1
|
Neumann S, Rodrigues JCL, Simpson LL, Lawton CB, Burden D, Kobetic MD, Adams ZH, Hope K, Paton JFR, Blythe H, Manghat N, Barnes JN, Nightingale AK, Hamilton MCH, Hart EC. Cerebral blood flow during simulated central hypovolaemia in people with hypertension: does vertebral artery hypoplasia matter? J Physiol 2025; 603:1417-1437. [PMID: 39960462 PMCID: PMC11908472 DOI: 10.1113/jp287786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/28/2025] [Indexed: 03/15/2025] Open
Abstract
Adults with hypertension have higher prevalence of vertebral artery hypoplasia (VAH), which is associated with lower resting cerebral blood flow (CBF). We examined whether VAH impacts the ability to regulate CBF during haemodynamic stress when cardiac output and blood pressure are lowered via body negative pressure (LBNP). Participants underwent magnetic resonance angiography (MRA) at 1.5T during LBNP at 0, -20 and -40 mmHg, and were assigned to VAH (n = 13) or without-VAH (n = 11) groups post-acquisition. Phase-contrast MRA measured flow in the basilar artery (BA), internal carotid arteries (ICA), and the ascending aorta to measure cardiac output (CO). The CO decreased during all levels of LBNP in both groups (LBNP main effect P < 0.0001), whereas MAP was reduced in the group without VAH only (P = 0.0003). BA flow was reduced during LBNP in the group without VAH (P = 0.0267 at -20 mmHg and P < 0.0001 at -40 mmHg) but was surprisingly unchanged in the group with VAH (P > 0.05 all levels LBNP). ICA flow decreased during LBNP (P < 0.0001) and was not different between groups. Total CBF decreased during LBNP in hypertensives without VAH (P = 0.0192 at -20 mmHg and P < 0.0001 at -40 mmHg) but was unchanged in patients with VAH (P > 0.05 at all levels of LBNP). Total peripheral resistance (TPR) increased during LBNP in both groups, but the rise was greater in the group with VAH (-20 mmHg; P = 0.0129, -40 mmHg; P = 0.0016). In summary, hypertensive patients without VAH may tolerate decreases in CBF, whereas patients with VAH evoke a greater systemic TPR response to preserve CBF. KEY POINTS: Vertebral artery hypoplasia (VAH) is more common in hypertensive adults and is associated with lower resting cerebral blood flow (CBF), suggesting that VAH might impair the brain's ability to maintain cerebral blood flow during haemodynamic stress using lower body negative pressure. This study shows that hypertensive patients with VAH maintain CBF during body negative pressure, unlike those without VAH, who experience reductions in CBF. Patients with VAH show a greater rise in total peripheral resistance (TPR), suggesting a compensatory mechanism to maintain cerebral perfusion. The findings highlight that patients with VAH have an altered physiological response to hypovolaemia, where they may rely on systemic pressor responses to maintain perfusion of posterior brain territories in already hypoperfused circulation. This is important for understanding how VAH impacts cerebrovascular function in hypertensive patients and may influence clinical approaches to managing CBF in disease conditions.
Collapse
Affiliation(s)
- Sandra Neumann
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | | | - Lydia L. Simpson
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Chris B. Lawton
- Department of CardiologyUniversity Hospitals Bristol and Weston NHS Foundation TrustUK
| | - Daniel Burden
- Department of CardiologyUniversity Hospitals Bristol and Weston NHS Foundation TrustUK
| | - Matthew D. Kobetic
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
- Department of CardiologyUniversity Hospitals Bristol and Weston NHS Foundation TrustUK
| | - Zoe H. Adams
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
| | - Katrina Hope
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Julian F. R. Paton
- Manaaki Manawa, The Centre for Heart ResearchUniversity of AucklandAucklandNew Zealand
| | - Hazel Blythe
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Nathan Manghat
- Department of CardiologyUniversity Hospitals Bristol and Weston NHS Foundation TrustUK
| | - Jill N. Barnes
- Department of Kinesiology, Bruno Balke Biodynamics LaboratoryUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Angus K. Nightingale
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Mark C. H. Hamilton
- Department of CardiologyUniversity Hospitals Bristol and Weston NHS Foundation TrustUK
| | - Emma C. Hart
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| |
Collapse
|
2
|
Hu L, Zhang Y, Li Y, Wang R, Xu H. Effect of electroacupuncture on internal carotid artery blood flow in patients undergoing laparoscopic gallbladder surgery: A randomized clinical trial. Integr Med Res 2024; 13:101097. [PMID: 39635076 PMCID: PMC11616594 DOI: 10.1016/j.imr.2024.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Background Little is known about the effect of electroacupuncture (EA) on cerebral blood flow. We investigated this question in patients undergoing laparoscopic cholecystectomy, hypothesizing that EA would increase cerebral blood flow during surgery. Methods Eighty-two patients undergoing laparoscopic cholecystectomy were randomly divided into receiving electroacupuncture and intravenous anesthesia (EA+IA) and receving intravenous anesthesia alone (IA). The patients in EA+IA were treated with EA at Baihui (GV 20), Shuigou (GV 26), unilateral Neiguan (PC 6) and unilateral Zusanli (ST 36) points 20 min before anesthesia until the end of the operation. The patients in IA received intravenous anesthesia alone. The internal carotid artery blood flow (Q), mean arterial pressure (MAP), end-tidal carbon dioxide pressure (PETCO2) and heart rate (HR) were recorded respectively before anesthesia induction (T1), 2 min after anesthesia induction (T2), 1 min after pneumoperitoneum (T3), 1 min after head-up tilt (T4) and after anesthesia resuscitation (T5). Results The internal carotid artery blood flow was significantly higher in EA+IA (mean [SD], T3, 294.0 [89.6] ml min-1; T4, 303.8 [90.6] ml min-1) than in IA (mean [SD], T3, 246.4 [80.9] ml min-1; T4, 253.5 [78.4] ml min-1) at T3 and T4 (P < 0.05). There was no difference in blood flow between the two groups at T2 and T5. As compared with baseline (T1), the internal carotid artery blood flow decreased at T2-T4 in two groups (P < 0.05). There were no differences in MAP, PETCO2, and HR between the two groups. Conclusion Electroacupuncture intervention could reduce the decline of internal carotid artery blood flow in patients undergoing laparoscopic cholecystectomy. Trial registration ChiCTR: 2,100,041,761.
Collapse
Affiliation(s)
- Lili Hu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongyan Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Hua Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Labrecque L, Roy MA, Soleimani Dehnavi S, Taghizadeh M, Smirl JD, Brassard P. Directional sensitivity of the cerebral pressure-flow relationship during forced oscillations induced by oscillatory lower body negative pressure. J Cereb Blood Flow Metab 2024; 44:1827-1839. [PMID: 38613236 PMCID: PMC11494849 DOI: 10.1177/0271678x241247633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
A directional sensitivity of the cerebral pressure-flow relationship has been described using repeated squat-stands. Oscillatory lower body negative pressure (OLBNP) is a reproducible method to characterize dynamic cerebral autoregulation (dCA). It could represent a safer method to examine the directional sensitivity of the cerebral pressure-flow relationship within clinical populations and/or during pharmaceutical administration. Therefore, examining the cerebral pressure-flow directional sensitivity during an OLBNP-induced cyclic physiological stress is crucial. We calculated changes in middle cerebral artery mean blood velocity (MCAv) per alterations to mean arterial pressure (MAP) to compute ratios adjusted for time intervals (ΔMCAvT/ΔMAPT) with respect to the minimum-to-maximum MCAv and MAP, for each OLBNP transition (0 to -90 Torr), during 0.05 Hz and 0.10 Hz OLBNP. We then compared averaged ΔMCAvT/ΔMAPT during OLBNP-induced MAP increases (INC) (ΔMCAvT/Δ MAP T INC ) and decreases (DEC) (ΔMCAvT/Δ MAP T DEC ). Nineteen healthy participants [9 females; 30 ± 6 years] were included. There were no differences in ΔMCAvT/ΔMAPT between INC and DEC at 0.05 Hz. ΔMCAvT/Δ MAP T INC (1.06 ± 0.35 vs. 1.33 ± 0.60 cm⋅s-1/mmHg; p = 0.0076) was lower than ΔMCAvT/Δ MAP T DEC at 0.10 Hz. These results support OLBNP as a model to evaluate the directional sensitivity of the cerebral pressure-flow relationship.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Shahrzad Soleimani Dehnavi
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Mahmoudreza Taghizadeh
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| |
Collapse
|
4
|
Skytioti M, Wiedmann M, Sorteberg A, Romundstad L, Hassan Ali Y, Mohammad Ayoubi A, Zilakos I, Elstad M. Dynamic cerebral autoregulation is preserved during orthostasis and intrathoracic pressure regulation in healthy subjects: A pilot study. Physiol Rep 2024; 12:e16027. [PMID: 38684421 PMCID: PMC11058003 DOI: 10.14814/phy2.16027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Resistance breathing may restore cardiac output (CO) and cerebral blood flow (CBF) during hypovolemia. We assessed CBF and cerebral autoregulation (CA) during tilt, resistance breathing, and paced breathing in 10 healthy subjects. Blood velocities in the internal carotid artery (ICA), middle cerebral arteries (MCA, four subjects), and aorta were measured by Doppler ultrasound in 30° and 60° semi-recumbent positions. ICA blood flow and CO were calculated. Arterial blood pressure (ABP, Finometer), and end-tidal CO2 (ETCO2) were recorded. ICA blood flow response was assessed by mixed-models regression analysis. The synchronization index (SI) for the variable pairs ABP-ICA blood velocity, ABP-MCA velocities in 0.005-0.08 Hz frequency interval was calculated as a measure of CA. Passive tilting from 30° to 60° resulted in 12% decrease in CO (p = 0.001); ICA blood flow tended to fall (p = 0.04); Resistance breathing restored CO and ICA blood flow despite a 10% ETCO2 drop. ETCO2 and CO contributed to ICA blood flow variance (adjusted R2: 0.9, p < 0.0001). The median SI was low (<0.2) indicating intact CA, confirmed by surrogate date testing. The peak SI was transiently elevated during resistance breathing in the 60° position. Resistance breathing may transiently reduce CA efficiency. Paced breathing did not restore CO or ICA blood flow.
Collapse
Affiliation(s)
- M. Skytioti
- Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- Department of AnesthesiologyOslo University HospitalOsloNorway
| | - M. Wiedmann
- Department of NeurosurgeryOslo University HospitalOsloNorway
| | - A. Sorteberg
- Department of NeurosurgeryOslo University HospitalOsloNorway
| | - L. Romundstad
- Department of AnesthesiologyOslo University HospitalOsloNorway
| | - Y. Hassan Ali
- Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - A. Mohammad Ayoubi
- Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | | | - M. Elstad
- Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| |
Collapse
|
5
|
Sagirov AF, Sergeev TV, Shabrov AV, Yurov AY, Guseva NL, Agapova EA. Postural influence on intracranial fluid dynamics: an overview. J Physiol Anthropol 2023; 42:5. [PMID: 37055862 PMCID: PMC10100470 DOI: 10.1186/s40101-023-00323-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/01/2023] [Indexed: 04/15/2023] Open
Abstract
This review focuses on the effects of different body positions on intracranial fluid dynamics, including cerebral arterial and venous flow, cerebrospinal fluid (CSF) hydrodynamics, and intracranial pressure (ICP). It also discusses research methods used to quantify these effects. Specifically, the implications of three types of body positions (orthostatic, supine, and antiorthostatic) on cerebral blood flow, venous outflow, and CSF circulation are explored, with a particular emphasis on cerebrovascular autoregulation during microgravity and head-down tilt (HDT), as well as posture-dependent changes in cerebral venous and CSF flow, ICP, and intracranial compliance (ICC). The review aims to provide a comprehensive analysis of intracranial fluid dynamics during different body positions, with the potential to enhance our understanding of intracranial and craniospinal physiology.
Collapse
Affiliation(s)
- Arlan Faritovich Sagirov
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia.
| | - Timofey Vladimirovich Sergeev
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia
| | - Aleksandr Vladimirovich Shabrov
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia
| | - Andrey Yur'evich Yurov
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia
| | - Nadezhda Leonidovna Guseva
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia
| | - Elizaveta Aleksandrovna Agapova
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia
| |
Collapse
|
6
|
Abbariki F, Roy M, Labrecque L, Drapeau A, Imhoff S, Smirl JD, Brassard P. Influence of high-intensity interval training to exhaustion on the directional sensitivity of the cerebral pressure-flow relationship in young endurance-trained men. Physiol Rep 2022; 10:e15384. [PMID: 35822439 PMCID: PMC9277516 DOI: 10.14814/phy2.15384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023] Open
Abstract
We previously reported subtle dynamic cerebral autoregulation (dCA) alterations following 6 weeks of high-intensity interval training (HIIT) to exhaustion using transfer function analysis (TFA) on forced mean arterial pressure (MAP) oscillations in young endurance-trained men. However, accumulating evidence suggests the cerebrovasculature better buffers cerebral blood flow changes when MAP acutely increases compared to when MAP acutely decreases. Whether HIIT affects the directional sensitivity of the cerebral pressure-flow relationship in these athletes is unknown. In 18 endurance-trained men (age: 27 ± 6 years, VO2 max: 55.5 ± 4.7 ml·kg-1 ·min-1 ), we evaluated the impact of 6 weeks of HIIT to exhaustion on dCA directionality using induced MAP oscillations during 5-min 0.05 and 0.10 Hz repeated squat-stands. We calculated time-adjusted changes in middle cerebral artery mean blood velocity (MCAv) per change in MAP (ΔMCAvT /ΔMAPT ) for each squat transition. Then, we compared averaged ΔMCAvT /ΔMAPT during MAP increases and decreases. Before HIIT, ΔMCAvT /ΔMAPT was comparable between MAP increases and decreases during 0.05 Hz repeated squat-stands (p = 0.518). During 0.10 Hz repeated squat-stands, ΔMCAvT /ΔMAPT was lower during MAP increases versus decreases (0.87 ± 0.17 vs. 0.99 ± 0.23 cm·s-1 ·mmHg-1 , p = 0.030). Following HIIT, ΔMCAvT /ΔMAPT was superior during MAP increases over decreases during 0.05 Hz repeated squat-stands (0.97 ± 0.38 vs. 0.77 ± 0.35 cm·s-1 ·mmHg-1 , p = 0.002). During 0.10 Hz repeated squat-stands, dCA directional sensitivity disappeared (p = 0.359). These results suggest the potential for HIIT to influence the directional sensitivity of the cerebral pressure-flow relationship in young endurance-trained men.
Collapse
Affiliation(s)
- Faezeh Abbariki
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Marc‐Antoine Roy
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Audrey Drapeau
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Sarah Imhoff
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Jonathan D. Smirl
- Cerebrovascular Concussion Laboratory, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Sport Injury Prevention Research Centre, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Human Performance Laboratory, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryAlbertaCanada
- Concussion Research Laboratory, Faculty of Health and Exercise ScienceUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| |
Collapse
|
7
|
Labrecque L, Burma JS, Roy MA, Smirl JD, Brassard P. Reproducibility and diurnal variation of the directional sensitivity of the cerebral pressure-flow relationship in men and women. J Appl Physiol (1985) 2021; 132:154-166. [PMID: 34855525 DOI: 10.1152/japplphysiol.00653.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebral pressure-flow relationship has directional sensitivity, meaning the augmentation in cerebral blood flow is attenuated when mean arterial pressure (MAP) increases vs MAP decreases. We employed repeated squat-stands (RSS) to quantify it using a novel metric. However, its within-day reproducibility and the impacts of diurnal variation and biological sex are unknown. Study aims were to evaluate this metric for: 1) within-day reproducibility and diurnal variation in middle (MCA; ∆MCAvT/∆MAPT) and posterior cerebral arteries (PCA; ∆PCAvT/∆MAPT); 2) sex differences. ∆MCAvT/∆MAPT and ∆PCAvT/∆MAPT were calculated at seven time-points (08:00-17:00) in 18 participants (8 women; 24 ± 3 yrs) using the minimum-to-maximum MCAv or PCAv and MAP for each RSS at 0.05 Hz and 0.10 Hz. Relative metric values were also calculated (%MCAvT/%MAPT, %PCAvT/%MAPT). Intraclass correlation coefficient (ICC) evaluated reproducibility, which was good (0.75-0.90) to excellent (>0.90). Time-of-day impacted ∆MCAvT/∆MAPT (0.05 Hz: p = 0.002; 0.10 Hz: p = 0.001), %MCAvT/%MAPT (0.05 Hz: p = 0.035; 0.10 Hz: p = 0.009), and ∆PCAvT/∆MAPT (0.05 Hz: p = 0.024), albeit with small/negligible effect sizes. MAP direction impacted both arteries' metric at 0.10 Hz (all p < 0.024). Sex differences in the MCA only (p = 0.003) vanished when reported in relative terms. These findings demonstrate this metric is reproducible throughout the day in the MCA and PCA and is not impacted by biological sex.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Jonathan David Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| |
Collapse
|
8
|
Koep JL, Taylor CE, Coombes JS, Bond B, Ainslie PN, Bailey TG. Autonomic control of cerebral blood flow: fundamental comparisons between peripheral and cerebrovascular circulations in humans. J Physiol 2021; 600:15-39. [PMID: 34842285 DOI: 10.1113/jp281058] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 01/12/2023] Open
Abstract
Understanding the contribution of the autonomic nervous system to cerebral blood flow (CBF) control is challenging, and interpretations are unclear. The identification of calcium channels and adrenoreceptors within cerebral vessels has led to common misconceptions that the function of these receptors and actions mirror those of the peripheral vasculature. This review outlines the fundamental differences and complex actions of cerebral autonomic activation compared with the peripheral circulation. Anatomical differences, including the closed nature of the cerebrovasculature, and differential adrenoreceptor subtypes, density, distribution and sensitivity, provide evidence that measures on peripheral sympathetic nerve activity cannot be extrapolated to the cerebrovasculature. Cerebral sympathetic nerve activity seems to act opposingly to the peripheral circulation, mediated at least in part by changes in intracranial pressure and cerebral blood volume. Additionally, heterogeneity in cerebral adrenoreceptor distribution highlights region-specific autonomic regulation of CBF. Compensatory chemo- and autoregulatory responses throughout the cerebral circulation, and interactions with parasympathetic nerve activity are unique features to the cerebral circulation. This crosstalk between sympathetic and parasympathetic reflexes acts to ensure adequate perfusion of CBF to rising and falling perfusion pressures, optimizing delivery of oxygen and nutrients to the brain, while attempting to maintain blood volume and intracranial pressure. Herein, we highlight the distinct similarities and differences between autonomic control of cerebral and peripheral blood flow, and the regional specificity of sympathetic and parasympathetic regulation within the cerebrovasculature. Future research directions are outlined with the goal to further our understanding of autonomic control of CBF in humans.
Collapse
Affiliation(s)
- Jodie L Koep
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.,Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Chloe E Taylor
- School of Health Sciences, Western Sydney University, Sydney, Australia
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Bert Bond
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.,School of Nursing, Midwifery and Social Work, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Fong D, Gradon K, Barrett CJ, Guild SJ, Tzeng YC, Paton JFR, McBryde FD. A method to evaluate dynamic cerebral pressure-flow relationships in the conscious rat. J Appl Physiol (1985) 2021; 131:1361-1369. [PMID: 34498945 DOI: 10.1152/japplphysiol.00289.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The classic dogma of cerebral autoregulation is that cerebral blood flow is steadily maintained across a wide range of perfusion pressures. This has been challenged by recent studies suggesting little to no "autoregulatory plateau" in the relationship between cerebral blood flow and blood pressure (BP). Therefore, the mechanisms underlying the cerebral pressure-flow relationship still require further understanding. Here, we present a novel approach to examine dynamic cerebral autoregulation in conscious Wistar rats (n = 16) instrumented to measure BP and internal carotid blood flow (iCBF), as an indicator of cerebral blood flow. Transient reductions in BP were induced by occluding the vena cava via inflation of a chronically implanted intravascular silicone balloon. Falls in BP were paralleled by progressive decreases in iCBF, with no evidence of a steady-state plateau. No significant changes in internal carotid vascular resistance (iCVR) were observed. In contrast, intravenous infusions of the vasoactive drug sodium nitroprusside (SNP) produced a similar fall in BP but increases in iCBF and decreases in iCVR were observed. These data suggest a considerable confounding influence of vasodilatory drugs such as SNP on cerebrovascular tone in the rat, making them unsuitable to investigate cerebral autoregulation. We demonstrate that our technique of transient vena cava occlusion produced reliable and repeatable depressor responses, highlighting the potential for our approach to permit assessment of the dynamic cerebral pressure-flow relationship over time in conscious rats.NEW & NOTEWORTHY We present a novel technique to overcome the use of vasoactive agents when studying cerebrovascular dynamics in the conscious rat. Our method of vena cava occlusion to reduce BP was associated with decreased iCBF and no change in iCVR. In contrast, comparable BP falls with intravenous SNP increased iCBF and reduced iCVR. Thus, the dynamic cerebral pressure-flow relationship shows a narrower, less level autoregulatory plateau than conventionally thought. We confirm our method allows repeatable assessment of cerebrovascular dynamics in conscious rats.
Collapse
Affiliation(s)
- Debra Fong
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Kelly Gradon
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Carolyn J Barrett
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Sarah-Jane Guild
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Yu Chieh Tzeng
- Wellington Medical Technology Group, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Julian F R Paton
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Fiona D McBryde
- Manaaki Mānawa-The Centre for Heart Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Labrecque L, Smirl JD, Brassard P. Utilization of the repeated squat-stand model for studying the directional sensitivity of the cerebral pressure-flow relationship. J Appl Physiol (1985) 2021; 131:927-936. [PMID: 34264130 DOI: 10.1152/japplphysiol.00269.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hysteresis in the cerebral pressure-flow relationship describes the superior ability of the cerebrovasculature to buffer cerebral blood flow changes when mean arterial pressure (MAP) increases compared with when MAP decreases. This phenomenon can be evaluated by comparing the change in middle cerebral artery mean blood velocity (MCAv) per change in MAP during either acute increases or decreases in MAP induced by repeated squat-stands (RSS). However, no real baseline can be used for this particular protocol as there is no true stable reference point. Herein, we characterized a novel metric using the greatest MAP oscillations induced by RSS without using an independent baseline value and adjusted for time intervals (ΔMCAvT/ΔMAPT). We also examined whether this metric during each RSS transition was comparable between each other over a 5-min period. ΔMCAvT/ΔMAPT was calculated using the minimum to maximum MCAv and MAP for each RSS performed at 0.05 Hz and 0.10 Hz. We compared averaged ΔMCAvT/ΔMAPT during MAP increases and decreases in 74 healthy participants [9 women; 26 (20-74) yr]. ΔMCAvT/ΔMAPT was lower for MAP increases than MAP decreases at 0.10 Hz RSS only (0.91 ± 0.34 vs. 1.01 ± 0.44 cm·s-1/mmHg; P = 0.0013). For both frequency and MAP direction, time during RSS had no effect on ΔMCAvT/ΔMAPT. This novel analytical method supports the use of the RSS model to evaluate the directional sensitivity of the pressure-flow relationship. These results contribute to the importance of considering the direction of MAP changes, depending on the oscillations frequency when evaluating dynamic cerebral autoregulation.NEW & NOTEWORTHY Repeated squat-stand maneuvers are able to examine the directional sensitivity of the cerebral pressure-flow relationship. These maneuvers induce stable physiological cyclic changes where brain blood flow changes with blood pressure increases are buffered more than blood pressure decreases. These results highlight the importance of considering directional blood pressure changes within cerebral autoregulation.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Jonathan D Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| |
Collapse
|
11
|
Perry BG, Lucas SJE. The Acute Cardiorespiratory and Cerebrovascular Response to Resistance Exercise. SPORTS MEDICINE-OPEN 2021; 7:36. [PMID: 34046740 PMCID: PMC8160070 DOI: 10.1186/s40798-021-00314-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/07/2021] [Indexed: 12/18/2022]
Abstract
Resistance exercise (RE) is a popular modality for the general population and athletes alike, due to the numerous benefits of regular participation. The acute response to dynamic RE is characterised by temporary and bidirectional physiological extremes, not typically seen in continuous aerobic exercise (e.g. cycling) and headlined by phasic perturbations in blood pressure that challenge cerebral blood flow (CBF) regulation. Cerebral autoregulation has been heavily scrutinised over the last decade with new data challenging the effectiveness of this intrinsic flow regulating mechanism, particularly to abrupt changes in blood pressure over the course of seconds (i.e. dynamic cerebral autoregulation), like those observed during RE. Acutely, RE can challenge CBF regulation, resulting in adverse responses (e.g. syncope). Compared with aerobic exercise, RE is relatively understudied, particularly high-intensity dynamic RE with a concurrent Valsalva manoeuvre (VM). However, the VM alone challenges CBF regulation and generates additional complexity when trying to dissociate the mechanisms underpinning the circulatory response to RE. Given the disparate circulatory response between aerobic and RE, primarily the blood pressure profiles, regulation of CBF is ostensibly different. In this review, we summarise current literature and highlight the acute physiological responses to RE, with a focus on the cerebral circulation.
Collapse
Affiliation(s)
- Blake G Perry
- School of Health Sciences, Massey University, Wellington, New Zealand.
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences & Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Rosenberg AJ, Kay VL, Anderson GK, Luu ML, Barnes HJ, Sprick JD, Rickards CA. The impact of acute central hypovolemia on cerebral hemodynamics: does sex matter? J Appl Physiol (1985) 2021; 130:1786-1797. [PMID: 33914663 DOI: 10.1152/japplphysiol.00499.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trauma-induced hemorrhage is a leading cause of disability and death due, in part, to impaired perfusion and oxygenation of the brain. It is unknown if cerebrovascular responses to blood loss are differentiated based on sex. We hypothesized that compared to males, females would have reduced tolerance to simulated hemorrhage induced by maximal lower body negative pressure (LBNP), and this would be associated with an earlier reduction in cerebral blood flow and cerebral oxygenation. Healthy young males (n = 29, 26 ± 4 yr) and females (n = 23, 27 ± 5 yr) completed a step-wise LBNP protocol to presyncope. Mean arterial pressure (MAP), stroke volume (SV), middle cerebral artery velocity (MCAv), end-tidal CO2 (etCO2), and cerebral oxygen saturation (ScO2) were measured continuously. Unexpectedly, tolerance to LBNP was similar between the sexes (males, 1,604 ± 68 s vs. females, 1,453 ± 78 s; P = 0.15). Accordingly, decreases (%Δ) in MAP, SV, MCAv, and ScO2 were similar between males and females throughout LBNP and at presyncope (P ≥ 0.20). Interestingly, although decreases in etCO2 were similar between the sexes throughout LBNP (P = 0.16), at presyncope, the %Δ etCO2 from baseline was greater in males compared to females (-30.8 ± 2.6% vs. -21.3 ± 3.0%; P = 0.02). Contrary to our hypothesis, sex does not influence tolerance, or the central or cerebral hemodynamic responses to simulated hemorrhage. However, the etCO2 responses at presyncope do suggest potential sex differences in cerebral vascular sensitivity to CO2 during central hypovolemia.NEW & NOTEWORTHY Tolerance and cerebral blood velocity responses to simulated hemorrhage (elicited by lower body negative pressure) were similar between male and female subjects. Interestingly, the change in etCO2 from baseline was greater in males compared to females at presyncope, suggesting potential sex differences in cerebral vascular sensitivity to CO2 during simulated hemorrhage. These findings may facilitate development of individualized therapeutic interventions to improve survival from hemorrhagic injuries in both men and women.
Collapse
Affiliation(s)
- Alexander J Rosenberg
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas.,Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Illinois
| | - Victoria L Kay
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Garen K Anderson
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - My-Loan Luu
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Haley J Barnes
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Justin D Sprick
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas.,Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Caroline A Rickards
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
13
|
Convertino VA, Koons NJ, Suresh MR. Physiology of Human Hemorrhage and Compensation. Compr Physiol 2021; 11:1531-1574. [PMID: 33577122 DOI: 10.1002/cphy.c200016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hemorrhage is a leading cause of death following traumatic injuries in the United States. Much of the previous work in assessing the physiology and pathophysiology underlying blood loss has focused on descriptive measures of hemodynamic responses such as blood pressure, cardiac output, stroke volume, heart rate, and vascular resistance as indicators of changes in organ perfusion. More recent work has shifted the focus toward understanding mechanisms of compensation for reduced systemic delivery and cellular utilization of oxygen as a more comprehensive approach to understanding the complex physiologic changes that occur following and during blood loss. In this article, we begin with applying dimensional analysis for comparison of animal models, and progress to descriptions of various physiological consequences of hemorrhage. We then introduce the complementary side of compensation by detailing the complexity and integration of various compensatory mechanisms that are activated from the initiation of hemorrhage and serve to maintain adequate vital organ perfusion and hemodynamic stability in the scenario of reduced systemic delivery of oxygen until the onset of hemodynamic decompensation. New data are introduced that challenge legacy concepts related to mechanisms that underlie baroreflex functions and provide novel insights into the measurement of the integrated response of compensation to central hypovolemia known as the compensatory reserve. The impact of demographic and environmental factors on tolerance to hemorrhage is also reviewed. Finally, we describe how understanding the physiology of compensation can be translated to applications for early assessment of the clinical status and accurate triage of hypovolemic and hypotensive patients. © 2021 American Physiological Society. Compr Physiol 11:1531-1574, 2021.
Collapse
Affiliation(s)
- Victor A Convertino
- Battlefield Healthy & Trauma Center for Human Integrative Physiology, United States Army Institute of Surgical Research, JBSA San Antonio, Texas, USA
| | - Natalie J Koons
- Battlefield Healthy & Trauma Center for Human Integrative Physiology, United States Army Institute of Surgical Research, JBSA San Antonio, Texas, USA
| | - Mithun R Suresh
- Battlefield Healthy & Trauma Center for Human Integrative Physiology, United States Army Institute of Surgical Research, JBSA San Antonio, Texas, USA
| |
Collapse
|
14
|
The effect of hypercapnia on regional cerebral blood flow regulation during progressive lower-body negative pressure. Eur J Appl Physiol 2020; 121:339-349. [PMID: 33089364 DOI: 10.1007/s00421-020-04506-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Previous work indicates that dynamic cerebral blood flow (CBF) regulation is impaired during hypercapnia; however, less is known about the impact of resting hypercapnia on regional CBF regulation during hypovolemia. Furthermore, there is disparity within the literature on whether differences between anterior and posterior CBF regulation exist during physiological stressors. We hypothesized: (a) lower-body negative pressure (LBNP)-induced reductions in cerebral blood velocity (surrogate for CBF) would be more pronounced during hypercapnia, indicating impaired CBF regulation; and (b) the anterior and posterior cerebral circulations will exhibit similar responses to LBNP. METHODS In 12 healthy participants (6 females), heart rate (electrocardiogram), mean arterial pressure (MAP; finger photoplethosmography), partial pressure of end-tidal carbon dioxide (PETCO2), middle cerebral artery blood velocity (MCAv) and posterior cerebral artery blood velocity (PCAv; transcranial Doppler ultrasound) were measured. Cerebrovascular conductance (CVC) was calculated as MCAv or PCAv indexed to MAP. Two randomized incremental LBNP protocols were conducted (- 20, - 40, - 60 and - 80 mmHg; three-minute stages), during coached normocapnia (i.e., room air), and inspired 5% hypercapnia (~ + 7 mmHg PETCO2 in normoxia). RESULTS The main findings were: (a) static CBF regulation in the MCA and PCA was similar during normocapnic and hypercapnic LBNP trials, (b) MCA and PCA CBV and CVC responded similarly to LBNP during normocapnia, but (c) PCAv and PCA CVC were reduced to a greater extent at - 60 mmHg LBNP (P = 0.029; P < 0.001) during hypercapnia. CONCLUSION CBF regulation during hypovolemia was preserved in hypercapnia, and regional differences in cerebrovascular control may exist during superimposed hypovolemia and hypercapnia.
Collapse
|
15
|
Sugawara J, Tomoto T, Repshas J, Zhang R, Tarumi T. Middle-aged endurance athletes exhibit lower cerebrovascular impedance than sedentary peers. J Appl Physiol (1985) 2020; 129:335-342. [PMID: 32673159 DOI: 10.1152/japplphysiol.00239.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Because elevated hemodynamic pulsatility could be mechanical stress against the brain, the dampening function of central and cerebral arteries is crucial. Regular endurance exercise training favorably restores the deteriorated dampening function of the aorta and carotid arteries in older populations, yet its effect on cerebrovascular dampening function remains unknown. To address this question, we compared cerebrovascular impedance, a frequency-domain relationship of the cerebral pressure and flow, in 21 middle-aged masters athletes who have been engaged in endurance training and races for >10 yr (MA, 53 ± 4 yr) with sedentary 21 age-matched (MS, 53 ± 5 yr) and 21 young (YS, 29 ± 6 yr) individuals. Using transfer function analysis, cerebrovascular impedance was computed from the simultaneously recorded carotid artery pressure (CAP, via applanation tonometry) and middle cerebral artery blood flow velocity (CBFV, via transcranial Doppler). In the frequency range of 0.78-3.12 Hz, coherence between pulsatile changes in CAP and CBFV was higher than 0.90 in all groups. All subjects exhibited the highest impedance modulus in the range of the first harmonic oscillations (0.78-1.56 Hz) mainly originating from cardiac ejection. Impedance modulus in this range was significantly lower in the MA than MS groups (0.88 ± 0.24 vs. 1.15 ± 0.29 mmHg·s/cm, P = 0.011) and equivalent to the YS (0.92 ± 0.30 mmHg·s/cm). Among middle-aged subjects, higher impedance modulus was correlated with lower mean CBFV (r = -0.776, P < 0.001) and cerebral cortical perfusion evaluated by MRI (r = -0.371, P = 0.015). These results suggest that middle-aged endurance athletes exhibited the significantly lower modulus of cerebrovascular impedance, which is associated with higher CBFV and cerebral cortical perfusion.NEW & NOTEWORTHY Impedance modulus in the range of first harmonic oscillations (0.78-1.56 Hz), which reflects heart rate at rest, was lower in middle-aged endurance athletes than in age-matched sedentary peers and was similar to young individuals. Prolonged endurance training is associated with the improved cerebrovascular dampening function in middle-aged adults. Lower cerebrovascular impedance modulus may contribute to maintaining brain perfusion in midlife.
Collapse
Affiliation(s)
- Jun Sugawara
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas.,Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Dallas, Texas
| | - Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas
| | - Justin Repshas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas.,Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Dallas, Texas
| |
Collapse
|
16
|
Calverley TA, Ogoh S, Marley CJ, Steggall M, Marchi N, Brassard P, Lucas SJE, Cotter JD, Roig M, Ainslie PN, Wisløff U, Bailey DM. HIITing the brain with exercise: mechanisms, consequences and practical recommendations. J Physiol 2020; 598:2513-2530. [PMID: 32347544 DOI: 10.1113/jp275021] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/15/2020] [Indexed: 01/30/2023] Open
Abstract
The increasing number of older adults has seen a corresponding growth in those affected by neurovascular diseases, including stroke and dementia. Since cures are currently unavailable, major efforts in improving brain health need to focus on prevention, with emphasis on modifiable risk factors such as promoting physical activity. Moderate-intensity continuous training (MICT) paradigms have been shown to confer vascular benefits translating into improved musculoskeletal, cardiopulmonary and cerebrovascular function. However, the time commitment associated with MICT is a potential barrier to participation, and high-intensity interval training (HIIT) has since emerged as a more time-efficient mode of exercise that can promote similar if not indeed superior improvements in cardiorespiratory fitness for a given training volume and further promote vascular adaptation. However, randomised controlled trials (RCTs) investigating the impact of HIIT on the brain are surprisingly limited. The present review outlines how the HIIT paradigm has evolved from a historical perspective and describes the established physiological changes including its mechanistic bases. Given the dearth of RCTs, the vascular benefits of MICT are discussed with a focus on the translational neuroprotective benefits including their mechanistic bases that could be further potentiated through HIIT. Safety implications are highlighted and components of an optimal HIIT intervention are discussed including practical recommendations. Finally, statistical effect sizes have been calculated to allow prospective research to be appropriately powered and optimise the potential for detecting treatment effects. Future RCTs that focus on the potential clinical benefits of HIIT are encouraged given the prevalence of cognitive decline in an ever-ageing population.
Collapse
Affiliation(s)
- Thomas A Calverley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - Shigehiko Ogoh
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK.,Department of Biomedical Engineering, Faculty of Engineering, Toyo University, Saitama, Japan
| | - Christopher J Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - Martin Steggall
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - Nicola Marchi
- Cerebrovascular and Glia Research Laboratory, Department of Neuroscience, Institute of Functional Genomics, Montpellier, France
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Marc Roig
- Faculty of Medicine, McGill University, Montreal, Canada
| | - Philip N Ainslie
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, BC, Canada
| | - Ulrik Wisløff
- The Cardiac Exercise Research Group, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,School of Human Movement and Nutrition Science, University of Queensland, Queensland, Australia
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| |
Collapse
|
17
|
Internal carotid artery blood flow is enhanced by elevating blood pressure during combined propofol-remifentanil and thoracic epidural anaesthesia. Eur J Anaesthesiol 2020; 37:482-490. [DOI: 10.1097/eja.0000000000001189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Herrington BA, Thrall SF, Mann LM, Tymko MM, Day TA. The effect of steady-state CO 2 on regional brain blood flow responses to increases in blood pressure via the cold pressor test. Auton Neurosci 2019; 222:102581. [PMID: 31654818 DOI: 10.1016/j.autneu.2019.102581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/08/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
The pressure-passive cerebrovasculature is affected by alterations in cerebral perfusion pressure (CPP) and arterial blood gases (e.g., pressure of arterial [Pa]CO2), where acute changes in either stimulus can influence cerebral blood flow (CBF). The effect of superimposed increases in CPP at different levels of steady-state PaCO2 on regional CBF regulation is unclear. In 17 healthy participants, we simultaneously recorded continuous heart rate (electrocardiogram), blood pressure (finometer), pressure of end-tidal CO2 (PETCO2; gas analyzer), and middle (MCA) and posterior (PCA) cerebral artery blood velocity (CBV; transcranial Doppler ultrasound). Three separate CPTs were administered by passive immersion of both feet into 0-1 °C of ice water for 3-min under three randomized and coached steady-state PETCO2 conditions: normocapnia (room air), hypocapnia (-10 Torr; hyperventilation) and hypercapnia (+9 Torr; 5% inspired CO2;). CBV responses were calculated as the absolute difference (∆) between baseline and mean MCAv and PCAv during the 3-min CPT. Both the ∆MCAv and ∆PCAv responses to the CPT were larger under hypercapnic conditions. The absolute ∆MCAv response was larger than the ∆PCAv during the CPT across all three CO2 trials. Cerebrovascular CO2 reactivity (CVR) was larger in the MCA than PCA in both CPT and baseline conditions, but there were no differences in CVR between CPT and baseline conditions. Our data indicate that (a) increases in CO2 increases the CBV responses to a CPT, (b) the anterior cerebrovasculature is more responsive to a CPT-induced increases in MAP, and (c) although unchanged during a CPT, CVR is larger in the anterior cerebral circulation.
Collapse
Affiliation(s)
- Brittney A Herrington
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Scott F Thrall
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Leah M Mann
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, University of British Columbia, British Columbia, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada.
| |
Collapse
|
19
|
Internal Carotid Artery Blood Flow Response to Anesthesia, Pneumoperitoneum, and Head-up Tilt during Laparoscopic Cholecystectomy. Anesthesiology 2019; 131:512-520. [DOI: 10.1097/aln.0000000000002838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Background
Little is known about how implementation of pneumoperitoneum and head-up tilt position contributes to general anesthesia-induced decrease in cerebral blood flow in humans. We investigated this question in patients undergoing laparoscopic cholecystectomy, hypothesizing that cardiorespiratory changes during this procedure would reduce cerebral perfusion.
Methods
In a nonrandomized, observational study of 16 patients (American Society of Anesthesiologists physical status I or II) undergoing laparoscopic cholecystectomy, internal carotid artery blood velocity was measured by Doppler ultrasound at four time points: awake, after anesthesia induction, after induction of pneumoperitoneum, and after head-up tilt. Vessel diameter was obtained each time, and internal carotid artery blood flow, the main outcome variable, was calculated. The authors recorded pulse contour estimated mean arterial blood pressure (MAP), heart rate (HR), stroke volume (SV) index, cardiac index, end-tidal carbon dioxide (ETco2), bispectral index, and ventilator settings. Results are medians (95% CI).
Results
Internal carotid artery blood flow decreased upon anesthesia induction from 350 ml/min (273 to 410) to 213 ml/min (175 to 249; −37%, P < 0.001), and tended to decrease further with pneumoperitoneum (178 ml/min [127 to 208], −15%, P = 0.026). Tilt induced no further change (171 ml/min [134 to 205]). ETco2 and bispectral index were unchanged after induction. MAP decreased with anesthesia, from 102 (91 to 108) to 72 (65 to 76) mmHg, and then remained unchanged (Pneumoperitoneum: 70 [63 to 75]; Tilt: 74 [66 to 78]). Cardiac index decreased with anesthesia and with pneumoperitoneum (overall from 3.2 [2.7 to 3.5] to 2.3 [1.9 to 2.5] l · min−1 · m−2); tilt induced no further change (2.1 [1.8 to 2.3]). Multiple regression analysis attributed the fall in internal carotid artery blood flow to reduced cardiac index (both HR and SV index contributing) and MAP (P < 0.001). Vessel diameter also declined (P < 0.01).
Conclusions
During laparoscopic cholecystectomy, internal carotid artery blood flow declined with anesthesia and with pneumoperitoneum, in close association with reductions in cardiac index and MAP. Head-up tilt caused no further reduction. Cardiac output independently affects human cerebral blood flow.
Collapse
|
20
|
Hisdal J, Landsverk SA, Hoff IE, Hagen OA, Kirkebøen KA, Høiseth LØ. Associations between changes in precerebral blood flow and cerebral oximetry in the lower body negative pressure model of hypovolemia in healthy volunteers. PLoS One 2019; 14:e0219154. [PMID: 31251778 PMCID: PMC6599124 DOI: 10.1371/journal.pone.0219154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/17/2019] [Indexed: 11/19/2022] Open
Abstract
Reductions in cerebral oxygen saturation (ScO2) measured by near infra-red spectroscopy have been found during compensated hypovolemia in the lower body negative pressure (LBNP)-model, which may reflect reduced cerebral blood flow. However, ScO2 may also be contaminated from extracranial (scalp) tissues, mainly supplied by the external carotid artery (ECA), and it is possible that a ScO2 reduction during hypovolemia is caused by reduced scalp, and not cerebral, blood flow. The aim of the present study was to explore the associations between blood flow in precerebral arteries and ScO2 during LBNP-induced hypovolemia. Twenty healthy volunteers were exposed to LBNP 20, 40, 60 and 80 mmHg. Blood flow in the internal carotid artery (ICA), ECA and vertebral artery (VA) was measured by Doppler ultrasound. Stroke volume for calculating cardiac output was measured by suprasternal Doppler. Associations of changes within subjects were examined using linear mixed-effects regression models. LBNP reduced cardiac output, ScO2 and ICA and ECA blood flow. Changes in flow in both ICA and ECA were associated with changes in ScO2 and cardiac output. Flow in the VA did not change during LBNP and changes in VA flow were not associated with changes in ScO2 or cardiac output. During experimental compensated hypovolemia in healthy, conscious subjects, a reduced ScO2 may thus reflect a reduction in both cerebral and extracranial blood flow.
Collapse
Affiliation(s)
- Jonny Hisdal
- Section of Vascular Investigations, Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Svein Aslak Landsverk
- Department of Anesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Ingrid Elise Hoff
- Department of Anesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Norwegian Air Ambulance Foundation, Oslo, Norway
| | - Ove Andreas Hagen
- Department of Anesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Knut Arvid Kirkebøen
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Anesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Lars Øivind Høiseth
- Section of Vascular Investigations, Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Oslo University Hospital, Oslo, Norway
- Department of Anesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
21
|
Olesen ND, Nielsen HB, Olsen NV, Secher NH. The age-related reduction in cerebral blood flow affects vertebral artery more than internal carotid artery blood flow. Clin Physiol Funct Imaging 2019; 39:255-260. [PMID: 30897269 DOI: 10.1111/cpf.12568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/18/2019] [Indexed: 11/26/2022]
Abstract
Ageing reduces cerebral blood flow (CBF), while mean arterial pressure (MAP) becomes elevated. According to 'the selfish brain' hypothesis of hypertension, a reduction in vertebral artery blood flow (VA) leads to increased sympathetic activity and thus increases MAP. In twenty-two young (24 ± 3 years; mean ± SD) and eleven elderly (70 ± 5 years) normotensive men, duplex ultrasound evaluated whether the age-related reduction in CBF affects VA more than internal carotid artery (ICA) blood flow. Pulse-contour analysis evaluated MAP while near-infrared spectroscopy determined frontal lobe oxygenation and transcranial Doppler middle cerebral artery mean blood velocity (MCA Vmean ). During supine rest, MAP (90 ± 13 versus 78 ± 9 mmHg; P<0·001) was elevated in the older subjects while their frontal lobe oxygenation (68 ± 7% versus 77 ± 7%; P<0·001), MCA Vmean (49 ± 9 versus 60 ± 12 cm s-1 ; P = 0·016) and CBF (754 ± 112 versus 900 ± 144 ml min-1 ; P = 0·004) were low reflected in VA (138 ± 48 versus 219 ± 50 ml min-1 ; P<0·001) rather than in ICA flow (616 ± 96 versus 680 ± 120 ml min-1 ; P = 0·099). In conclusion, blood supply to the brain and its oxygenation are affected by ageing and the age-related decline in VA flow appears to be four times as large as that in ICA and could be important for the age-related increase in MAP.
Collapse
Affiliation(s)
- Niels D Olesen
- Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henning B Nielsen
- Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Niels V Olsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels H Secher
- Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Goswami N, Blaber AP, Hinghofer-Szalkay H, Convertino VA. Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation. Physiol Rev 2019; 99:807-851. [PMID: 30540225 DOI: 10.1152/physrev.00006.2018] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review presents lower body negative pressure (LBNP) as a unique tool to investigate the physiology of integrated systemic compensatory responses to altered hemodynamic patterns during conditions of central hypovolemia in humans. An early review published in Physiological Reviews over 40 yr ago (Wolthuis et al. Physiol Rev 54: 566-595, 1974) focused on the use of LBNP as a tool to study effects of central hypovolemia, while more than a decade ago a review appeared that focused on LBNP as a model of hemorrhagic shock (Cooke et al. J Appl Physiol (1985) 96: 1249-1261, 2004). Since then there has been a great deal of new research that has applied LBNP to investigate complex physiological responses to a variety of challenges including orthostasis, hemorrhage, and other important stressors seen in humans such as microgravity encountered during spaceflight. The LBNP stimulus has provided novel insights into the physiology underlying areas such as intolerance to reduced central blood volume, sex differences concerning blood pressure regulation, autonomic dysfunctions, adaptations to exercise training, and effects of space flight. Furthermore, approaching cardiovascular assessment using prediction models for orthostatic capacity in healthy populations, derived from LBNP tolerance protocols, has provided important insights into the mechanisms of orthostatic hypotension and central hypovolemia, especially in some patient populations as well as in healthy subjects. This review also presents a concise discussion of mathematical modeling regarding compensatory responses induced by LBNP. Given the diverse applications of LBNP, it is to be expected that new and innovative applications of LBNP will be developed to explore the complex physiological mechanisms that underline health and disease.
Collapse
Affiliation(s)
- Nandu Goswami
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Andrew Philip Blaber
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Helmut Hinghofer-Szalkay
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Victor A Convertino
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| |
Collapse
|
23
|
Lewis N, Gelinas JCM, Ainslie PN, Smirl JD, Agar G, Melzer B, Rolf JD, Eves ND. Cerebrovascular function in patients with chronic obstructive pulmonary disease: the impact of exercise training. Am J Physiol Heart Circ Physiol 2019; 316:H380-H391. [DOI: 10.1152/ajpheart.00348.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study examined cerebral blood flow (CBF) and its regulation before and after a short-term periodized aerobic exercise training intervention in patients with chronic obstructive pulmonary disease (COPD). Twenty-eight patients with COPD (forced expiratory volume in 1 s/forced vital capacity < 0.7 and <lower limit of normal) and 24 healthy control subjects participated in the study. Extracranial CBF (duplex ultrasound), middle cerebral artery velocity (MCAv; transcranial Doppler), cerebrovascular reactivity to hypocapnia and hypercapnia, and dynamic cerebral autoregulation (transfer function analysis) were quantified. These tests were repeated in both patients with COPD ( n = 23) and control subjects ( n = 20) after 8 wk of periodized upper and lower body aerobic exercise training (3 sessions/wk). At baseline, global extracranial CBF was comparable between the COPD and control groups (791 ± 290 vs. 658 ± 143 ml/min, P = 0.25); however, MCAv was lower in patients with COPD compared with control subjects (46 ± 9 vs. 53 ± 10 cm/s, P = 0.05). Although there were no group differences in dynamic cerebral autoregulation or the MCAv response to hypercapnia, patients with COPD had a lower MCAv response to hypocapnia compared with control subjects (−1.1 ± 1.5 vs. −1.6 ± 1.3 cm·s−1·mmHg−1, P = 0.02). After aerobic training, absolute peak O2 consumption increased in both groups, with a greater improvement in control subjects (1.7 ± 0.4 vs. 4.1 ± 0.2 ml·kg−1·min−1, respectively, P = 0.001). Despite these improvements in peak O2 consumption, there were no significant alterations in CBF or any measures of cerebrovascular function after exercise training in either group. In conclusion, patients with COPD have a blunted cerebrovascular response to hypocapnia, and 8 wk of aerobic exercise training did not alter cerebrovascular function despite significant improvements in cardiorespiratory fitness. NEW & NOTEWORTHY No study to date has investigated whether exercise training can alter resting cerebral blood flow (CBF) regulation in patients with chronic obstructive pulmonary disease (COPD). This study is the first to assess CBF regulation at rest, before, and after aerobic exercise training in patients with COPD and healthy control subjects. This study demonstrated that while exercise training improved aerobic fitness, it had little effect on CBF regulation in patients with COPD or control subjects.
Collapse
Affiliation(s)
- Nia Lewis
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jinelle C. M. Gelinas
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jonathan D. Smirl
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Gloria Agar
- Interior Health, Kelowna General Hospital, Kelowna, British Columbia, Canada
| | - Bernie Melzer
- Interior Health, Kelowna General Hospital, Kelowna, British Columbia, Canada
| | - J. Douglass Rolf
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neil D. Eves
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
24
|
Labrecque L, Rahimaly K, Imhoff S, Paquette M, Le Blanc O, Malenfant S, Drapeau A, Smirl JD, Bailey DM, Brassard P. Dynamic cerebral autoregulation is attenuated in young fit women. Physiol Rep 2019; 7:e13984. [PMID: 30652420 PMCID: PMC6335382 DOI: 10.14814/phy2.13984] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
Young women exhibit higher prevalence of orthostatic hypotension with presyncopal symptoms compared to men. These symptoms could be influenced by an attenuated ability of the cerebrovasculature to respond to rapid blood pressure (BP) changes [dynamic cerebral autoregulation (dCA)]. The influence of sex on dCA remains unclear. dCA in 11 fit women (25 ± 2 years) and 11 age-matched men (24 ± 1 years) was compared using a multimodal approach including a sit-to-stand (STS) and forced BP oscillations (repeated squat-stand performed at 0.05 and 0.10 Hz). Prevalence of initial orthostatic hypotension (IOH; decrease in systolic ≥ 40 mmHg and/or diastolic BP ≥ 20 mmHg) during the first 15 sec of STS was determined as a functional outcome. In women, the decrease in mean middle cerebral artery blood velocity (MCAvmean ) following the STS was greater (-20 ± 8 vs. -11 ± 7 cm sec-1 ; P = 0.018) and the onset of the regulatory change (time lapse between the beginning of the STS and the increase in the conductance index (MCAvmean /mean arterial pressure) was delayed (P = 0.007). Transfer function analysis gain during 0.05 Hz squat-stand was ~48% higher in women (6.4 ± 1.3 vs. 3.8 ± 2.3 cm sec-1 mmHg-1 ; P = 0.017). Prevalence of IOH was comparable between groups (women: 4/9 vs. men: 5/9, P = 0.637). These results indicate the cerebrovasculature of fit women has an attenuated ability to react to rapid changes in BP in the face of preserved orthostasis, which could be related to higher resting cerebral blood flow allowing women to better face transient hypotension.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Kevan Rahimaly
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Sarah Imhoff
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Myriam Paquette
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Olivier Le Blanc
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Simon Malenfant
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Audrey Drapeau
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - Jonathan D. Smirl
- Concussion Research LaboratoryHealth and Exercise SciencesUniversity of British Columbia OkanaganBritish ColumbiaCanada
| | - Damian M. Bailey
- Neurovascular Research LaboratoryFaculty of Life Sciences and EducationUniversity of South WalesSouth WalesUnited Kingdom
| | - Patrice Brassard
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| |
Collapse
|
25
|
Stone RM, Ainslie PN, Kerstens TP, Wildfong KW, Tymko MM. Sex differences in the circulatory responses to an isocapnic cold pressor test. Exp Physiol 2018; 104:295-305. [PMID: 30578582 DOI: 10.1113/ep087232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/19/2018] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the central question of this study? Do sex differences exist in the cardiorespiratory responses to an isocapnic cold pressor test (CPT)? What is the main finding and its importance? During the CPT, there were no sex differences in the respiratory response; however, females demonstrated a reduced mean arterial pressure and reduced dilatation of the common carotid artery. Given that the CPT is predictive of future cardiovascular events, these data have clinical implications for improving the utility of the CPT to determine cardiovascular health risk. Sex differences should be taken into consideration when conducting and interpreting a CPT. ABSTRACT The cold pressor test (CPT) elicits a transient increase in sympathetic nervous activity, minute ventilation ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mover><mml:mi>V</mml:mi> <mml:mo>̇</mml:mo></mml:mover> <mml:mi>E</mml:mi></mml:msub> </mml:math> ), mean arterial pressure (MAP) and common carotid artery (CCA) diameter in healthy individuals. Although the extent of dilatation of the CCA in response to the CPT has been used as a clinical indicator of cardiovascular health status, the potential sex differences have yet to be explored. In response to a CPT, we hypothesized that elevations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mover><mml:mi>V</mml:mi> <mml:mo>̇</mml:mo></mml:mover> <mml:mi>E</mml:mi></mml:msub> </mml:math> and MAP and dilatation of the CCA would be attenuated in females compared with males. In 20 young, healthy participants (10 females), we measured the respiratory, cardiovascular and CCA responses during a CPT, which consisted of a 3 min immersion of the right foot into 0-1 ice water. Blood pressure (via finger photoplethysmography), heart rate (via electrocardiogram) and CCA diameter and velocity (via Duplex ultrasound) were simultaneously recorded immediately before and during the CPT. During the CPT, while controlling end-tidal gases to baseline values, the main findings were as follows: (i) no sex differences were present in absolute or relative changes in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mover><mml:mi>V</mml:mi> <mml:mo>̇</mml:mo></mml:mover> <mml:mi>E</mml:mi></mml:msub> </mml:math> (P = 0.801 and P = 0.179, respectively); (ii) the relative MAP and CCA diameter response were reduced in females by 51 and 55%, respectively (P = 0.008 and P = 0.029 versus males, respectively); and (iii) the relative MAP responses was positively correlated with the dilatation of the CCA in males (r = 0.42, P = 0.019), in females (r = 0.43, P = 0.019) and in males and females combined (r = 0.55, P < 0.001). Given that the CPT is used as a clinical tool to assess cardiovascular health status, sex differences should be considered in future studies.
Collapse
Affiliation(s)
- Rachel M Stone
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Thijs P Kerstens
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kevin W Wildfong
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
26
|
Hazlett C, Edgell H. Chemoreflex function and brain blood flow during upright posture in men and women. Physiol Rep 2018; 6. [PMID: 29333725 PMCID: PMC5789659 DOI: 10.14814/phy2.13571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 11/24/2022] Open
Abstract
Orthostatic intolerance is more common in women than men, and some studies have found that women in the early follicular (EF) phase of the menstrual cycle experience the greatest feelings of lightheadedness. Chemoreflex function while supine or upright was investigated to determine the potential contribution of ventilatory control to these phenomena. Men (n = 13) and women (n = 14) were tested while supine and 70° upright (head-up tilt [HUT]) and given: (1) normoxia or (2) hypercapnia (5% CO2 ). Women were tested during the EF phase (days 2-5) and the midluteal phase (ML; days 18-24). During HUT, all groups reduced cerebrovascular resistance index (men: 1.45 ± 0.08 to 1.42 ± 0.07 mmHg/(cm·sec), EF: 1.38 ± 0.11 to 1.26 ± 0.10 mmHg/(cm·sec), ML: 1.25 ± 0.07 to 1.09 ± 0.07 mmHg/(cm·sec); P ≤ 0.019); however, only men increased ventilation (men: 11.99 ± 0.65 to 13.24 ± 0.83 L/min; P < 0.01). In response to hypercapnia in the supine position, men had a smaller increase of diastolic middle cerebral artery velocity compared to women in the ML phase (men: +9.1 ± 2.0 cm/sec, ML: +15.7 ± 3.1 cm/sec, P = 0.039). During hypercapnia in HUT (compared to hypercapnia while supine), all groups had an augmented increase of ventilation (men: +7.46 ± 1.34 vs. +5.84 ± 1.09 L/min, EF: +6.71 ± 0.83 vs. +5.48 ± 0.66 L/min, ML: +7.99 ± 1.13 vs. +5.65 ± 0.81 L/min; P ≤ 0.028), suggesting that all groups experienced augmentation of the CO2 chemoreflex; however, only men had an augmented increase of mean arterial pressure (+0.10 ± 0.58 to +4.71 ± 0.87 mmHg; P ≤ 0.017). Our results indicate that men have different ventilatory responses to upright tilt compared to women, and that the CO2 chemoreflex response is enhanced in upright posture in both sexes. Furthermore, sexually dimorphic blood pressure responses to this chemoreflex enhancement are evident.
Collapse
Affiliation(s)
- Christopher Hazlett
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| | - Heather Edgell
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada.,Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Caldwell HG. Emerging views of how changes in blood pressure influence cerebral blood flow. J Physiol 2018; 596:4565-4567. [PMID: 30084502 DOI: 10.1113/jp276800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| |
Collapse
|
28
|
Olesen ND, Fischer M, Secher NH. Sodium nitroprusside dilates cerebral vessels and enhances internal carotid artery flow in young men. J Physiol 2018; 596:3967-3976. [PMID: 29917239 DOI: 10.1113/jp275887] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/12/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sodium nitroprusside lowers blood pressure by vasodilatation but is reported to reduce cerebral blood flow. In healthy young men sodium nitroprusside reduced blood pressure, total peripheral resistance, and arterial CO2 tension and yet cerebral blood flow was maintained, with an increase in internal carotid artery blood flow and cerebrovascular conductance. Sodium nitroprusside induces both systemic and cerebral vasodilatation affecting internal carotid artery more than vertebral artery flow. ABSTRACT Cerebral autoregulation maintains cerebral blood flow (CBF) despite marked changes in mean arterial pressure (MAP). Sodium nitroprusside (SNP) reduces blood pressure by vasodilatation but is reported to lower CBF, probably by a reduction in its perfusion pressure. We evaluated the influence of SNP on CBF and aimed for a 20% and then 40% reduction in MAP, while keeping MAP ≥ 50 mmHg, to challenge cerebral autoregulation. In 19 healthy men (age 24 ± 4 years; mean ± SD) duplex ultrasound determined right internal carotid (ICA) and vertebral artery (VA) blood flow. The SNP reduced MAP (from 83 ± 8 to 69 ± 8 and 58 ± 4 mmHg; both P < 0.0001), total peripheral resistance, and arterial CO2 tension (P aC O2; 41 ± 3 vs. 39 ± 3 and 37 ± 4 mmHg; both P < 0.01). Yet ICA flow increased with the moderate reduction in MAP but returned to the baseline value with the large reduction in MAP (336 ± 66 vs. 365 ± 69; P = 0.013 and 349 ± 82 ml min-1 ; n.s.), while VA flow (114 ± 34 vs. 112 ± 38 and 110 ± 42 ml min-1 ; both n.s.) and CBF ((ICA + VA flow) × 2; 899 ± 135 vs. 962 ± 127 and 918 ± 197 ml min-1 ; both n.s.) were maintained with increased cerebrovascular conductance. In conclusion, CBF is maintained during SNP-induced reduction in MAP despite reduced P aC O2 and the results indicate that SNP dilates cerebral vessels and increases ICA flow.
Collapse
Affiliation(s)
- Niels D Olesen
- Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Mads Fischer
- Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Niels H Secher
- Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
29
|
Labrecque L, Rahimaly K, Imhoff S, Paquette M, Le Blanc O, Malenfant S, Lucas SJE, Bailey DM, Smirl JD, Brassard P. Diminished dynamic cerebral autoregulatory capacity with forced oscillations in mean arterial pressure with elevated cardiorespiratory fitness. Physiol Rep 2018; 5:5/21/e13486. [PMID: 29122957 PMCID: PMC5688778 DOI: 10.14814/phy2.13486] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/07/2017] [Indexed: 12/12/2022] Open
Abstract
The effect that cardiorespiratory fitness has on the dynamic cerebral autoregulatory capacity during changes in mean arterial pressure (MAP) remains equivocal. Using a multiple‐metrics approach, challenging MAP across the spectrum of physiological extremes (i.e., spontaneous through forced MAP oscillations), we characterized dynamic cerebral autoregulatory capacity in 19 male endurance athletes and eight controls via three methods: (1) onset of regulation (i.e., time delay before an increase in middle cerebral artery (MCA) conductance [MCA blood velocity (MCAv)/MAP] and rate of regulation, after transient hypotension induced by sit‐to‐stand, and transfer function analysis (TFA) of MAP and MCAv responses during (2) spontaneous and (3) forced oscillations (5‐min of squat‐stand maneuvers performed at 0.05 and 0.10 Hz). Reductions in MAP and mean MCAv (MCAVmean) during initial orthostatic stress (0‐30 sec after sit‐to‐stand) and the prevalence of orthostatic hypotension were also determined. Onset of regulation was delayed after sit‐to‐stand in athletes (3.1 ± 1.7 vs. 1.5 ± 1.0 sec; P = 0.03), but rate of regulation was not different between groups (0.24 ± 0.05 vs. 0.21 ± 0.09 sec−1; P = 0.82). While both groups had comparable TFA metrics during spontaneous oscillations, athletes had higher TFA gain during 0.10 Hz squat‐stand versus recreational controls (P = 0.01). Reductions in MAP (P = 0.15) and MCAVmean (P = 0.11) during orthostatic stress and the prevalence of initial orthostatic hypotension (P = 0.65) were comparable between groups. These results indicate an intact ability of the cerebral vasculature to react to spontaneous oscillations but an attenuated capability to counter rapid and large changes in MAP in individuals with elevated cardiorespiratory fitness.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Kevan Rahimaly
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Sarah Imhoff
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Myriam Paquette
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Olivier Le Blanc
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Simon Malenfant
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Damian M Bailey
- Neurovascular Research Laboratory Faculty of Life Sciences and Education University of South Wales, South Wales, United Kingdom.,Faculty of Medicine, Reichwald Health Sciences Centre University of British Columbia-Okanagan, Kelowna British Columbia, Canada
| | - Jonathan D Smirl
- Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada .,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| |
Collapse
|
30
|
Iwamoto E, Bock JM, Casey DP. Blunted shear-mediated dilation of the internal but not common carotid artery in response to lower body negative pressure. J Appl Physiol (1985) 2018; 124:1326-1332. [DOI: 10.1152/japplphysiol.01011.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Shear-mediated dilation in peripheral conduit arteries is blunted with sympathetic nervous system (SNS) activation; however, the effect of SNS activation on shear-mediated dilation in carotid arteries is unknown. We hypothesized that SNS activation reduces shear-mediated dilation in common and internal carotid arteries (CCA and ICA, respectively), and this attenuation is greater in the ICA compared with the CCA. Shear-mediated dilation in the CCA and ICA were measured in nine healthy men (24 ± 1 yr) with and without SNS activation. Shear-mediated dilation was induced by 3 min of hypercapnia (end‐tidal partial pressure of carbon dioxide +10 mmHg from individual baseline); SNS activity was increased with lower body negative pressure (LBNP; −20 mmHg). CCA and ICA measurements were made using Doppler ultrasound during hypercapnia with (LBNP) or without (Control) SNS activation. LBNP trials began with 5 min of LBNP with subjects breathing hypercapnic gas during the final 3 min. Shear-mediated dilation was calculated as the percent rise in peak diameter from baseline diameter. Sympathetic activation attenuated shear-mediated dilation in the ICA (Control vs. LBNP, 5.5 ± 0.7 vs. 1.8 ± 0.4%, P < 0.01), but not in the CCA (5.1 ± 1.2 vs. 4.2 ± 1.0%, P = 0.31). Moreover, absolute reduction in shear-mediated dilation via SNS activation was greater in the ICA than the CCA (−3.6 ± 0.7 vs. −0.9 ± 0.8%, P = 0.02). Our data indicate that shear-mediated dilation is attenuated during LBNP to a greater extent in the ICA compared with the CCA. These results potentially provide insight into the role of SNS activation on cerebral perfusion, as the ICA is a key supplier of blood to the brain. NEW & NOTEWORTHY We explored the effect of acute sympathetic nervous system (SNS) activation on shear-mediated dilation in the common and internal carotid arteries (CCA and ICA, respectively) in young healthy men. Our data demonstrate that hypercapnia-induced vasodilation of the ICA is attenuated during lower body negative pressure to a greater extent than the CCA. These data may provide novel information related to the role of SNS activation on cerebral perfusion in humans.
Collapse
Affiliation(s)
- Erika Iwamoto
- Human Integrative and Cardiovascular Physiology Laboratory, Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Joshua M. Bock
- Human Integrative and Cardiovascular Physiology Laboratory, Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Darren P. Casey
- Human Integrative and Cardiovascular Physiology Laboratory, Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
31
|
Skytioti M, Søvik S, Elstad M. Dynamic cerebral autoregulation is preserved during isometric handgrip and head-down tilt in healthy volunteers. Physiol Rep 2018; 6:e13656. [PMID: 29595918 PMCID: PMC5875546 DOI: 10.14814/phy2.13656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/29/2022] Open
Abstract
In healthy humans, cerebral blood flow (CBF) is autoregulated against changes in arterial blood pressure. Spontaneous fluctuations in mean arterial pressure (MAP) and CBF can be used to assess cerebral autoregulation. We hypothesized that dynamic cerebral autoregulation is affected by changes in autonomic activity, MAP, and cardiac output (CO) induced by handgrip (HG), head‐down tilt (HDT), and their combination. In thirteen healthy volunteers, we recorded blood velocity by ultrasound in the internal carotid artery (ICA), HR, MAP and CO‐estimates from continuous finger blood pressure, and end‐tidal CO2. Instantaneous ICA beat volume (ICABV, mL) and ICA blood flow (ICABF, mL/min) were calculated. Wavelet synchronization index γ (0–1) was calculated for the pairs: MAP–ICABF, CO–ICABF and HR–ICABV in the low (0.05–0.15 Hz; LF) and high (0.15–0.4 Hz; HF) frequency bands. ICABF did not change between experimental states. MAP and CO were increased during HG (+16% and +15%, respectively, P < 0.001) and during HDT + HG (+12% and +23%, respectively, P < 0.001). In the LF interval, median γ for the MAP–ICABF pair (baseline: 0.23 [0.12–0.28]) and the CO–ICABF pair (baseline: 0.22 [0.15–0.28]) did not change with HG, HDT, or their combination. High γ was observed for the HR–ICABV pair at the respiratory frequency, the oscillations in these variables being in inverse phase. The unaltered ICABF and the low synchronization between MAP and ICABF in the LF interval suggest intact dynamic cerebral autoregulation during HG, HDT, and their combination.
Collapse
Affiliation(s)
- Maria Skytioti
- Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Signe Søvik
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Anaesthesia and Intensive Care, Akershus University Hospital, Lørenskog, Norway
| | - Maja Elstad
- Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Medow MS, Kothari ML, Goetz AM, O'Donnell-Smith MB, Terilli C, Stewart JM. Decreasing cerebral oxygen consumption during upright tilt in vasovagal syncope. Physiol Rep 2018; 5:e13286. [PMID: 28554964 PMCID: PMC5449565 DOI: 10.14814/phy2.13286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/24/2022] Open
Abstract
We measured changes in transcranial Doppler ultrasound (TCD) and near infrared spectroscopy (NIRS) during 70° upright tilt in patients with recurrent vasovagal syncope (VVS, N = 20), postural tachycardia syndrome (POTS, N = 20), and healthy controls (N = 12) aged 15–27 years old. VVS was included if they fainted during testing within 5–15 min of upright tilt. We combined TCD and NIRS to obtain estimates of percent change in the cerebral metabolic rate of oxygen consumption (CMRO2), cerebral blood flow velocity (CBFv), and oxygen extraction fraction (OEF). Over the course of 10 min of upright tilt, CBFv decreased from a baseline of 70 ± 5 to 63 ± 5 cm/sec in controls and 74 ± 3 to 64 ± 3 cm/sec in POTS while decreasing from 74 ± 4 to 44 ± 3 cm/sec in VVS. CMRO2 was unchanged in POTS and controls during tilt while OEF increased by 19 ± 3% and 15 ± 3%, respectively. CMRO2 decreased by 31 ± 3% in VVS during tilt while OEF only increased by 7 ± 3%. Oxyhemoglobin decreased by 1.1 ± 1.3 μmol/kg brain tissue in controls, by 1.1 ± 1.3 μmol/kg in POTS, and 11.1 ± 1.3 μmol/kg in VVS. CBFv and CMRO2 fell steadily in VVS during upright tilt. The deficit in CMRO2 in VVS results from inadequate OEF in the face of greatly reduced CBF.
Collapse
Affiliation(s)
- Marvin S Medow
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| | - Mira L Kothari
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| | - Amanda M Goetz
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| | - Mary Breige O'Donnell-Smith
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| | - Courtney Terilli
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| | - Julian M Stewart
- Departments of Pediatrics and Physiology, New York Medical College, Center for Hypotension, Hawthorne, New York
| |
Collapse
|
33
|
Lucas RAI, Wilson LC, Ainslie PN, Fan JL, Thomas KN, Cotter JD. Independent and interactive effects of incremental heat strain, orthostatic stress, and mild hypohydration on cerebral perfusion. Am J Physiol Regul Integr Comp Physiol 2017; 314:R415-R426. [PMID: 29212807 DOI: 10.1152/ajpregu.00109.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to identify the dose-dependent effects of heat strain and orthostasis [via lower body negative pressure (LBNP)], with and without mild hypohydration, on systemic function and cerebral perfusion. Eleven men (means ± SD: 27 ± 7 y; body mass 77 ± 6 kg), resting supine in a water-perfused suit, underwent progressive passive heating [0.5°C increments in core temperature (Tc; esophageal to +2.0°C)] while euhydrated (EUH) or hypohydrated (HYPO; 1.5-2% body mass deficit). At each thermal state, mean cerebral artery blood velocity (MCAvmean; transcranial Doppler), partial pressure of end-tidal carbon dioxide ([Formula: see text]), heart rate (HR) and mean arterial blood pressure (MAP; photoplethysmography) were measured continuously during LBNP (0, -15, -30, and -45 mmHg). Four subjects became intolerant before +2.0°C Tc, unrelated to hydration status. Without LBNP, decreases in [Formula: see text] accounted fully for reductions in MCAvmean across all Tc. With LBNP at heat tolerance (+1.5 or +2.0°C), [Formula: see text] accounted for 69 ± 25% of the change in MCAvmean. The HYPO condition did not affect MCAvmean or any cardiovascular variables during combined LBNP and passive heat stress (all P > 0.13). These findings indicate that hypocapnia accounted fully for the reduction in MCAvmean when passively heat stressed in the absence of LBNP and for two- thirds of the reduction when at heat tolerance combined with LBNP. Furthermore, when elevations in Tc are matched, mild hypohydration does not influence cerebrovascular or cardiovascular responses to LBNP, even when stressed by a combination of hyperthermia and LBNP.
Collapse
Affiliation(s)
- R A I Lucas
- Department of Physiology, University of Otago , Dunedin , New Zealand.,School of Physical Education, Sport and Exercise Sciences, University of Otago , Dunedin , New Zealand.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham , United Kingdom
| | - L C Wilson
- Department of Physiology, University of Otago , Dunedin , New Zealand.,School of Physical Education, Sport and Exercise Sciences, University of Otago , Dunedin , New Zealand.,Department of Medicine, University of Otago , Dunedin , New Zealand
| | - P N Ainslie
- Department of Physiology, University of Otago , Dunedin , New Zealand.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan , Kelowna , Canada
| | - J L Fan
- Department of Physiology, University of Otago , Dunedin , New Zealand.,Institute of Sports Science, Faculty of Biology and Medicine, University of Lausanne , Lausanne , Switzerland.,Lemanic Neuroscience Doctoral School, University of Lausanne , Lausanne , Switzerland
| | - K N Thomas
- Department of Physiology, University of Otago , Dunedin , New Zealand.,School of Physical Education, Sport and Exercise Sciences, University of Otago , Dunedin , New Zealand.,Department of Surgical Sciences, Dunedin School of Medicine, University of Otago . New Zealand
| | - J D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago , Dunedin , New Zealand
| |
Collapse
|
34
|
Brassard P, Tymko MM, Ainslie PN. Sympathetic control of the brain circulation: Appreciating the complexities to better understand the controversy. Auton Neurosci 2017; 207:37-47. [DOI: 10.1016/j.autneu.2017.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022]
|
35
|
Tymko MM, Rickards CA, Skow RJ, Ingram-Cotton NC, Howatt MK, Day TA. The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations. Physiol Rep 2017; 4:4/17/e12957. [PMID: 27634108 PMCID: PMC5027361 DOI: 10.14814/phy2.12957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/14/2016] [Indexed: 11/24/2022] Open
Abstract
Steady-state tilt has no effect on cerebrovascular reactivity to increases in the partial pressure of end-tidal carbon dioxide (PETCO2). However, the anterior and posterior cerebral circulations may respond differently to a variety of stimuli that alter central blood volume, including lower body negative pressure (LBNP). Little is known about the superimposed effects of head-up tilt (HUT; decreased central blood volume and intracranial pressure) and head-down tilt (HDT; increased central blood volume and intracranial pressure), and LBNP on cerebral blood flow (CBF) responses. We hypothesized that (a) cerebral blood velocity (CBV; an index of CBF) responses during LBNP would not change with HUT and HDT, and (b) CBV in the anterior cerebral circulation would decrease to a greater extent compared to posterior CBV during LBNP when controlling PETCO2 In 13 male participants, we measured CBV in the anterior (middle cerebral artery, MCAv) and posterior (posterior cerebral artery, PCAv) cerebral circulations using transcranial Doppler ultrasound during LBNP stress (-50 mmHg) in three body positions (45°HUT, supine, 45°HDT). PETCO2 was measured continuously and maintained at constant levels during LBNP through coached breathing. Our main findings were that (a) steady-state tilt had no effect on CBV responses during LBNP in both the MCA (P = 0.077) and PCA (P = 0.583), and (b) despite controlling for PETCO2, both the MCAv and PCAv decreased by the same magnitude during LBNP in HUT (P = 0.348), supine (P = 0.694), and HDT (P = 0.407). Here, we demonstrate that there are no differences in anterior and posterior circulations in response to LBNP in different body positions.
Collapse
Affiliation(s)
- Michael M Tymko
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science University of British Columbia, Kelowna, Canada Department of Biology, Faculty of Science and Technology Mount Royal University, Calgary, Alberta, Canada
| | - Caroline A Rickards
- Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Science Centre, Fort Worth, Texas
| | - Rachel J Skow
- Department of Biology, Faculty of Science and Technology Mount Royal University, Calgary, Alberta, Canada Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Nathan C Ingram-Cotton
- Department of Biology, Faculty of Science and Technology Mount Royal University, Calgary, Alberta, Canada
| | - Michael K Howatt
- Department of Biology, Faculty of Science and Technology Mount Royal University, Calgary, Alberta, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology Mount Royal University, Calgary, Alberta, Canada
| |
Collapse
|
36
|
Tymko MM, Kerstens TP, Wildfong KW, Ainslie PN. Cerebrovascular response to the cold pressor test - the critical role of carbon dioxide. Exp Physiol 2017; 102:1647-1660. [DOI: 10.1113/ep086585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Michael M. Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science; University of British Columbia; Kelowna BC Canada
| | | | - Kevin W. Wildfong
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science; University of British Columbia; Kelowna BC Canada
| | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science; University of British Columbia; Kelowna BC Canada
| |
Collapse
|
37
|
Flück D, Ainslie PN, Bain AR, Wildfong KW, Morris LE, Fisher JP. Extra- and intracranial blood flow regulation during the cold pressor test: influence of age. J Appl Physiol (1985) 2017; 123:1071-1080. [PMID: 28663374 DOI: 10.1152/japplphysiol.00224.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/30/2017] [Accepted: 06/26/2017] [Indexed: 11/22/2022] Open
Abstract
We determined how the extra- and intracranial circulations respond to generalized sympathetic activation evoked by a cold pressor test (CPT) and whether this is affected by healthy aging. Ten young [23 ± 2 yr (means ± SD)] and nine older (66 ± 3 yr) individuals performed a 3-min CPT by immersing the left foot into 0.8 ± 0.3°C water. Common carotid artery (CCA) and internal carotid artery (ICA) diameter, velocity, and flow were simultaneously measured (duplex ultrasound) along with middle cerebral artery and posterior cerebral artery mean blood velocity (MCAvmean and PCAvmean) and cardiorespiratory variables. The increases in heart rate (~6 beats/min) and mean arterial blood pressure (~14 mmHg) were similar in young and older groups during the CPT (P < 0.01 vs. baseline). In the young group, the CPT elicited an ~5% increase in CCA diameter (P < 0.01 vs. baseline) and a tendency for an increase in CCA flow (~12%, P = 0.08); in contrast, both diameter and flow remained unchanged in the older group. Although ICA diameter was not changed during the CPT in either group, ICA flow increased (~8%, P = 0.02) during the first minute of the CPT in both groups. Whereas the CPT elicited an increase in MCAvmean and PCAvmean in the young group (by ~20 and ~10%, respectively, P < 0.01 vs. baseline), these intracranial velocities were unchanged in the older group. Collectively, during the CPT, these findings suggest a differential mechanism(s) of regulation between the ICA compared with the CCA in young individuals and a blunting of the CCA and intracranial responses in older individuals.NEW & NOTEWORTHY Sympathetic activation evoked by a cold pressor test elicits heterogeneous extra- and intracranial blood vessel responses in young individuals that may serve an important protective role. The extra- and intracranial responses to the cold pressor test are blunted in older individuals.
Collapse
Affiliation(s)
- Daniela Flück
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada; and
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada; and
| | - Anthony R Bain
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada; and
| | - Kevin W Wildfong
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada; and
| | - Laura E Morris
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada; and
| | - James P Fisher
- School of Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
38
|
Washio T, Sasaki H, Ogoh S. Transcranial Doppler-determined change in posterior cerebral artery blood flow velocity does not reflect vertebral artery blood flow during exercise. Am J Physiol Heart Circ Physiol 2017; 312:H827-H831. [PMID: 28188214 DOI: 10.1152/ajpheart.00676.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 11/22/2022]
Abstract
We examined whether a change in posterior cerebral artery flow velocity (PCAv) reflected the posterior cerebral blood flow in healthy subjects during both static and dynamic exercise. PCAv and vertebral artery (VA) blood flow, as an index of posterior cerebral blood flow, were continuously measured during an exercise trial using transcranial Doppler (TCD) ultrasonography and Doppler ultrasound, respectively. Static handgrip exercise significantly increased both PCAv and VA blood flow. Increasing intensity of dynamic exercise further increased VA blood flow from moderate exercise, while PCAv decreased to almost resting level. During both static and dynamic exercise, the PCA cerebrovascular conductance (CVC) index significantly decreased from rest (static and high-intensity dynamic exercise, -11.5 ± 12.2% and -18.0 ± 16.8%, means ± SD, respectively) despite no change in the CVC of VA. These results indicate that vasoconstriction occurred at PCA but not VA during exercise-induced hypertension. This discrepancy in vascular response to exercise between PCA and VA may be due to different cerebral arterial characteristics. Therefore, to determine the effect of exercise on posterior cerebral circulation, at least, we need to carefully consider which cerebral artery to measure, regardless of exercise mode.NEW & NOTEWORTHY We examined whether transcranial Doppler-determined flow velocity in the posterior cerebral artery can be used as an index of cerebral blood flow during exercise. However, the changes in posterior cerebral artery flow velocity during exercise do not reflect vertebral artery blood flow.
Collapse
Affiliation(s)
- Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe-shi, Japan
| | - Hiroyuki Sasaki
- Department of Biomedical Engineering, Toyo University, Kawagoe-shi, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-shi, Japan
| |
Collapse
|
39
|
Merchant S, Medow MS, Visintainer P, Terilli C, Stewart JM. Oscillatory lower body negative pressure impairs working memory task-related functional hyperemia in healthy volunteers. Am J Physiol Heart Circ Physiol 2017; 312:H672-H680. [PMID: 28159806 DOI: 10.1152/ajpheart.00438.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 11/22/2022]
Abstract
Neurovascular coupling (NVC) describes the link between an increase in task-related neural activity and increased cerebral blood flow denoted "functional hyperemia." We previously showed induced cerebral blood flow oscillations suppressed functional hyperemia; conversely functional hyperemia also suppressed cerebral blood flow oscillations. We used lower body negative pressure (OLBNP) oscillations to force oscillations in middle cerebral artery cerebral blood flow velocity (CBFv). Here, we used N-back testing, an intellectual memory challenge as a neural activation task, to test the hypothesis that OLBNP-induced oscillatory cerebral blood flow can reduce functional hyperemia and NVC produced by a working memory task and can interfere with working memory. We used OLBNP (-30 mmHg) at 0.03, 0.05, and 0.10 Hz and measured spectral power of CBFv at all frequencies. Neither OLBNP nor N-back, alone or combined, affected hemodynamic parameters. 2-Back power and OLBNP individually were compared with 2-back power during OLBNP. 2-Back alone produced a narrow band increase in oscillatory arterial pressure (OAP) and oscillatory cerebral blood flow power centered at 0.0083 Hz. Functional hyperemia in response to 2-back was reduced to near baseline and 2-back memory performance was decreased by 0.03-, 0.05-, and 0.10-Hz OLBNP. OLBNP alone produced increased oscillatory power at frequencies of oscillation not suppressed by added 2-back. However, 2-back preceding OLBNP suppressed OLBNP power. OLBNP-driven oscillatory CBFv blunts NVC and memory performance, while memory task reciprocally interfered with forced CBFv oscillations. This shows that induced cerebral blood flow oscillations suppress functional hyperemia and functional hyperemia suppresses cerebral blood flow oscillations.NEW & NOTEWORTHY We show that induced cerebral blood flow oscillations suppress functional hyperemia produced by a working memory task as well as memory task performance. We conclude that oscillatory cerebral blood flow produces causal reductions of memory task neurovascular coupling and memory task performance. Reductions of functional hyperemia are constrained by autoregulation.
Collapse
Affiliation(s)
- Sana Merchant
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Marvin S Medow
- Department of Pediatrics, New York Medical College, Valhalla, New York.,Department of Physiology, New York Medical College, Valhalla, New York; and
| | - Paul Visintainer
- Director of Epidemiology and Biostatistics, Baystate Medical Center, Tufts University School of Medicine, Springfield, Massachusetts
| | - Courtney Terilli
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Julian M Stewart
- Department of Pediatrics, New York Medical College, Valhalla, New York; .,Department of Physiology, New York Medical College, Valhalla, New York; and
| |
Collapse
|
40
|
Ogoh S, Washio T, Sasaki H, Petersen LG, Secher NH, Sato K. Coupling between arterial and venous cerebral blood flow during postural change. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1255-R1261. [DOI: 10.1152/ajpregu.00325.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 11/22/2022]
Abstract
In supine humans the main drainage from the brain is through the internal jugular vein (IJV), but the vertebral veins (VV) become important during orthostatic stress because the IJV is partially collapsed. To identify the effect of this shift in venous drainage from the brain on the cerebral circulation, this study addressed both arterial and venous flow responses in the “anterior” and “posterior” parts of the brain when nine healthy subjects (5 men) were seated and flow was manipulated by hyperventilation and inhalation of 6% carbon dioxide (CO2). From a supine to a seated position, both internal carotid artery (ICA) and IJV blood flow decreased ( P = 0.004 and P = 0.002), while vertebral artery (VA) flow did not change ( P = 0.348) and VV flow increased ( P = 0.024). In both supine and seated positions the ICA response to manipulation of end-tidal CO2 tension was reflected in IJV ( r = 0.645 and r = 0.790, P < 0.001) and VV blood flow ( r = 0.771 and r = 0.828, P < 0.001). When seated, the decrease in ICA blood flow did not affect venous outflow, but the decrease in IJV blood flow was associated with the increase in VV blood flow ( r = 0.479, P = 0.044). In addition, the increase in VV blood flow when seated was reflected in VA blood flow ( r = 0.649, P = 0.004), and the two flows were coupled during manipulation of the end-tidal CO2 tension (supine, r = 0.551, P = 0.004; seated, r = 0.612, P < 0001). These results support that VV compensates for the reduction in IJV blood flow when seated and that VV may influence VA blood flow.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Japan
| | - Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe, Japan
| | - Hiroyuki Sasaki
- Department of Biomedical Engineering, Toyo University, Kawagoe, Japan
| | - Lonnie G. Petersen
- The Copenhagen Muscle Research Center, Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Niels H. Secher
- The Copenhagen Muscle Research Center, Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kohei Sato
- Research Institute of Physical Fitness, Japan Women’s College of Physical Education, Tokyo, Japan; and
| |
Collapse
|
41
|
Skytioti M, Søvik S, Elstad M. Internal carotid artery blood flow in healthy awake subjects is reduced by simulated hypovolemia and noninvasive mechanical ventilation. Physiol Rep 2016; 4:e12969. [PMID: 27702883 PMCID: PMC5064133 DOI: 10.14814/phy2.12969] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 02/02/2023] Open
Abstract
Intact cerebral blood flow (CBF) is essential for cerebral metabolism and function, whereas hypoperfusion in relation to hypovolemia and hypocapnia can lead to severe cerebral damage. This study was designed to assess internal carotid artery blood flow (ICA-BF) during simulated hypovolemia and noninvasive positive pressure ventilation (PPV) in young healthy humans. Beat-by-beat blood velocity (ICA and aorta) were measured by Doppler ultrasound during normovolemia and simulated hypovolemia (lower body negative pressure), with or without PPV in 15 awake subjects. Heart rate, plethysmographic finger arterial pressure, respiratory frequency, and end-tidal CO2 (ETCO2) were also recorded. Cardiac index (CI) and ICA-BF were calculated beat-by-beat. Medians and 95% confidence intervals and Wilcoxon signed rank test for paired samples were used to test the difference between conditions. Effects on ICA-BF were modeled by linear mixed-effects regression analysis. During spontaneous breathing, ICA-BF was reduced from normovolemia (247, 202-284 mL/min) to hypovolemia (218, 194-271 mL/min). During combined PPV and hypovolemia, ICA-BF decreased by 15% (200, 152-231 mL/min, P = 0.001). Regression analysis attributed this fall to concurrent reductions in CI (β: 43.2, SE: 17.1, P = 0.013) and ETCO2 (β: 32.8, SE: 9.3, P = 0.001). Mean arterial pressure was maintained and did not contribute to ICA-BF variance. In healthy awake subjects, ICA-BF was significantly reduced during simulated hypovolemia combined with noninvasive PPV Reductions in CI and ETCO2 had additive effects on ICA-BF reduction. In hypovolemic patients, even low-pressure noninvasive ventilation may cause clinically relevant reductions in CBF, despite maintained arterial blood pressure.
Collapse
Affiliation(s)
- Maria Skytioti
- Division of Physiology, Institute of Basic Medical Sciences University of Oslo, Oslo, Norway
| | - Signe Søvik
- Deptartment of Anaesthesia and Intensive Care, Akershus University Hospital, Lørenskog, Norway
| | - Maja Elstad
- Division of Physiology, Institute of Basic Medical Sciences University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Ringer SK, Ohlerth S, Carrera I, Mauch J, Spielmann N, Bettschart-Wolfensberger R, Weiss M. Effects of hypotension and/or hypocapnia during sevoflurane anesthesia on perfusion and metabolites in the developing brain of piglets-a blinded randomized study. Paediatr Anaesth 2016; 26:909-18. [PMID: 27345010 DOI: 10.1111/pan.12956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hypotension (HT) and/or hypocapnia (HC) are frequent complications occurring during pediatric anesthesia and may cause cerebral injury in the developing brain. AIM The aim of this study is to investigate the effects of HT and/or HC on perfusion and metabolism in the developing brain. METHODS Twenty-eight piglets were randomly allocated to four groups: control (C), HT, HC, and hypotension and hyocapnia (HTC). Anesthesia was induced and maintained using sevoflurane. Fentanyl was added for instrumentation. Piglets were fully monitored and their lungs were artificially ventilated. Before treatment, conventional magnetic resonance imaging (MRI), dynamic susceptibility-contrast-enhanced T2*-weighted MRI (DSC-MRI), and single voxel proton MR spectroscopy ((1) H MRS) were performed. Hypotension (mean arterial blood pressure: 30 ± 3 mmHg) was induced by blood withdrawal and nitroprusside infusion, and hyperventilation was used to induce HC (PaCO2 : 2.7-3.3 kPa). (1) H MRS and DSC-MRI were repeated immediately once treatment goals were achieved and 120 min later. Radiologists were blinded to the groups. DSCI-MRI and (1) H MRS analyses were performed in the thalamus, occipital and parietal lobe, hippocampus, and watershed areas. RESULTS In comparison to C, mean time to peak (TTP) increased with HTC in all brain areas as assessed with DSC-MRI (n = 26). Using (1) H MRS, a significant decrease in N-acetyl aspartate, choline, and myoinositol, as well as an increase in glutamine-glutamate complex (Glx) were detected independent of group. Compared to C, changes were more pronounced for Glx (due to an increase in glutamate) and myoinositol with HTC, for N-acetyl aspartate with HT, and for Glx with HC. No lactate signal was present. CONCLUSIONS The combination of HT and HC during sevoflurane anesthesia resulted in alteration of cerebral perfusion with signs of neuronal dysfunction and early neuronal ischemia. HT and HC alone also resulted in signs of metabolic disturbances despite the absence of detectable cerebral perfusion alterations.
Collapse
Affiliation(s)
- Simone K Ringer
- Section Anesthesiology, Equine Department, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Stefanie Ohlerth
- Department for Small Animals, Clinic of Diagnostic Imaging, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Inés Carrera
- Department for Small Animals, Clinic of Diagnostic Imaging, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Jacqueline Mauch
- Department of Anesthesiology, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Nelly Spielmann
- Department of Anesthesia, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | | | - Markus Weiss
- Department of Anesthesia, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Liu J, Liu Y, Ren LH, Li L, Wang Z, Liu SS, Li SZ, Cao TS. Effects of race and sex on cerebral hemodynamics, oxygen delivery and blood flow distribution in response to high altitude. Sci Rep 2016; 6:30500. [PMID: 27503416 PMCID: PMC4977556 DOI: 10.1038/srep30500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
To assess racial, sexual, and regional differences in cerebral hemodynamic response to high altitude (HA, 3658 m). We performed cross-sectional comparisons on total cerebral blood flow (TCBF = sum of bilateral internal carotid and vertebral arterial blood flows = QICA + QVA), total cerebrovascular resistance (TCVR), total cerebral oxygen delivery (TCOD) and QVA/TCBF (%), among six groups of young healthy subjects: Tibetans (2-year staying) and Han (Han Chinese) at sea level, Han (2-day, 1-year and 5-year) and Tibetans at HA. Bilateral ICA and VA diameters and flow velocities were derived from duplex ultrasonography; and simultaneous measurements of arterial pressure, oxygen saturation, and hemoglobin concentration were conducted. Neither acute (2-day) nor chronic (>1 year) responses showed sex differences in Han, except that women showed lower TCOD compared with men. Tibetans and Han exhibited different chronic responses (percentage alteration relative to the sea-level counterpart value) in TCBF (−17% vs. 0%), TCVR (22% vs. 12%), TCOD (0% vs. 10%) and QVA/TCBF (0% vs. 2.4%, absolute increase), with lower resting TCOD found in SL- and HA-Tibetans. Our findings indicate racial but not sex differences in cerebral hemodynamic adaptations to HA, with Tibetans (but not Han) demonstrating an altitude-related change of CBF distribution.
Collapse
Affiliation(s)
- Jie Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li-Hua Ren
- General Hospital of Tibet Military Area Command, Lhasa, Tibet Autonomous Region, China
| | - Li Li
- Department of Ultrasonic Medicine, Affiliated Hospital of Tibet University for Nationalities, Xianyang, Shaanxi, China
| | - Zhen Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shan-Shan Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Su-Zhi Li
- General Hospital of Tibet Military Area Command, Lhasa, Tibet Autonomous Region, China
| | - Tie-Sheng Cao
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
44
|
Abstract
Cerebral blood flow (CBF) regulation is an indicator of cerebrovascular health increasingly recognized as being influenced by physical activity. Although regular exercise is recommended during healthy pregnancy, the effects of exercise on CBF regulation during this critical period of important blood flow increase and redistribution remain incompletely understood. Moreover, only a few studies have evaluated the effects of human pregnancy on CBF regulation. The present work summarizes current knowledge on CBF regulation in humans at rest and during aerobic exercise in relation to healthy pregnancy. Important gaps in the literature are highlighted, emphasizing the need to conduct well-designed studies assessing cerebrovascular function before, during and after this crucial life period to evaluate the potential cerebrovascular risks and benefits of exercise during pregnancy.
Collapse
|
45
|
Abstract
Regular aerobic exercise improves brain health; however, a potential dose-response relationship and the underling physiological mechanisms remain unclear. Existing data support the following hypotheses: 1) exercise-induced cardiovascular adaptation plays an important role in improving brain perfusion, structure, and function, and 2) a hormetic relation seems to exist between the intensity of exercise and brain health, which needs to be further elucidated.
Collapse
Affiliation(s)
- Takashi Tarumi
- 1Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas; and 2Departments of Internal Medicine and 3Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
46
|
Phillips AA, Chan FH, Zheng MMZ, Krassioukov AV, Ainslie PN. Neurovascular coupling in humans: Physiology, methodological advances and clinical implications. J Cereb Blood Flow Metab 2016; 36:647-64. [PMID: 26661243 PMCID: PMC4821024 DOI: 10.1177/0271678x15617954] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022]
Abstract
Neurovascular coupling reflects the close temporal and regional linkage between neural activity and cerebral blood flow. Although providing mechanistic insight, our understanding of neurovascular coupling is largely limited to non-physiologicalex vivopreparations and non-human models using sedatives/anesthetics with confounding cerebrovascular implications. Herein, with particular focus on humans, we review the present mechanistic understanding of neurovascular coupling and highlight current approaches to assess these responses and the application in health and disease. Moreover, we present new guidelines for standardizing the assessment of neurovascular coupling in humans. To improve the reliability of measurement and related interpretation, the utility of new automated software for neurovascular coupling is demonstrated, which provides the capacity for coalescing repetitive trials and time intervals into single contours and extracting numerous metrics (e.g., conductance and pulsatility, critical closing pressure, etc.) according to patterns of interest (e.g., peak/minimum response, time of response, etc.). This versatile software also permits the normalization of neurovascular coupling metrics to dynamic changes in arterial blood gases, potentially influencing the hyperemic response. It is hoped that these guidelines, combined with the newly developed and openly available software, will help to propel the understanding of neurovascular coupling in humans and also lead to improved clinical management of this critical physiological function.
Collapse
Affiliation(s)
- Aaron A Phillips
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada International Collaboration on Repair Discoveries (ICORD), UBC, Vancouver, Canada Experimental Medicine Program, Faculty of Medicine, UBC, Vancouver, Canada
| | - Franco Hn Chan
- International Collaboration on Repair Discoveries (ICORD), UBC, Vancouver, Canada
| | - Mei Mu Zi Zheng
- International Collaboration on Repair Discoveries (ICORD), UBC, Vancouver, Canada Experimental Medicine Program, Faculty of Medicine, UBC, Vancouver, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), UBC, Vancouver, Canada Experimental Medicine Program, Faculty of Medicine, UBC, Vancouver, Canada Department of Physical Therapy, UBC, Vancouver, Canada GF Strong Rehabilitation Center, Vancouver, Canada Department of Medicine, Division of Physical Medicine and Rehabilitation, UBC, Vancouver, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
47
|
Hoiland RL, Ainslie PN. CrossTalk proposal: The middle cerebral artery diameter does change during alterations in arterial blood gases and blood pressure. J Physiol 2016; 594:4073-5. [PMID: 27010010 DOI: 10.1113/jp271981] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/12/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| |
Collapse
|
48
|
Liu J, Tseng BY, Khan MA, Tarumi T, Hill C, Mirshams N, Hodics TM, Hynan LS, Zhang R. Individual variability of cerebral autoregulation, posterior cerebral circulation and white matter hyperintensity. J Physiol 2016; 594:3141-55. [PMID: 26752346 DOI: 10.1113/jp271068] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 01/05/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cerebral autoregulation (CA) is a key mechanism to protect brain perfusion in the face of changes in arterial blood pressure, but little is known about individual variability of CA and its relationship to the presence of brain white matter hyperintensity (WMH) in older adults, a type of white matter lesion related to cerebral small vessel disease (SVD). This study demonstrated the presence of large individual variability of CA in healthy older adults during vasoactive drug-induced changes in arterial pressure assessed at the internal carotid and vertebral arteries. We also observed, unexpectedly, that it was the 'over-' rather than the 'less-reactive' CA measured at the vertebral artery that was associated with WMH severity. These findings challenge the traditional concept of CA and suggest that the presence of cerebral SVD, manifested as WMH, is associated with posterior brain hypoperfusion during acute increase in arterial pressure. ABSTRACT This study measured the individual variability of static cerebral autoregulation (CA) and determined its associations with brain white matter hyperintensity (WMH) in older adults. Twenty-seven healthy older adults (13 females, 66 ± 6 years) underwent assessment of CA during steady-state changes in mean arterial pressure (MAP) induced by intravenous infusion of sodium nitroprusside (SNP) and phenylephrine. Cerebral blood flow (CBF) was measured using colour-coded duplex ultrasonography at the internal carotid (ICA) and vertebral arteries (VA). CA was quantified by a linear regression slope (CA slope) between percentage changes in cerebrovascular resistance (CVR = MAP/CBF) and MAP relative to baseline values. Periventricular and deep WMH volumes were measured with T2-weighted magnetic resonance imaging. MAP was reduced by -11 ± 7% during SNP, and increased by 21 ± 8% during phenylephrine infusion. CA demonstrated large individual variability with the CA slopes ranging from 0.37 to 2.20 at the ICA and from 0.17 to 3.18 at the VA; no differences in CA were found between the ICA and VA. CA slopes measured at the VA had positive correlations with the total and periventricular WMH volume (r = 0.55 and 0.59, P < 0.01). Collectively, these findings demonstrated the presence of large individual variability of CA in older adults, and that, when measured in the posterior cerebral circulation, it is the higher rather than lower CA reactivity that is associated with WMH severity.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Centre, Dallas, TX, USA.,Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Benjamin Y Tseng
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Muhammad Ayaz Khan
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Candace Hill
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
| | - Niki Mirshams
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
| | - Timea M Hodics
- Department of Neurology and Neurotherapeutics, University of Texas So, thwestern Medical Centre, Dallas, TX, USA
| | - Linda S Hynan
- Department of Clinical Sciences and Psychiatry, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Centre, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas So, thwestern Medical Centre, Dallas, TX, USA
| |
Collapse
|
49
|
Stewart JM, Balakrishnan K, Visintainer P, Del Pozzi AT, Messer ZR, Terilli C, Medow MS. Oscillatory lower body negative pressure impairs task related functional hyperemia in healthy volunteers. Am J Physiol Heart Circ Physiol 2016; 310:H775-84. [PMID: 26801310 DOI: 10.1152/ajpheart.00747.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/29/2015] [Indexed: 11/22/2022]
Abstract
Neurovascular coupling refers to the link between an increase in neural activity in response to a task and an increase in cerebral blood flow denoted "functional hyperemia." Recent work on postural tachycardia syndrome indicated that increased oscillatory cerebral blood flow velocity (CBFv) was associated with reduced functional hyperemia. We hypothesized that a reduction in functional hyperemia could be causally produced in healthy volunteers by using oscillations in lower body negative pressure (OLBNP) to force oscillations in CBFv. CBFv was measured by transcranial Doppler ultrasound of the left middle cerebral artery. We used passive arm flexion applied during eight periodic 60-s flexion/60-s relaxation epochs to produce 120-s periodic changes in functional hyperemia (at 0.0083 Hz). We used -30 mmHg of OLBNP at 0.03, 0.05, and 0.10 Hz, the range for cerebral autoregulation, and measured spectral power of CBFv at all frequencies. Arm flexion power performed without OLBNP was compared with arm flexion power during OLBNP. OLBNP power performed in isolation was compared with power during OLBNP plus arm flexion. Cerebral flow velocity oscillations at 0.05 Hz reduced and at 0.10 Hz eliminated functional hyperemia, while 0.03 Hz did not reach significance. In contrast, arm flexion reduced OLBNP-induced oscillatory power at all frequencies. The interactions between OLBNP-driven CBFv oscillations and arm flexion-driven CBFv oscillations are reciprocal. Thus induced cerebral blood flow oscillations suppress functional hyperemia, and functional hyperemia suppresses cerebral blood flow oscillations. We conclude that oscillatory cerebral blood flow produces a causal reduction of functional hyperemia.
Collapse
Affiliation(s)
- Julian M Stewart
- Department of Pediatrics, New York Medical College, Valhalla, New York; and Department of Physiology, New York Medical College, Valhalla, New York;
| | | | - Paul Visintainer
- Department of Epidemiology and Biostatistics, Baystate Medical Center, Tufts University School of Medicine, Springfield, Massachusetts; and
| | - Andrew T Del Pozzi
- School of Physical Education Sport & Exercise Science, Ball State University, Muncie, Indiana
| | - Zachary R Messer
- Department of Pediatrics, New York Medical College, Valhalla, New York; and
| | - Courtney Terilli
- Department of Pediatrics, New York Medical College, Valhalla, New York; and
| | - Marvin S Medow
- Department of Pediatrics, New York Medical College, Valhalla, New York; and Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
50
|
Phillips AA, Ainslie PN, Warburton DER, Krassioukov AV. Cerebral Blood Flow Responses to Autonomic Dysreflexia in Humans with Spinal Cord Injury. J Neurotrauma 2016; 33:315-8. [PMID: 26077616 DOI: 10.1089/neu.2015.3871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Autonomic dysreflexia (AD) is a life-threatening episode of transient hypertension affecting up to 90% of those with high-level spinal cord injury (SCI), and can lead to cerebral hemorrhage. Due to the nature of this medical emergency, cerebral blood flow (CBF) has not been recorded during AD. Beat-by-beat blood pressure (BP) and CBF velocity of the middle cerebral artery were measured during spontaneous AD episodes in four motor complete cervical SCI patients. Mean arterial BP increased during AD (66 ± 11 vs. 83 ± 10 mm Hg; p = 0.004), whereas CBF (76 ± 4 vs. 74 ± 4 cm · sec(-1)) and end-tidal partial pressure of carbon dioxide (PETCO2) (35 ± 1 vs. 34 ± 3 mm Hg) were maintained. These preliminary data indicate that the brain may effectively buffer moderate episodes of AD.
Collapse
Affiliation(s)
- Aaron A Phillips
- 1 Physical Activity Promotion and Chronic Disease Prevention Unit, University of British Columbia , Vancouver, British Columbia, Canada .,2 Cardiovascular Physiology and Rehabilitation Laboratory, University of British Columbia , Vancouver, British Columbia, Canada .,3 International Collaboration on Repair Discoveries, University of British Columbia , Vancouver, British Columbia, Canada .,4 Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia , Vancouver, British Columbia, Canada .,5 GF Strong Rehabilitation Centre , Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Philip N Ainslie
- 6 School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia , Kelowna, British Columbia, Canada
| | - Darren E R Warburton
- 1 Physical Activity Promotion and Chronic Disease Prevention Unit, University of British Columbia , Vancouver, British Columbia, Canada .,2 Cardiovascular Physiology and Rehabilitation Laboratory, University of British Columbia , Vancouver, British Columbia, Canada .,3 International Collaboration on Repair Discoveries, University of British Columbia , Vancouver, British Columbia, Canada .,4 Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia , Vancouver, British Columbia, Canada .,5 GF Strong Rehabilitation Centre , Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- 3 International Collaboration on Repair Discoveries, University of British Columbia , Vancouver, British Columbia, Canada .,4 Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia , Vancouver, British Columbia, Canada .,5 GF Strong Rehabilitation Centre , Vancouver Coastal Health, Vancouver, British Columbia, Canada
| |
Collapse
|