates gene expression to modulate allergic inflammation in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.06.592755. [PMID: 38766119 PMCID: PMC11100602 DOI: 10.1101/2024.05.06.592755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Mast cells are innate immune cells that regulate physiological processes by releasing pre-stored and newly synthesized mediators in response to allergens, infection, and other stimuli. Dysregulated mast cell activity can lead to multisystemic pathologies, but the underlying regulatory mechanisms remain poorly understood. We found that FOSB and ΔFOSB, transcription factors encoded by the FosB gene, are robustly expressed in mast cells following IgE-antigen stimulation, suggesting a role in modulating stimulus-induced mast cell functions. Using phenotypic, gene binding, and gene expression analyses in wild-type and mast cell-specific FosB knockout male mice, we demonstrate that FOSB/ΔFOSB modulates mast cell functions by limiting reactivity to allergen-like stimuli both in vitro and in vivo . These effects seem to be mediated, at least in part, by FOSB/ΔFOSB-driven enhanced expression of DUSP4, a dual-specificity phosphatase that attenuates MAPK signaling. These findings highlight FOSB/ΔFOSB as critical regulators of mast cell activity and potential targets for therapeutic intervention.
Collapse
|
2
|
Zheng S, Guo Y, Wu Z, Cheng J. Theory of Lipid Metabolism Disorders in Rhinitis and Asthma (Lipid Droplets). Cell Biochem Biophys 2025; 83:25-31. [PMID: 39097558 DOI: 10.1007/s12013-024-01469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
Lipid droplets are important for the storage of neutral lipids in cells; moreover, they participate in a variety of activities in cells and are multifunctional organelles. In the past few decades, lipid droplets have been extensively studied and found to play important roles in cellular energy balance, signal regulation and metabolic regulation. In particular, the formation and function of lipid droplets in adipocytes and mast cells have received much attention. This article reviews the formation, structure and function of lipid droplets in mast cells and elaborates on the relationship between lipid droplets and both adipocyte metabolism and mast cell-mediated allergic inflammation, to provide ideas for the treatment of allergic inflammation by targeting lipid droplets. This study provides important evidence for the role of lipid metabolism disorders in rhinitis and asthma.
Collapse
Affiliation(s)
- Shaohua Zheng
- Public Health Service Center, Bao'an District, Shenzhen, Guangdong, China
| | - Yijia Guo
- Public Health Service Center, Bao'an District, Shenzhen, Guangdong, China
| | - Zhaoyan Wu
- Public Health Service Center, Bao'an District, Shenzhen, Guangdong, China
| | - Jing Cheng
- Otolaryngology Teaching and Research Group of Clinical Department, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Jia D, Zhang Y, Li H, Guo C, Wu Y, Shi X, Yang L, Mo J, Liu X, Xu Y. Predicting steroid-induced osteonecrosis of the femoral head: role of lipid metabolism biomarkers and radiomics in young and middle-aged adults. J Orthop Surg Res 2024; 19:749. [PMID: 39533346 PMCID: PMC11558989 DOI: 10.1186/s13018-024-05245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Femoral head necrosis is a common orthopedic disease that results in significant physical disability in patients. Early prediction and diagnosis of steroid-induced osteonecrosis of the femoral head (SONFH) are crucial for the prevention and treatment of this condition. METHODS In this study, initial CT images and clinical data of patients with SONFH, admitted from January 2019 to December 2022, were collected. Patients were grouped as follows: (1) those diagnosed with SONFH at the initial diagnosis (control group), and (2) those with high-risk factors but no symptoms at first diagnosis, who developed SONFH two years later (experimental group). CT imaging histological features, clinical characteristics, and transcriptome screening for differentially expressed genes, pathway enrichment, and immune infiltration analyses were performed. RESULTS Significant differences were found in triglyceride (TG) levels between the training and validation groups. Age, sex, alkaline phosphatase (ALP), and hemoglobin levels differed between the training and internal validation groups, while HDL and red blood cell counts varied between the training and external validation groups. Univariate analysis showed that age, TG, HDL, and Radiomics scores influenced SONFH, while multivariate analysis revealed TG, HDL, and Radiomics scores were closely related to SONFH. Transcriptomic analysis showed associations with sphingolipid and adipocyte signaling pathways, along with immune cell involvement, linking SONFH to lipid metabolism and atherosclerosis. CONCLUSIONS These findings indicate a significant association between steroid-induced osteonecrosis of the femoral head and age, with TG and HDL serving as indicators of lipid metabolism closely correlated with the occurrence of SONFH. Radiomics scores were also found to correlate with SONFH occurrence, supported by transcriptomic and CT imaging findings. However, this study has limitations, including its retrospective design and a relatively limited sample size, which may impact the generalizability of the results. Further prospective studies with larger, more diverse populations are needed to validate and enhance the predictive model.
Collapse
Affiliation(s)
- Daqi Jia
- Department of Pathology, Affiliated Banan Hospital of Chongqing Medical University, Longzhouwan Street, Yunan District, Chongqing, 401320, China
| | - Yue Zhang
- Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, China
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, 212 Daguan Road, Xishan District, Kunming, 650032, China
| | - Huaqiang Li
- Department of Pathology, Affiliated Banan Hospital of Chongqing Medical University, Longzhouwan Street, Yunan District, Chongqing, 401320, China
| | - Chunfang Guo
- Department of Pathology, Affiliated Banan Hospital of Chongqing Medical University, Longzhouwan Street, Yunan District, Chongqing, 401320, China
| | - Yipeng Wu
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, 212 Daguan Road, Xishan District, Kunming, 650032, China
| | - Xiangwen Shi
- Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, China
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, 212 Daguan Road, Xishan District, Kunming, 650032, China
| | - Li Yang
- Department of Pathology, Affiliated Banan Hospital of Chongqing Medical University, Longzhouwan Street, Yunan District, Chongqing, 401320, China
| | - Jieyu Mo
- Department of Pathology, Affiliated Banan Hospital of Chongqing Medical University, Longzhouwan Street, Yunan District, Chongqing, 401320, China
| | - Xia Liu
- Department of Pathology, Affiliated Banan Hospital of Chongqing Medical University, Longzhouwan Street, Yunan District, Chongqing, 401320, China
| | - Yongqing Xu
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, 212 Daguan Road, Xishan District, Kunming, 650032, China.
| |
Collapse
|
4
|
Zhang X, Li A, Zhu Y, Liu F, Zhao D, Tang H, Xu C. Effect of stearoyl-coenzyme a desaturase 1 (SCD1) on the function of mast cells. J Asthma 2024; 61:707-716. [PMID: 38315158 DOI: 10.1080/02770903.2024.2303749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024]
Abstract
Background: The prevalence of childhood asthma and obesity is increasing, while obesity increases the risk and severity of asthma. Lipid metabolism has been considered as an important factor in the pathogenesis of obesity-associated asthma. Stearoyl-CoA desaturase 1 (SCD1) is a rate-limiting enzyme that catalyzes the production of monounsaturated fatty acids (MUFA).Methods: In the present study, the microarray data retrieved from the Gene Expression Comprehensive Database (GEO) was analyzed to further clarify the impact of SCD1 on Mast cell activation related lipid mediators and the correlation between SCD1 and obesity asthma in the population.Results: SCD1 was highly expressed in IgE-activated bone marrow-derived mast cells (BMMCs). Meanwhile, SCD1 was also verified expressed highly in dinitrophenyl human serum albumin (DNP-HAS) stimulated RBL-2H3 cells. The expression of SCD1 was up-regulated in peripheral blood leukocytes of asthmatic children, and was positively correlated with skinfold thickness of upper arm, abdominal skinfold and body mass index (BMI). Inhibition of SCD1 expression significantly suppressed the degranulation, lipid mediator production, as well as the migration ability in DNP-HAS-stimulated RBL-2H3 cells.Conclusion: SCD1 is involved in obese-related asthma through regulating mast cells.
Collapse
Affiliation(s)
- Xiuqing Zhang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory Medicine, Tianjin Children's Hospital, Tianjin, China
| | - Aiguo Li
- Department of Pediatrics, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Zhu
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Liu
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deyu Zhao
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Heng Tang
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changdi Xu
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Alda S, Ceausu RA, Gaje PN, Raica M, Cosoroaba RM. Mast Cell: A Mysterious Character in Skin Cancer. In Vivo 2024; 38:58-68. [PMID: 38148067 PMCID: PMC10756458 DOI: 10.21873/invivo.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 12/28/2023]
Abstract
Cutaneous malignancies represent a real concern and burden for the healthcare system, not only due to their increased frequency, but also due to the significant number of deaths attributed to these types of cancer. The genesis of tumors, their progression and metastasis are highly complex and researched subjects; apparently, mast cells (MCs) constitute an important piece in the complicated jigsaw puzzle of cancer. This article reviews the current knowledge of the roles MCs might play in the development of cutaneous malignancies. Besides their well-known and studied role in allergic reactions, MCs are linked to multiple and various disorders, including cancer. MCs exhibit incredible heterogeneity, being able to secrete numerous mediators that influence the tumor microenvironment and tumor cells. They are involved in many physiological and pathological processes, such as inflammation and angiogenesis. In this context, it is paramount to explore the advancements made so far in elucidating the roles that MCs have in skin cancer because they might provide valuable therapeutic targets in the future. Controversial and conflicting results were obtained across the studies examined.
Collapse
Affiliation(s)
- Silvia Alda
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Raluca Amalia Ceausu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania;
| | - Pusa Nela Gaje
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Raluca Mioara Cosoroaba
- Department of Management, Legislation and Communication in Dental Medicine, First Department of Dentistry, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| |
Collapse
|
6
|
Brandsma J, Schofield JPR, Yang X, Strazzeri F, Barber C, Goss VM, Koster G, Bakke PS, Caruso M, Chanez P, Dahlén SE, Fowler SJ, Horváth I, Krug N, Montuschi P, Sanak M, Sandström T, Shaw DE, Chung KF, Singer F, Fleming LJ, Adcock IM, Pandis I, Bansal AT, Corfield J, Sousa AR, Sterk PJ, Sánchez-García RJ, Skipp PJ, Postle AD, Djukanović R. Stratification of asthma by lipidomic profiling of induced sputum supernatant. J Allergy Clin Immunol 2023; 152:117-125. [PMID: 36918039 DOI: 10.1016/j.jaci.2023.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features. OBJECTIVE We performed a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as from healthy controls. METHODS Induced sputum supernatant was collected from 211 adults with asthma and 41 healthy individuals enrolled onto the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) study. Sputum lipidomes were characterized by semiquantitative shotgun mass spectrometry and clustered using topologic data analysis to identify lipid phenotypes. RESULTS Shotgun lipidomics of induced sputum supernatant revealed a spectrum of 9 molecular phenotypes, highlighting not just significant differences between the sputum lipidomes of asthma patients and healthy controls, but also within the asthma patient population. Matching clinical, pathobiologic, proteomic, and transcriptomic data helped inform the underlying disease processes. Sputum lipid phenotypes with higher levels of nonendogenous, cell-derived lipids were associated with significantly worse asthma severity, worse lung function, and elevated granulocyte counts. CONCLUSION We propose a novel mechanism of increased lipid loading in the epithelial lining fluid of asthma patients resulting from the secretion of extracellular vesicles by granulocytic inflammatory cells, which could reduce the ability of pulmonary surfactant to lower surface tension in asthmatic small airways, as well as compromise its role as an immune regulator.
Collapse
Affiliation(s)
- Joost Brandsma
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom.
| | - James P R Schofield
- National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom; Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Xian Yang
- Data Science Institute, Imperial College, London, United Kingdom
| | - Fabio Strazzeri
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Clair Barber
- National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Victoria M Goss
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Grielof Koster
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Per S Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| | - Sven-Erik Dahlén
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom; Manchester Academic Health Centre and NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Ildikó Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy; National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Marek Sanak
- Department of Medicine, Jagiellonian University, Krakow, Poland
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Dominick E Shaw
- National Institute for Health Research Biomedical Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Florian Singer
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Paediatrics and Adolescent Medicine, Division of Paediatric Pulmonology and Allergology, Medical University of Graz, Graz, Austria
| | - Louise J Fleming
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ioannis Pandis
- Data Science Institute, Imperial College, London, United Kingdom
| | - Aruna T Bansal
- Acclarogen Ltd, St John's Innovation Centre, Cambridge, United Kingdom
| | | | - Ana R Sousa
- Respiratory Therapy Unit, GlaxoSmithKline, London, United Kingdom
| | - Peter J Sterk
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Paul J Skipp
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Anthony D Postle
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ratko Djukanović
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| |
Collapse
|
7
|
Li J, Li L, Liu R, Zhu L, Zhou B, Xiao Y, Hou G, Lin L, Chen X, Peng C. Integrative lipidomic features identify plasma lipid signatures in chronic urticaria. Front Immunol 2022; 13:933312. [PMID: 35967440 PMCID: PMC9370552 DOI: 10.3389/fimmu.2022.933312] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/07/2022] [Indexed: 12/17/2022] Open
Abstract
Chronic urticaria (CU) is a chronic inflammatory skin disease mainly mediated by mast cells. Lipids exert essential functions in biological processes; however, the role of lipids in CU remains unclear. Nontargeted lipidomics was performed to investigate the differential lipid profiles between CU patients and healthy control (HC) subjects. Functional validation studies were performed in vitro and in vivo including β-hexosaminidase release examination from mast cells and passive cutaneous anaphylaxis (PCA) mouse model. We detected dramatically altered glycerophospholipids in CU patients compared with HCs. Phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) were increased, while phosphatidylcholine (PC) was reduced in CU patients. The reduction in PC was related to a high weekly urticaria activity score (UAS7), while PS was positively associated with the dermatology life quality index (DLQI). We also identified the differential lipid profiles between chronic spontaneous urticaria (CSU), symptomatic dermographism (SD), and CSU coexist with SD. CU patients were classified into two subtypes (subtype 1 and subtype 2) based on consensus clustering of lipid profiling. Compared with patients in subtype 2, patients in subtype 1 had elevated levels of PC (18:0e/18:2) and PE (38:2), and lower urticaria control test (UCT) scores indicated worse clinical efficiency of secondary generation H1 antihistamines treatment. Importantly, we found that supplementation with PC could attenuate IgE-induced immune responses in mast cells. In general, We described the landscape of plasma lipid alterations in CU patients and provided novel insights into the role of PC in mast cells.
Collapse
Affiliation(s)
- Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liqiao Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Runqiu Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bingjing Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guixue Hou
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Liang Lin
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Castañé H, Iftimie S, Baiges-Gaya G, Rodríguez-Tomàs E, Jiménez-Franco A, López-Azcona AF, Garrido P, Castro A, Camps J, Joven J. Machine learning and semi-targeted lipidomics identify distinct serum lipid signatures in hospitalized COVID-19-positive and COVID-19-negative patients. Metabolism 2022; 131:155197. [PMID: 35381232 PMCID: PMC8976580 DOI: 10.1016/j.metabol.2022.155197] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lipids are involved in the interaction between viral infection and the host metabolic and immunological responses. Several studies comparing the lipidome of COVID-19-positive hospitalized patients vs. healthy subjects have already been reported. It is largely unknown, however, whether these differences are specific to this disease. The present study compared the lipidomic signature of hospitalized COVID-19-positive patients with that of healthy subjects, as well as with COVID-19-negative patients hospitalized for other infectious/inflammatory diseases. METHODS We analyzed the lipidomic signature of 126 COVID-19-positive patients, 45 COVID-19-negative patients hospitalized with other infectious/inflammatory diseases and 50 healthy volunteers. A semi-targeted lipidomics analysis was performed using liquid chromatography coupled to mass spectrometry. Two-hundred and eighty-three lipid species were identified and quantified. Results were interpreted by machine learning tools. RESULTS We identified acylcarnitines, lysophosphatidylethanolamines, arachidonic acid and oxylipins as the most altered species in COVID-19-positive patients compared to healthy volunteers. However, we found similar alterations in COVID-19-negative patients who had other causes of inflammation. Conversely, lysophosphatidylcholine 22:6-sn2, phosphatidylcholine 36:1 and secondary bile acids were the parameters that had the greatest capacity to discriminate between COVID-19-positive and COVID-19-negative patients. CONCLUSION This study shows that COVID-19 infection shares many lipid alterations with other infectious/inflammatory diseases, and which differentiate them from the healthy population. The most notable alterations were observed in oxylipins, while alterations in bile acids and glycerophospholipis best distinguished between COVID-19-positive and COVID-19-negative patients. Our results highlight the value of integrating lipidomics with machine learning algorithms to explore the pathophysiology of COVID-19 and, consequently, improve clinical decision making.
Collapse
Affiliation(s)
- Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Simona Iftimie
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Gerard Baiges-Gaya
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Ana Felisa López-Azcona
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Pedro Garrido
- Intensive Care Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Antoni Castro
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
9
|
Meghnem D, Leong E, Pinelli M, Marshall JS, Di Cara F. Peroxisomes Regulate Cellular Free Fatty Acids to Modulate Mast Cell TLR2, TLR4, and IgE-Mediated Activation. Front Cell Dev Biol 2022; 10:856243. [PMID: 35756999 PMCID: PMC9215104 DOI: 10.3389/fcell.2022.856243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Mast cells are specialized, tissue resident, immune effector cells able to respond to a wide range of stimuli. MCs are involved in the regulation of a variety of physiological functions, including vasodilation, angiogenesis and pathogen elimination. In addition, MCs recruit and regulate the functions of many immune cells such as dendritic cells, macrophages, T cells, B cells and eosinophils through their selective production of multiple cytokines and chemokines. MCs generate and release multi-potent molecules, such as histamine, proteases, prostanoids, leukotrienes, heparin, and many cytokines, chemokines, and growth factors through both degranulation dependent and independent pathways. Recent studies suggested that metabolic shifts dictate the activation and granule content secretion by MCs, however the metabolic signaling promoting these events is at its infancy. Lipid metabolism is recognized as a pivotal immunometabolic regulator during immune cell activation. Peroxisomes are organelles found across all eukaryotes, with a pivotal role in lipid metabolism and the detoxification of reactive oxygen species. Peroxisomes are one of the emerging axes in immunometabolism. Here we identified the peroxisome as an essential player in MCs activation. We determined that lack of functional peroxisomes in murine MCs causes a significant reduction of interleukin-6, Tumor necrosis factor and InterleukinL-13 following immunoglobulin IgE-mediated and Toll like receptor 2 and 4 activation compared to the Wild type (WT) BMMCs. We linked these defects in cytokine release to defects in free fatty acids homeostasis. In conclusion, our study identified the importance of peroxisomal fatty acids homeostasis in regulating mast cell-mediated immune functions.
Collapse
Affiliation(s)
- Dihia Meghnem
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Nova Scotia Health Authority IWK, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Edwin Leong
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Marinella Pinelli
- Department of Pediatrics, Nova Scotia Health Authority IWK, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jean S. Marshall
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Jean S. Marshall, ; Francesca Di Cara,
| | - Francesca Di Cara
- Department of Pediatrics, Nova Scotia Health Authority IWK, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Jean S. Marshall, ; Francesca Di Cara,
| |
Collapse
|
10
|
Banafea GH, Bakhashab S, Alshaibi HF, Natesan Pushparaj P, Rasool M. The role of human mast cells in allergy and asthma. Bioengineered 2022; 13:7049-7064. [PMID: 35266441 PMCID: PMC9208518 DOI: 10.1080/21655979.2022.2044278] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mast cells are tissue-inhabiting cells that play an important role in inflammatory diseases of the airway tract. Mast cells arise in the bone marrow as progenitor cells and complete their differentiation in tissues exposed to the external environment, such as the skin and respiratory tract, and are among the first to respond to bacterial and parasitic infections. Mast cells express a variety of receptors that enable them to respond to a wide range of stimulants, including the high-affinity FcεRI receptor. Upon initial contact with an antigen, mast cells are sensitized with IgE to recognize the allergen upon further contact. FcεRI-activated mast cells are known to release histamine and proteases that contribute to asthma symptoms. They release a variety of cytokines and lipid mediators that contribute to immune cell accumulation and tissue remodeling in asthma. Mast cell mediators trigger inflammation and also have a protective effect. This review aims to update the existing knowledge on the mediators released by human FcεRI-activated mast cells, and to unravel their pathological and protective roles in asthma and allergy. In addition, we highlight other diseases that arise from mast cell dysfunction, the therapeutic approaches used to address them, and fill the gaps in our current knowledge. Mast cell mediators not only trigger inflammation but may also have a protective effect. Given the differences between human and animal mast cells, this review focuses on the mediators released by human FcεRI-activated mast cells and the role they play in asthma and allergy.
Collapse
Affiliation(s)
- Ghalya H Banafea
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda F Alshaibi
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Bscl2 Deficiency Does Not Directly Impair the Innate Immune Response in a Murine Model of Generalized Lipodystrophy. J Clin Med 2021; 10:jcm10030441. [PMID: 33498782 PMCID: PMC7865406 DOI: 10.3390/jcm10030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/28/2022] Open
Abstract
Congenital Generalized Lipodystrophy type 2 (CGL2) is the most severe form of lipodystrophy and is caused by mutations in the BSCL2 gene. Affected patients exhibit a near complete lack of adipose tissue and suffer severe metabolic disease. A recent study identified infection as a major cause of death in CGL2 patients, leading us to examine whether Bscl2 loss could directly affect the innate immune response. We generated a novel mouse model selectively lacking Bscl2 in the myeloid lineage (LysM-B2KO) and also examined the function of bone-marrow-derived macrophages (BMDM) isolated from global Bscl2 knockout (SKO) mice. LysM-B2KO mice failed to develop lipodystrophy and metabolic disease, providing a model to study the direct role of Bscl2 in myeloid lineage cells. Lipopolysaccharide-mediated stimulation of inflammatory cytokines was not impaired in LysM-B2KO mice or in BMDM isolated from either LysM-B2KO or SKO mice. Additionally, intracellular fate and clearance of bacteria in SKO BMDM challenged with Staphylococcus aureus was indistinguishable from that in BMDM isolated from littermate controls. Overall, our findings reveal that selective Bscl2 deficiency in macrophages does not critically impact the innate immune response to infection. Instead, an increased susceptibility to infection in CGL2 patients is likely to result from severe metabolic disease.
Collapse
|
12
|
|
13
|
Elieh Ali Komi D, Wöhrl S, Bielory L. Mast Cell Biology at Molecular Level: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 58:342-365. [PMID: 31828527 DOI: 10.1007/s12016-019-08769-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs) are portions of the innate and adaptive immune system derived from bone marrow (BM) progenitors that are rich in cytoplasmic granules. MC maturation, phenotype, and function are determined by their microenvironment. MCs accumulate at inflammatory sites associated with atopy, wound healing, and malignancies. They interact with the external environment and are predominantly located in close proximity of blood vessels and sensory nerves. MCs are key initiators and modulators of allergic, anaphylactic, and other inflammatory reactions, by induction of vasodilation, promoting of vascular permeability, recruitment of inflammatory cells, facilitation of adaptive immune responses, and modulation of angiogenesis, and fibrosis. They express a wide range of receptors, e.g., for IgE (FcεRI), IgG (FcγR), stem cell factor (SCF) (KIT receptor or CD117), complement (including C5aR), and cytokines, that upon activation trigger various signaling pathways. The final consequence of such ligand receptor-based activation of MCs is the release of a broad array of mediators which are classified in three categories. While some mediators are preformed and remain stored in granules such as heparin, histamine, and enzymes mainly chymase and tryptase, others are de novo synthesized only after activation including LTB4, LTD4, PDG2, and PAF, and the cytokines IL-10, IL-8, IL-5, IL-3, IL-1, GM-CSF, TGF-β, VEGF, and TNF-α. Depending on the stimulus, MCs calibrate their pattern of mediator release, modulate the amplification of allergic inflammation, and are involved in the resolution of the immune responses. Here, we review recent findings and reports that help to understand the MC biology, pathology, and physiology of diseases with MC involvement.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Stefan Wöhrl
- Floridsdorf Allergy Center (FAZ), Vienna, Austria
| | - Leonard Bielory
- Department of Medicine and Ophthalmology, Hackensack Meridian School of Medicine at Seton Hall University, 400 Mountain Avenue, Springfield, NJ, 07081-2515, USA.
- Department of Medicine, Thomas Jefferson Universi ty Sidney Kimmel School of Medicine, Philadelphia, PA, USA.
- Rutgers University Center of Environmental Prediction, New Brunswick, NJ, USA.
| |
Collapse
|
14
|
Bäck M, Yurdagul A, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol 2020; 16:389-406. [PMID: 30846875 DOI: 10.1038/s41569-019-0169-2] [Citation(s) in RCA: 635] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a lipid-driven inflammatory disease of the arterial intima in which the balance of pro-inflammatory and inflammation-resolving mechanisms dictates the final clinical outcome. Intimal infiltration and modification of plasma-derived lipoproteins and their uptake mainly by macrophages, with ensuing formation of lipid-filled foam cells, initiate atherosclerotic lesion formation, and deficient efferocytotic removal of apoptotic cells and foam cells sustains lesion progression. Defective efferocytosis, as a sign of inadequate inflammation resolution, leads to accumulation of secondarily necrotic macrophages and foam cells and the formation of an advanced lesion with a necrotic lipid core, indicative of plaque vulnerability. Resolution of inflammation is mediated by specialized pro-resolving lipid mediators derived from omega-3 fatty acids or arachidonic acid and by relevant proteins and signalling gaseous molecules. One of the major effects of inflammation resolution mediators is phenotypic conversion of pro-inflammatory macrophages into macrophages that suppress inflammation and promote healing. In advanced atherosclerotic lesions, the ratio between specialized pro-resolving mediators and pro-inflammatory lipids (in particular leukotrienes) is strikingly low, providing a molecular explanation for the defective inflammation resolution features of these lesions. In this Review, we discuss the mechanisms of the formation of clinically dangerous atherosclerotic lesions and the potential of pro-resolving mediator therapy to inhibit this process.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Arif Yurdagul
- Columbia University Irving Medical Center, New York, NY, USA
| | - Ira Tabas
- Columbia University Irving Medical Center, New York, NY, USA
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland.,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland.
| |
Collapse
|
15
|
Lipidomic profiling analysis of the phospholipid molecules in SCAP-induced lipid droplet formation in bovine mammary epithelial cells. Prostaglandins Other Lipid Mediat 2020; 149:106420. [PMID: 31953015 DOI: 10.1016/j.prostaglandins.2020.106420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/15/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
The accumulation of lipid droplets (LDs) in the cytoplasm plays an important role in energy balance, membrane synthesis and cell signal transduction. The aim of this study was to investigate the profile of phospholipids after SCAP-induced LD formation in bovine mammary epithelial cells (BMECs). A shRNA-SCAP vector and a SCAP/SREBP vector were used to knock down and overexpress the SCAP gene in BMECs prior to evaluating the effects on LDs using Western blotting, real-time PCR, LD staining and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The average LD diameter was determined following oil red O staining. The overexpression of SCAP increased the abundance of SCD, ACACA and FASN genes and nuclear SREBP1a. In contrast, knocking down SCAP decreased the abundance of the nuclear SREBP1a protein and downregulated the abundance of target genes. Lipid droplet staining revealed that knocking down SCAP reduced LD formation and average LD diameter. In contrast, overexpression of SCAP increased the formation and size of the LDs. The results from an analysis of cellular lipids revealed that phospholipids are the predominant species in the profile of cell lipids. phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are important for determining the size of LDs. The LD formation induced by SCAP gene overexpression and knockdown underscored the role of phospholipids involved in lipid droplet formation and fusion.
Collapse
|
16
|
Aldan JT, Jansen C, Speck M, Maaetoft-Udsen K, Cordasco EA, Faiai M, Shimoda LM, Greineisen WE, Turner H, Stokes AJ. Insulin-induced lipid body accumulation is accompanied by lipid remodelling in model mast cells. Adipocyte 2019; 8:265-279. [PMID: 31311389 PMCID: PMC6768188 DOI: 10.1080/21623945.2019.1636624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mast cell lipid bodies are key to initiation, maintenance and resolution of inflammatory responses in tissue. Mast cell lines, primary bone marrow-derived mast cells and peripheral blood basophils present a ‘steatotic’ phenotype in response to chronic insulin exposure, where cells become loaded with lipid bodies. Here we show this state is associated with reduced histamine release, but increased capacity to release bioactive lipids. We describe the overall lipid phenotype of mast cells in this insulin-induced steatotic state and the consequences for critical cellular lipid classes involved in stages of inflammation. We show significant insulin-induced shifts in specific lipid classes, especially arachidonic acid derivatives, MUFA and PUFA, the EPA/DHA ratio, and in cardiolipins, especially those conjugated to certain DHA and EPAs. Functionally, insulin exposure markedly alters the FcϵRI-induced release of Series 4 leukotriene LTC4, Series 2 prostaglandin PGD2, Resolvin-D1, Resolvin-D2 and Resolvin-1, reflecting the expanded precursor pools and impact on both the pro-inflammation and pro-resolution bioactive lipids that are released during mast cell activation. Chronic hyperinsulinemia is a feature of obesity and progression to Type 2 Diabetes, these data suggest that mast cell release of key lipid mediators is altered in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Johnny T. Aldan
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
- Laboratory of Experimental Medicine, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI, USA
| | - Chad Jansen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Mark Speck
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | | | - Edward A. Cordasco
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
- Laboratory of Experimental Medicine, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI, USA
| | - Mata’Uitafa Faiai
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Lori M.N. Shimoda
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - William E. Greineisen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Helen Turner
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Alexander J. Stokes
- Laboratory of Experimental Medicine, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI, USA
| |
Collapse
|
17
|
Hagemann PM, Nsiah-Dosu S, Hundt JE, Hartmann K, Orinska Z. Modulation of Mast Cell Reactivity by Lipids: The Neglected Side of Allergic Diseases. Front Immunol 2019; 10:1174. [PMID: 31191542 PMCID: PMC6549522 DOI: 10.3389/fimmu.2019.01174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 05/08/2019] [Indexed: 12/20/2022] Open
Abstract
Mast cells (MCs) have long been mainly regarded as effector cells in IgE-associated allergic disorders with potential immunoregulatory roles. Located close to the allergen entry sites in the skin and mucosa, MCs can capture foreign substances such as allergens, toxins, or noxious substances and are exposed to the danger signals produced by epithelial cells. MC reactivity shaped by tissue-specific factors is crucial for allergic responses ranging from local skin reactions to anaphylactic shock. Development of Th2 response leading to allergen-specific IgE production is a prerequisite for MC sensitization and induction of FcεRI-mediated MC degranulation. Up to now, IgE production has been mainly associated with proteins, whereas lipids present in plant pollen grains, mite fecal particles, insect venoms, or food have been largely overlooked regarding their immunostimulatory and immunomodulatory properties. Recent studies, however, have now demonstrated that lipids affect the sensitization process by modulating innate immune responses of epithelial cells, dendritic cells, and NK-T cells and thus crucially contribute to the outcome of sensitization. Whether and how lipids affect also MC effector functions in allergic reactions has not yet been fully clarified. Here, we discuss how lipids can affect MC responses in the context of allergic inflammation. Direct effects of immunomodulatory lipids on MC degranulation, changes in local lipid composition induced by allergens themselves and changes in lipid transport affecting MC reactivity are possible mechanisms by which the function of MC might be modulated.
Collapse
Affiliation(s)
- Philipp M Hagemann
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | | | | | - Karin Hartmann
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,Division of Allergy, Department of Dermatology, University of Basel, Basel, Switzerland
| | - Zane Orinska
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
18
|
Kyle JE, Clair G, Bandyopadhyay G, Misra RS, Zink EM, Bloodsworth KJ, Shukla AK, Du Y, Lillis J, Myers JR, Ashton J, Bushnell T, Cochran M, Deutsch G, Baker ES, Carson JP, Mariani TJ, Xu Y, Whitsett JA, Pryhuber G, Ansong C. Cell type-resolved human lung lipidome reveals cellular cooperation in lung function. Sci Rep 2018; 8:13455. [PMID: 30194354 PMCID: PMC6128932 DOI: 10.1038/s41598-018-31640-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Cell type-resolved proteome analyses of the brain, heart and liver have been reported, however a similar effort on the lipidome is currently lacking. Here we applied liquid chromatography-tandem mass spectrometry to characterize the lipidome of major lung cell types isolated from human donors, representing the first lipidome map of any organ. We coupled this with cell type-resolved proteomics of the same samples (available at Lungmap.net). Complementary proteomics analyses substantiated the functional identity of the isolated cells. Lipidomics analyses showed significant variations in the lipidome across major human lung cell types, with differences most evident at the subclass and intra-subclass (i.e. total carbon length of the fatty acid chains) level. Further, lipidomic signatures revealed an overarching posture of high cellular cooperation within the human lung to support critical functions. Our complementary cell type-resolved lipid and protein datasets serve as a rich resource for analyses of human lung function.
Collapse
Affiliation(s)
- Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Gautam Bandyopadhyay
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Ravi S Misra
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Erika M Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Anil K Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yina Du
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jacquelyn Lillis
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Jason R Myers
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - John Ashton
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Timothy Bushnell
- Flow Cytometry Core Facility, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Matthew Cochran
- Flow Cytometry Core Facility, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Gail Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, 98105, USA
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - James P Carson
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX, 78712, USA
| | - Thomas J Mariani
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yan Xu
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Gloria Pryhuber
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
19
|
Kovanen PT, Bot I. Mast cells in atherosclerotic cardiovascular disease – Activators and actions. Eur J Pharmacol 2017; 816:37-46. [DOI: 10.1016/j.ejphar.2017.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
|
20
|
Aller MA, Arias N, Martínez V, Vergara P, Arias J. The gestational power of mast cells in the injured tissue. Inflamm Res 2017; 67:111-116. [PMID: 29101413 DOI: 10.1007/s00011-017-1108-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/26/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022] Open
Abstract
The inflammatory response expressed after wound healing would be the recapitulation of systemic extra-embryonic functions, which would focus on the interstitium of the injured tissue. In the injured tissue, mast cells, provided for a great functional heterogeneity, could play the leading role in the re-expression of extra-embryonic functions, i.e., coelomic-amniotic and trophoblastic-vitelline. Moreover, mast cells would favor the production of a gastrulation-like process, which in certain tissues and organs would induce the regeneration of the injured tissue. Therefore, the engraftment of mesenchymal stem cells and mast cells, both with an extra-embryonic regenerative phenotype, would achieve a blastema, from the repaired and regenerated injured tissue, rather than by fibrosis, which is commonly made through wound-healing.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Department of Surgery, School of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal s.n., 28040, Madrid, Spain.
| | - Natalia Arias
- UCL Division of Medicine, Institute for Liver and Digestive Health, Rowland Hill Street, London, NW32PF, UK.,INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Veterinary School, Autonoma University of Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Patri Vergara
- Department of Cell Biology, Physiology and Immunology, Veterinary School, Autonoma University of Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Biomedical Research Center for Hepatic and Digestive Illnesses (CIBERehd), Carlos II Health Institute, Barcelona, Spain
| | - Jaime Arias
- Department of Surgery, School of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal s.n., 28040, Madrid, Spain
| |
Collapse
|
21
|
Yang HJ, Osakada H, Kojidani T, Haraguchi T, Hiraoka Y. Lipid droplet dynamics during Schizosaccharomyces pombe sporulation and their role in spore survival. Biol Open 2017; 6:217-222. [PMID: 28011631 PMCID: PMC5312105 DOI: 10.1242/bio.022384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Upon nitrogen starvation, the fission yeast Schizosaccharomyces pombe forms dormant spores; however, the mechanisms by which a spore sustains life without access to exogenous nutrients remain unclear. Lipid droplets are reservoirs of neutral lipids that act as important cellular energy resources. Using live-cell imaging analysis, we found that the lipid droplets of mother cells redistribute to their nascent spores. Notably, this process was actin polymerization-dependent and facilitated by the leading edge proteins of the forespore membrane. Spores lacking triacylglycerol synthesis, which is essential for lipid droplet formation, failed to germinate. Our results suggest that the lipid droplets are important for the sustenance of life in spores. Summary: Lipid droplets of yeast mother cells are shown to redistribute to their nascent spores by live-cell imaging analysis, suggesting that the lipid droplets are important for yeast spore survival.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hiroko Osakada
- Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tomoko Kojidani
- Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan.,Japan Women's University, Tokyo, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan .,Advance ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
22
|
Perrotta I. Interaction between lipid droplets and endoplasmic reticulum in human atherosclerotic plaques. Ultrastruct Pathol 2017; 41:1-9. [DOI: 10.1080/01913123.2016.1269861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ida Perrotta
- Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), Centre for Microscopy and Microanalysis (CM2), Transmission Electron Microscopy Laboratory, University of Calabria, Cosenza, Italy
| |
Collapse
|
23
|
Lemberg MK, Adrain C. Inactive rhomboid proteins: New mechanisms with implications in health and disease. Semin Cell Dev Biol 2016; 60:29-37. [PMID: 27378062 DOI: 10.1016/j.semcdb.2016.06.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/25/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022]
Abstract
Rhomboids, proteases containing an unusual membrane-integral serine protease active site, were first identified in Drosophila, where they fulfill an essential role in epidermal growth factor receptor signaling, by cleaving membrane-tethered growth factor precursors. It has recently become apparent that eukaryotic genomes harbor conserved catalytically inactive rhomboid protease homologs, including derlins and iRhoms. Here we highlight how loss of proteolytic activity was followed in evolution by impressive functional diversification, enabling these pseudoproteases to fulfill crucial roles within the secretory pathway, including protein degradation, trafficking regulation, and inflammatory signaling. We distil the current understanding of the roles of rhomboid pseudoproteases in development and disease. Finally, we address mechanistically how versatile features of proteolytically active rhomboids have been elaborated to serve the sophisticated functions of their pseudoprotease cousins. By comparing functional and structural clues, we highlight common principles shared by the rhomboid superfamily, and make mechanistic predictions.
Collapse
Affiliation(s)
- Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Colin Adrain
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
24
|
Lopategi A, López-Vicario C, Alcaraz-Quiles J, García-Alonso V, Rius B, Titos E, Clària J. Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction. Mol Cell Endocrinol 2016; 419:44-59. [PMID: 26433072 DOI: 10.1016/j.mce.2015.09.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
Abstract
White adipose tissue is recognized as an active endocrine organ implicated in the maintenance of metabolic homeostasis. However, adipose tissue function, which has a crucial role in the development of obesity-related comorbidities including insulin resistance and non-alcoholic fatty liver disease, is dysregulated in obese individuals. This review explores the physiological functions and molecular actions of bioactive lipids biosynthesized in adipose tissue including sphingolipids and phospholipids, and in particular fatty acids derived from phospholipids of the cell membrane. Special emphasis is given to polyunsaturated fatty acids of the omega-6 and omega-3 families and their conversion to bioactive lipid mediators through the cyclooxygenase and lipoxygenase pathways. The participation of omega-3-derived lipid autacoids in the resolution of adipose tissue inflammation and in the prevention of obesity-associated hepatic complications is also thoroughly discussed.
Collapse
Affiliation(s)
- Aritz Lopategi
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain.
| | - Cristina López-Vicario
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - José Alcaraz-Quiles
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - Verónica García-Alonso
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - Bibiana Rius
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - Esther Titos
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain; CIBERehd, University of Barcelona, Barcelona 08036, Spain
| | - Joan Clària
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain; CIBERehd, University of Barcelona, Barcelona 08036, Spain; Department of Physiological Sciences I, University of Barcelona, Barcelona 08036, Spain.
| |
Collapse
|
25
|
Dichlberger A, Schlager S, Kovanen PT, Schneider WJ. Lipid droplets in activated mast cells - a significant source of triglyceride-derived arachidonic acid for eicosanoid production. Eur J Pharmacol 2015; 785:59-69. [PMID: 26164793 DOI: 10.1016/j.ejphar.2015.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/28/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022]
Abstract
Mast cells are potent effectors of immune reactions and key players in various inflammatory diseases such as atherosclerosis, asthma, and rheumatoid arthritis. The cellular defense response of mast cells represents a unique and powerful system, where external signals can trigger cell activation resulting in a stimulus-specific and highly coordinated release of a plethora of bioactive mediators. The arsenal of mediators encompasses preformed molecules stored in cytoplasmic secretory granules, as well as newly synthesized proteinaceous and lipid mediators. The release of mediators occurs in strict chronological order and requires proper coordination between the endomembrane system and various enzymatic machineries. For the generation of lipid mediators, cytoplasmic lipid droplets have been shown to function as a major intracellular pool of arachidonic acid, the precursor for eicosanoid biosynthesis. Recent studies have revealed that not only phospholipids in mast cell membranes, but also triglycerides in mast cell lipid droplets are a substrate source for eicosanoid formation. The present review summarizes current knowledge about mast cell lipid droplet biology, and discusses expansions and challenges of traditional mechanistic models for eicosanoid production.
Collapse
Affiliation(s)
- Andrea Dichlberger
- Wihuri Research Institute, Biomedicum Helsinki 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria.
| | - Stefanie Schlager
- Medical University of Graz, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, 8010 Graz, Austria; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum Helsinki 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria
| | - Wolfgang J Schneider
- Wihuri Research Institute, Biomedicum Helsinki 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Medical University of Graz, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, 8010 Graz, Austria; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria
| |
Collapse
|
26
|
Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol 2014; 5:569. [PMID: 25452755 PMCID: PMC4231949 DOI: 10.3389/fimmu.2014.00569] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022] Open
Abstract
Mast cells (MC) are widely distributed throughout the body and are common at mucosal surfaces, a major host-environment interface. MC are functionally and phenotypically heterogeneous depending on the microenvironment in which they mature. Although MC have been classically viewed as effector cells of IgE-mediated allergic diseases, they are also recognized as important in host defense, innate and acquired immunity, homeostatic responses, and immunoregulation. MC activation can induce release of pre-formed mediators such as histamine from their granules, as well as release of de novo synthesized lipid mediators, cytokines, and chemokines that play diverse roles, not only in allergic reactions but also in numerous physiological and pathophysiological responses. Indeed, MC release their mediators in a discriminating and chronological manner, depending upon the stimuli involved and their signaling cascades (e.g., IgE-mediated or Toll-like receptor-mediated). However, the precise mechanisms underlying differential mediator release in response to these stimuli are poorly known. This review summarizes our knowledge of MC mediators and will focus on what is known about the discriminatory release of these mediators dependent upon diverse stimuli, MC phenotypes, and species of origin, as well as on the intracellular synthesis, storage, and secretory processes involved.
Collapse
Affiliation(s)
- Tae Chul Moon
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - A. Dean Befus
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Marianna Kulka
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, Canada
| |
Collapse
|
27
|
Melo RCN, Weller PF. Unraveling the complexity of lipid body organelles in human eosinophils. J Leukoc Biol 2014; 96:703-12. [PMID: 25210147 DOI: 10.1189/jlb.3ru0214-110r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lipid-rich organelles are common in many cell types. In cells, such as adipocytes, these organelles are termed LDs, whereas in other cells, such as leukocytes, they are called LBs. The study of leukocyte LBs has attracted attention as a result of their association with human diseases. In leukocytes, such as eosinophils, LB accumulation has been documented extensively during inflammatory conditions. In these cells, LBs are linked to the regulation of immune responses by compartmentalization of several proteins and lipids involved in the control and biosynthesis of inflammatory mediators (eicosanoids). However, it has been unclear how diverse proteins, including membrane-associated enzymes involved in eicosanoid formation, incorporate into LBs, especially if the internal content of LBs is assumed to consist solely of stores of neutral lipids, as present within adipocyte LDs. Studies of the formation, function, and ultrastructure of LBs in eosinophils have been providing insights pertinent to LBs in other leukocytes. Here, we review current knowledge of the composition and function of leukocyte LBs as provided by studies of human eosinophil LBs, including recognitions of the internal architecture of eosinophil LBs based on 3D electron tomographic analyses.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Brazil; and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter F Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Kaliaperumal J, Padarthi P, Elangovan N, Hari N. Anti-tumorigenic effect of nano formulated peptide pACC1 by diminishing de novo lipogenisis in DMBA induced mammary carcinoma rat model. Biomed Pharmacother 2014; 68:763-73. [PMID: 25174645 DOI: 10.1016/j.biopha.2014.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/20/2014] [Indexed: 10/25/2022] Open
Abstract
At present, the majority of established treatments for breast cancer are based on clinical manifestations, some fundamental of molecular and cellular biology of cancer. In recent times, the therapy is moving towards personalized medicines. Nevertheless, both the methodologies have own demerits. In the present study, we proposed a novel idea of targeted therapy with twin pharmacological potential by a peptide pACC1. The peptide was formulated with chitosan and evaluated with DMBA induced mammary carcinoma. Results suggest that the peptide holds great control on tumor cell multiplication, fatty acid synthesis and lactate levels. In addition, peptide also brings normal metabolic signs in glycolytic and glycogenic pathways. Histological studies confirm the dual pharmacological actions. Further, it is also proven that the peptide controls membrane receptor levels of HER2 and EGFR. In conclusion, that the peptide pACC1 could be employed as greater therapeutic adjuvant with currently established drugs without considering the stage of the cancer.
Collapse
Affiliation(s)
- Jagatheesh Kaliaperumal
- Molecular Pharmacology Research Laboratory, Department of Biotechnology, Periyar University, Salem, India
| | - Pavankumar Padarthi
- Molecular Pharmacology Research Laboratory, Department of Biotechnology, Periyar University, Salem, India
| | - Namasivayam Elangovan
- Molecular Pharmacology Research Laboratory, Department of Biotechnology, Periyar University, Salem, India.
| | - Natarajan Hari
- School of Chemical & Biotechnology, Sastra University, Thanjavur, India
| |
Collapse
|
29
|
Dichlberger A, Schlager S, Maaninka K, Schneider WJ, Kovanen PT. Adipose triglyceride lipase regulates eicosanoid production in activated human mast cells. J Lipid Res 2014; 55:2471-8. [PMID: 25114172 DOI: 10.1194/jlr.m048553] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.
Collapse
Affiliation(s)
| | | | | | - Wolfgang J Schneider
- Department of Medical Biochemistry, Medical University Vienna, Max F. Perutz Laboratories, 1030 Vienna, Austria
| | | |
Collapse
|
30
|
Greineisen WE, Speck M, Shimoda LMN, Sung C, Phan N, Maaetoft-Udsen K, Stokes AJ, Turner H. Lipid body accumulation alters calcium signaling dynamics in immune cells. Cell Calcium 2014; 56:169-80. [PMID: 25016314 DOI: 10.1016/j.ceca.2014.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets.
Collapse
Affiliation(s)
- William E Greineisen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Mark Speck
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Lori M N Shimoda
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Carl Sung
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Nolwenn Phan
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Kristina Maaetoft-Udsen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States
| | - Alexander J Stokes
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, United States
| | - Helen Turner
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, United States; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, United States.
| |
Collapse
|
31
|
Arrese EL, Saudale FZ, Soulages JL. Lipid Droplets as Signaling Platforms Linking Metabolic and Cellular Functions. Lipid Insights 2014; 7:7-16. [PMID: 25221429 PMCID: PMC4161058 DOI: 10.4137/lpi.s11128] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The main cells of the adipose tissue of animals, adipocytes, are characterized by the presence of large cytosolic lipid droplets (LDs) that store triglyceride (TG) and cholesterol. However, most cells have LDs and the ability to store lipids. LDs have a well-known central role in storage and provision of fatty acids and cholesterol. However, the complexity of the regulation of lipid metabolism on the surface of the LDs is still a matter of intense study. Beyond this role, a number of recent studies have suggested that LDs have major functions in other cellular processes, such as protein storage and degradation, infection, and immunity. Thus, our perception of LDs has been radically transformed from simple globules of fat to highly dynamic organelles of unexpected complexity. Here, we compiled some recent evidence supporting the emerging view that LDs act as platforms connecting a number of relevant metabolic and cellular functions.
Collapse
Affiliation(s)
- Estela L Arrese
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| | - Fredy Z Saudale
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| |
Collapse
|