1
|
Chagas YW, Vaz de Castro PAS, Simões-E-Silva AC. Neuroinflammation in kidney disease and dialysis. Behav Brain Res 2025; 483:115465. [PMID: 39922385 DOI: 10.1016/j.bbr.2025.115465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 01/19/2025] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
The complex relationship between chronic kidney disease (CKD) and neuroinflammation shows how important immunological processes are in mediating cognitive dysfunction and psychiatric symptoms in this disease. Proinflammatory cytokines and chemokines, such as IL-1β and IL-6, are capable of crossing the blood-brain barrier, and, consequently, may contribute to neuropsychiatric symptoms including anxiety, depression, and cognitive impairment in CKD patients. The peptides of the renin-angiotensin system (RAS), with their dual functions in inflammation and neuroprotection, also highlight the intricate immunological mechanisms operating within the kidney-brain axis. Understanding these immunological pathways is essential for developing targeted interventions to modulate neuroinflammation and improve cognitive outcomes in individuals with CKD. Further research in renal immunology and neuroinflammation holds promise for advancing our understanding of the intricate connections between kidney health, brain function, and immune responses in the context of CKD. This review summarizes the critical role of immunological factors in the pathophysiology of CKD-related cognitive impairment and psychiatric disorders.
Collapse
Affiliation(s)
- Yumi Watanabe Chagas
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Brazil
| | - Pedro Alves S Vaz de Castro
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Brazil
| | - Ana Cristina Simões-E-Silva
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
2
|
Odaira-Satoh T, Nakagawasai O, Takahashi K, Ono R, Wako M, Nemoto W, Tan-No K. Captopril prevents depressive-like behavior in an animal model of depression by enhancing hippocampal neurogenesis via activation of the ACE2/Ang (1-7)/Mas receptor/AMPK/BDNF pathway. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111198. [PMID: 39561916 DOI: 10.1016/j.pnpbp.2024.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/23/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
The brain's Renin-Angiotensin System plays an important role in the modulation of mental state. Previously we demonstrated that activated angiotensin (Ang) converting enzyme (ACE) 2, which converts Ang II into Ang (1-7), or the intracerebroventricular administration of Ang (1-7) produced an antidepressant-like effect in mice via Mas receptors (MasR). Since the ACE inhibitor Captopril (Cap) increases Ang (1-7) in the brain, it remains unknown whether Cap affects the depressive-like behavior of olfactory bulbectomized (OBX) mice, an animal model of depression. We tested the effect of Cap on the depressive-like behavior of these mice in the tail-suspension test, quantified ACE2, p-AMP activated protein kinase (AMPK), and brain-derived neurotrophic factor (BDNF) using western blots, and examined the changes in Ang (1-7) level, neurogenesis, and in the expression of ACE2 and MasR on various cell types in the hippocampus using immunohistochemistry. While OBX mice exhibited a depressive-like behavior in the tail-suspension test, as well as a reduction in ACE2, Ang (1-7), p-AMPK, BDNF, and hippocampal neurogenesis, these changes were prevented by Cap administration. The intracerebroventricular administration of Ang (1-7) improved the OBX-induced depressive-like behavior. Except for the changes in ACE2 and Ang (1-7), the effects of Cap were inhibited by the coadministration of A779 (MasR inhibitor) or Compound-C (AMPK inhibitor). ACE2 localized to all cell types, while MasR localized to microglia and neurons. Our results suggest that Cap may act on ACE2-positive cells in the hippocampus to increase ACE2 expression level, thereby enhancing signaling in the ACE2/Ang (1-7)/MasR/AMPK/BDNF pathway and producing antidepressant-like effects.
Collapse
Affiliation(s)
- Takayo Odaira-Satoh
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Kohei Takahashi
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan; Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Ryotaro Ono
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Miharu Wako
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
3
|
Barbosa GADC, Rubinho MP, Aquino-Júnior MK, Pedro JR, Donato LF, Trisciuzzi L, Silva AO, Ruginsk SG, Ceron CS, Peixoto N, Dias MVS, Pereira MGAG. Neuritogenesis and protective effects activated by Angiotensin 1-7 in astrocytes-neuron interaction. Neuropeptides 2024; 108:102480. [PMID: 39500142 DOI: 10.1016/j.npep.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/18/2024]
Abstract
The renin angiotensin system (RAS) has been studied for its effects on various neurological disorders. The identification of functional receptors for Ang-(1-7) and Ang II peptides in astrocytes highlights the physiological modulation and the important role of these cells in the central nervous system. The present study aims to understand the role of RAS peptides, particularly Ang-(1-7) and Ang II, in the secretion of trophic factors by astrocytes and their effects on hippocampal neurons. We used primary cultures of astrocytes and neurons from the hippocampus of either sex neonate of Wistar strain rats. In the present study, we demonstrated that the treatment of astrocytes with Ang-(1-7) acts on the modulation of these cells, inducing reactive astrogliosis, identified through the increase in the expression of GFAP. Furthermore, we obtained a conditioned medium from astrocytes treated with Ang-(1-7), which in addition to promoting the secretion of neurotrophic factors essential for neuronal-glial interactions that are fundamental for neuritogenesis and neuronal survival, showed a neuroprotective effect against glutamatergic excitotoxicity. In turn, Ang II does not exhibit the same effects on astrocyte modulation, exacerbating deleterious effects on brain RAS. Neuron-astrocyte interactions have been shown to be an integral part of the central effects mediated by RAS, and this study has significantly contributed to the understanding of the biochemical mechanisms involved in the functioning of this system.
Collapse
Affiliation(s)
| | - Marina Prado Rubinho
- Department of Biochemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | | - Lívia Fligioli Donato
- Department of Biochemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Leonardo Trisciuzzi
- Department of Biochemistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Silvia Graciela Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Carla Speroni Ceron
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Nathalia Peixoto
- Electrical & Computer Engineering Department, George Mason University, Fairfax, VA, United States of America
| | | | | |
Collapse
|
4
|
Amado Costa L, Oliveira Amaral LB, Mourão FAG, Bader M, Santos RAS, Campagnole-Santos MJ, Kangussu LM. Anxiolytic effect of alamandine in male transgenic rats with low brain angiotensinogen is dependent on activation of MrgD receptors. Horm Behav 2024; 163:105551. [PMID: 38678724 DOI: 10.1016/j.yhbeh.2024.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Alamandine is a peptide hormone belonging to the renin-angiotensin system (RAS). It acts through the Mas-related G-protein coupled receptor type D, MrgD, which is expressed in different tissues, including the brain. In the present study, we hypothesize that a lack of alamandine, through MrgD, could cause the anxiety-like behavior in transgenic rats with low brain angiotensinogen [TGR(ASrAOGEN)680]. Adult male transgenic rats exhibited a significant increase in the latency to feeding time in the novelty suppressed feeding test and a decrease in the percentage of time and entries in the open arms in the elevated plus maze. These effects were reversed by intracerebroventricular infusion of alamandine. Pretreatment with D-Pro7-Ang-(1-7), a Mas and MrgD receptor antagonist, prevented the anxiolytic effects induced by this peptide. However, its effects were not altered by the selective Mas receptor antagonist, A779. In conclusion, our data indicates that alamandine, through MrgD, attenuates anxiety-like behavior in male TGR(ASrAOGEN)680, which reinforces the importance of the counter-regulatory RAS axis as promising target for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Laura Amado Costa
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Laura B Oliveira Amaral
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Flávio A G Mourão
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar); Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany; Charité University Medicine Berlin, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - Robson A S Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar)
| | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar)
| | - Lucas M Kangussu
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar).
| |
Collapse
|
5
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Hamad RS, Alexiou A, Papadakis M, Saad HM, Batiha GE. Role of brain renin-angiotensin system in depression: A new perspective. CNS Neurosci Ther 2024; 30:e14525. [PMID: 37953501 PMCID: PMC11017442 DOI: 10.1111/cns.14525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
Depression is a mood disorder characterized by abnormal thoughts. The pathophysiology of depression is related to the deficiency of serotonin (5HT), which is derived from tryptophan (Trp). Mitochondrial dysfunction, oxidative stress, and neuroinflammation are involved in the pathogenesis of depression. Notably, the renin-angiotensin system (RAS) is involved in the pathogenesis of depression, and different findings revealed that angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) may be effective in depression. However, the underlying mechanism for the role of dysregulated brain RAS-induced depression remains speculative. Therefore, this review aimed to revise the conceivable role of ACEIs and ARBs and how these agents ameliorate the pathophysiology of depression. Dysregulation of brain RAS triggers the development and progression of depression through the reduction of brain 5HT and expression of brain-derived neurotrophic factor (BDNF) and the induction of mitochondrial dysfunction, oxidative stress, and neuroinflammation. Therefore, inhibition of central classical RAS by ARBS and ACEIs and activation of non-classical RAS prevent the development of depression by regulating 5HT, BDNF, mitochondrial dysfunction, oxidative stress, and neuroinflammation.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal MedicineMedical CollegeNajran UniversityNajranKSA
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Rabab S. Hamad
- Biological Sciences DepartmentCollege of Science, King Faisal UniversityAl AhsaSaudi Arabia
- Central LaboratoryTheodor Bilharz Research InstituteGizaEgypt
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
6
|
Barak R, Goshtasbi G, Fatehi R, Firouzabadi N. Signaling pathways and genetics of brain Renin angiotensin system in psychiatric disorders: State of the art. Pharmacol Biochem Behav 2024; 236:173706. [PMID: 38176544 DOI: 10.1016/j.pbb.2023.173706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Along the conventional pathways, Renin-angiotensin system (RAS) plays a key role in the physiology of the CNS and pathogenesis of psychiatric diseases. RAS is a complex regulatory pathway which is composed of several peptides and receptors and comprises two counter-regulatory axes. The classical (ACE1/AngII/AT1 receptor) axis and the contemporary (ACE2/Ang (1-7)/Mas receptor) axis. The genes coding for elements of both axes have been broadly studied. Numerous functional polymorphisms on components of RAS have been identified to serve as informative disease and treatment markers. This review summarizes the role of each peptide and receptor in the pathophysiology of psychiatric disorders (depression, bipolar disorders and schizophrenia), followed by a concise look at the role of genetic polymorphism of the RAS in the pathophysiology of these disorders.
Collapse
Affiliation(s)
- Roya Barak
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ghazal Goshtasbi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
de Miranda AS, Macedo DS, Rocha NP, Teixeira AL. Targeting the Renin-Angiotensin System (RAS) for Neuropsychiatric Disorders. Curr Neuropharmacol 2024; 22:107-122. [PMID: 36173067 PMCID: PMC10716884 DOI: 10.2174/1570159x20666220927093815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/03/2022] [Accepted: 08/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders, such as mood disorders, schizophrenia, and Alzheimer's disease (AD) and related dementias, are associated to significant morbidity and mortality worldwide. The pathophysiological mechanisms of neuropsychiatric disorders remain to be fully elucidated, which has hampered the development of effective therapies. The Renin Angiotensin System (RAS) is classically viewed as a key regulator of cardiovascular and renal homeostasis. The discovery that RAS components are expressed in the brain pointed out a potential role for this system in central nervous system (CNS) pathologies. The understanding of RAS involvement in the pathogenesis of neuropsychiatric disorders may contribute to identifying novel therapeutic targets. AIMS We aim to report current experimental and clinical evidence on the role of RAS in physiology and pathophysiology of mood disorders, schizophrenia, AD and related dementias. We also aim to discuss bottlenecks and future perspectives that can foster the development of new related therapeutic strategies. CONCLUSION The available evidence supports positive therapeutic effects for neuropsychiatric disorders with the inhibition/antagonism of the ACE/Ang II/AT1 receptor axis or the activation of the ACE2/Ang-(1-7)/Mas receptor axis. Most of this evidence comes from pre-clinical studies and clinical studies lag much behind, hampering a potential translation into clinical practice.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Interdisciplinary Laboratory of Medical Investigation (LIIM), Faculty of Medicine, UFMG, Belo Horizonte, MG, Brazil
- Department of Morphology, Laboratory of Neurobiology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle S Macedo
- Department of Physiology and Pharmacology, Neuropharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Natalia P Rocha
- Department of Neurology, The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, McGovern Medical School, University of Texas Health Science Center at Houston, TX, USA
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, University of Texas Health Science Center at Houston, TX, USA
- Faculdade Santa Casa BH, Belo Horizonte, Brasil
| |
Collapse
|
8
|
Nakagawasai O, Takahashi K, Koyama T, Yamagata R, Nemoto W, Tan-No K. Activation of angiotensin-converting enzyme 2 produces an antidepressant-like effect via MAS receptors in mice. Mol Brain 2023; 16:52. [PMID: 37312182 DOI: 10.1186/s13041-023-01040-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
Angiotensin (Ang)-converting-enzyme (ACE) 2 converts Ang II into Ang (1-7), which in turn acts on MAS receptors (ACE2/Ang (1-7)/MAS receptors pathway). This pathway has neuroprotective properties, making it a potential therapeutic target for psychiatric disorders such as depression. Thus, we examined the effects of diminazene aceturate (DIZE), an ACE2 activator, on depressive-like behavior using behavioral, pharmacological, and biochemical assays. To determine whether DIZE or Ang (1-7) produce antidepressant-like effects, we measured the duration of immobility of mice in the tail suspension test following their intracerebroventricular administration. Next, we measured the levels of ACE2 activation in the cerebral cortex, prefrontal cortex, hippocampus, and amygdala after DIZE injection, and examined which cell types, including neurons, microglia, and astrocytes, express ACE2 in the hippocampus using immunofluorescence. Administration of DIZE or Ang (1-7) significantly shortened the duration of immobility time in the tail suspension test, while this effect was inhibited by the co-administration of the MAS receptor antagonist A779. DIZE activated ACE2 in the hippocampus. ACE2 was localized to neurons, astrocytes, and microglia in the hippocampus. In conclusion, these results suggest that DIZE may act on ACE2-positive cells in the hippocampus where it increases the activity of ACE2, thereby enhancing signaling of the ACE2/Ang (1-7)/MAS receptor pathway and resulting in antidepressant-like effects.
Collapse
Affiliation(s)
- Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan.
| | - Kohei Takahashi
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, 324-8501, Tochigi, Japan
| | - Taisei Koyama
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
| | - Ryota Yamagata
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
| | - Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Miyagi, Japan
| |
Collapse
|
9
|
Impact of genetic deletion of MrgD or Mas receptors in depressive-like behaviour in mice. Acta Neuropsychiatr 2023; 35:27-34. [PMID: 35979816 DOI: 10.1017/neu.2022.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To evaluate the impact of genetic deletion of receptors of the counterregulatory arms of the renin-angiotensin system in depressive-like behaviours. METHODS 8-12 weeks-old male mice wild type (WT, C57BL/6J) and mice with genetic deletion of MrgD (MrgD KO) or Mas receptors (Mas KO) were subjected to the Forced Swim Test (FST) and the Tail Suspension Test (TST). Brain-derived neurotrophic factor (BDNF) levels were measured by enzyme-linked immunosorbent assay (ELISA). Blockade of Mas was performed by acute intracerebroventricular (icv) injection of its selective antagonist, A779. RESULTS No statistical difference in immobility time was observed between MrgD KO and WT male animals subjected to FST and TST. However, acute icv injection of A779 significantly increased the immobility time of MrgD KO male mice subjected to FST and TST, suggesting the involvement of Mas in preventing depressive-like behaviour. Indeed, Mas KO male animals showed increased immobility time in FST and TST, evidencing a depressive-like behaviour in these animals, in addition to a reduction in BDNF levels in the prefrontal cortex and hippocampus. No changes in BDNF levels were observed in MrgD KO male animals. CONCLUSION Our data showed that Mas plays an important role in the neurobiology of depression probably by modulating BDNF expression. On the contrary, lack of MrgD did not alter depressive-like behaviour, which was supported by the lack of alterations in BDNF levels.
Collapse
|
10
|
Gong S, Deng F. Renin-angiotensin system: The underlying mechanisms and promising therapeutical target for depression and anxiety. Front Immunol 2023; 13:1053136. [PMID: 36761172 PMCID: PMC9902382 DOI: 10.3389/fimmu.2022.1053136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
Emotional disorders, including depression and anxiety, contribute considerably to morbidity across the world. Depression is a serious condition and is projected to be the top contributor to the global burden of disease by 2030. The role of the renin-angiotensin system (RAS) in hypertension and emotional disorders is well established. Evidence points to an association between elevated RAS activity and depression and anxiety, partly through the induction of neuroinflammation, stress, and oxidative stress. Therefore, blocking the RAS provides a theoretical basis for future treatment of anxiety and depression. The evidence for the positive effects of RAS blockers on depression and anxiety is reviewed, aiming to provide a promising target for novel anxiolytic and antidepressant medications and/or for improving the efficacy of currently available medications used for the treatment of anxiety and depression, which independent of blood pressure management.
Collapse
Affiliation(s)
| | - Fang Deng
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Rukavina Mikusic NL, Gironacci MM. Mas receptor endocytosis and signaling in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:49-65. [PMID: 36631200 DOI: 10.1016/bs.pmbts.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The renin angiotensin system (RAS) plays a major role in blood pressure regulation and electrolyte homeostasis and is mainly composed by two axes mediating opposite effects. The pressor axis, constituted by angiotensin (Ang) II and the Ang II type 1 receptor (AT1R), exerts vasoconstrictor, proliferative, hypertensive, oxidative and pro-inflammatory actions, while the depressor/protective axis, represented by Ang-(1-7), its Mas receptor (MasR) and the Ang II type 2 receptor (AT2R), opposes the actions elicited by the pressor arm. The MasR belongs to the G protein-coupled receptor (GPCR) family. To avoid receptor overstimulation, GPCRs undergo internalization and trafficking into the cell after being stimulated. Then, the receptor may induce other signaling cascades or it may even interact with other receptors, generating distinct biological responses. Thus, control of a GPCR regarding space and time affects the specificity of the signals transduced by the receptor and the ultimate cellular response. The present chapter is focused on the signaling and trafficking pathways of MasR under physiological conditions and its participation in the pathogenesis of numerous brain diseases.
Collapse
Affiliation(s)
- Natalia L Rukavina Mikusic
- From Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mariela M Gironacci
- From Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
12
|
Kluknavsky M, Micurova A, Cebova M, Şaman E, Cacanyiova S, Bernatova I. MLN-4760 Induces Oxidative Stress without Blood Pressure and Behavioural Alterations in SHRs: Roles of Nfe2l2 Gene, Nitric Oxide and Hydrogen Sulfide. Antioxidants (Basel) 2022; 11:antiox11122385. [PMID: 36552591 PMCID: PMC9774314 DOI: 10.3390/antiox11122385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Reduced angiotensin 1-7 bioavailability due to inhibition of angiotensin-converting enzyme 2 (ACE2) may contribute to increased mortality in hypertensive individuals during COVID-19. However, effects of ACE2 inhibitor MLN-4760 in brain functions remain unknown. We investigated the selected behavioural and hemodynamic parameters in spontaneously hypertensive rats (SHRs) after a 2-week s.c. infusion of MLN-4760 (dose 1 mg/kg/day). The biochemical and molecular effects of MLN-4760 were investigated in the brainstem and blood plasma. MLN-4760 had no effects on hemodynamic and behavioural parameters. However, MLN-4760 increased plasma hydrogen sulfide (H2S) level and total nitric oxide (NO) synthase activity and conjugated dienes in the brainstem. Increased NO synthase activity correlated positively with gene expression of Nos3 while plasma H2S levels correlated positively with gene expressions of H2S-producing enzymes Mpst, Cth and Cbs. MLN-4760 administration increased gene expression of Ace2, Sod1, Sod2, Gpx4 and Hmox1, which positively correlated with expression of Nfe2l2 gene encoding the redox-sensitive transcription factor NRF2. Collectively, MLN-4760 did not exacerbate pre-existing hypertension and behavioural hyperactivity/anxiety in SHRs. However, MLN-4760-induced oxidative damage in brainstem was associated with activation of NO- and H2S-mediated compensatory mechanisms and with increased gene expression of antioxidant, NO- and H2S-producing enzymes that all correlated positively with elevated Nfe2l2 expression.
Collapse
|
13
|
Maranduca MA, Tanase DM, Cozma CT, Dima N, Clim A, Pinzariu AC, Serban DN, Serban IL. The Impact of Angiotensin-Converting Enzyme-2/Angiotensin 1-7 Axis in Establishing Severe COVID-19 Consequences. Pharmaceutics 2022; 14:pharmaceutics14091906. [PMID: 36145655 PMCID: PMC9505151 DOI: 10.3390/pharmaceutics14091906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has put a tremendous stress on the medical community over the last two years. Managing the infection proved a lot more difficult after several research communities started to recognize the long-term effects of this disease. The cellular receptor for the virus was identified as angiotensin-converting enzyme-2 (ACE2), a molecule responsible for a wide array of processes, broadly variable amongst different organs. Angiotensin (Ang) 1-7 is the product of Ang II, a decaying reaction catalysed by ACE2. The effects observed after altering the level of ACE2 are essentially related to the variation of Ang 1-7. The renin-angiotensin-aldosterone system (RAAS) is comprised of two main branches, with ACE2 representing a crucial component of the protective part of the complex. The ACE2/Ang (1-7) axis is well represented in the testis, heart, brain, kidney, and intestine. Infection with the novel SARS-CoV-2 virus determines downregulation of ACE2 and interrupts the equilibrium between ACE and ACE2 in these organs. In this review, we highlight the link between the local effects of RAAS and the consequences of COVID-19 infection as they arise from observational studies.
Collapse
Affiliation(s)
- Minela Aida Maranduca
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniela Maria Tanase
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Tudor Cozma
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence:
| | - Nicoleta Dima
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragomir Nicolae Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
14
|
Abstract
Identification of a new axis of angiotensin-converting enzyme 2 (ACE2)/angiotensin (1-7)/Mas receptor, in the renin-angiotensin system (RAS), has opened a new insight regarding the role of RAS and angiotensin in higher brain functions. ACE2 catabolizes angiotensin II and produces angiotensin (1-7), an agonist of Mas receptor. Mice lacking the Mas receptor (angiotensin 1-7 receptor) exhibit anxiety-like behaviours. The present study was conducted to test the hypothesis of the involvement of ACE2 genetic variant (G8790A) on response to selective serotonin reuptake inhibitors (SSRIs). In a randomised control trial, 200 newly diagnosed Iranian patients with major depressive disorder completed 6 weeks of fluoxetine or sertraline treatment. Patients with a reduction of 50% or more in the Hamilton Rating Scale for Depression score were considered responsive to treatment. G8790A polymorphism was determined in extracted DNAs using restriction fragment length polymerase chain reaction method. Our results show that the A allele and AA and GA genotypes were significantly associated with better response to SSRIs (p = 0.008; OR = 3.4; 95% CI = 1.4-8.5 and p = 0.027; OR = 3.3, 95% CI = 1.2-9.2, respectively). Moreover, patients with GA and AA genotypes responded significantly better to sertraline (p = 0.0002; OR = 9.1; 95% CI = 2.4-33.7). The A allele was significantly associated with better response to sertraline (p = 0.0001; OR = 7.6; 95% CI = 2.5-23.3). In conclusion, our results confirm the role of G8790A in response to some SSRIs.
Collapse
|
15
|
Repova K, Aziriova S, Krajcirovicova K, Simko F. Cardiovascular therapeutics: A new potential for anxiety treatment? Med Res Rev 2022; 42:1202-1245. [PMID: 34993995 PMCID: PMC9304130 DOI: 10.1002/med.21875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Besides the well‐recognized risk factors, novel conditions increasing cardiovascular morbidity and mortality are emerging. Undesirable emotions and behavior such as anxiety and depression, appear to participate in worsening cardiovascular pathologies. On the other hand, deteriorating conditions of the heart and vasculature result in disturbed mental and emotional health. The pathophysiological background of this bidirectional interplay could reside in an inappropriate activation of vegetative neurohormonal and other humoral systems in both cardiovascular and psychological disturbances. This results in circulus vitiosus potentiating mental and circulatory disorders. Thus, it appears to be of utmost importance to examine the alteration of emotions, cognition, and behavior in cardiovascular patients. In terms of this consideration, recognizing the potential of principal cardiovascular drugs to interact with the mental state in patients with heart or vasculature disturbances is unavoidable, to optimize their therapeutic benefit. In general, beta‐blockers, central sympatholytics, ACE inhibitors, ARBs, aldosterone receptor blockers, sacubitril/valsartan, and fibrates are considered to exert anxiolytic effect in animal experiments and clinical settings. Statins and some beta‐blockers appear to have an equivocal impact on mood and anxiety and ivabradine expressed neutral psychological impact. It seems reasonable to suppose that the knowledge of a patient's mood, cognition, and behavior, along with applying careful consideration of the choice of the particular cardiovascular drug and respecting its potential psychological benefit or harm might improve the individualized approach to the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
16
|
Rukavina Mikusic NL, Pineda AM, Gironacci MM. Angiotensin-(1-7) and Mas receptor in the brain. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key regulator of blood pressure and electrolyte homeostasis. Besides its importance as regulator of the cardiovascular function, the RAS has also been associated to the modulation of higher brain functions, including cognition, memory, depression and anxiety. For many years, angiotensin II (Ang II) has been considered the major bioactive component of the RAS. However, the existence of many other biologically active RAS components has currently been recognized, with similar, opposite, or distinct effects to those exerted by Ang II. Today, it is considered that the RAS is primarily constituted by two opposite arms. The pressor arm is composed by Ang II and the Ang II type 1 (AT1) receptor (AT1R), which mediates the vasoconstrictor, proliferative, hypertensive, oxidative and pro-inflammatory effects of the RAS. The depressor arm is mainly composed by Ang-(1-7), its Mas receptor (MasR) which mediates the depressor, vasodilatory, antiproliferative, antioxidant and anti-inflammatory effects of Ang-(1-7) and the AT2 receptor (AT2R), which opposes to the effects mediated by AT1R activation. Central Ang-(1-7) is implicated in the control of the cardiovascular function, thus participating in the regulation of blood pressure. Ang-(1-7) also exerts neuroprotective actions through MasR activation by opposing to the harmful effects of the Ang II/AT1R axis. This review is focused on the expression and regulation of the Ang-(1-7)/MasR axis in the brain, its main neuroprotective effects and the evidence regarding its involvement in the pathophysiology of several diseases at cardiovascular and neurological level.
Collapse
Affiliation(s)
- Natalia L. Rukavina Mikusic
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Angélica M. Pineda
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Mariela M. Gironacci
- Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| |
Collapse
|
17
|
Marchi-Coelho C, Costa-Ferreira W, Reis-Silva LL, Crestani CC. Angiotensinergic Neurotransmissions in the Medial Amygdala Nucleus Modulate Behavioral Changes in the Forced Swimming Test Evoked by Acute Restraint Stress in Rats. Cells 2021; 10:1217. [PMID: 34067508 PMCID: PMC8156471 DOI: 10.3390/cells10051217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the role of angiotensin II type 1 (AT1 receptor) and type 2 (AT2 receptor) and MAS receptors present in the medial amygdaloid nucleus (MeA) in behavioral changes in the forced swimming test (FST) evoked by acute restraint stress in male rats. For this, rats received bilateral microinjection of either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319, the selective MAS receptor antagonist A-779, or vehicle 10 min before a 60 min restraint session. Then, behavior in the FST was evaluated immediately after the restraint (15 min session) and 24 h later (5 min session). The behavior in the FST of a non-stressed group was also evaluated. We observed that acute restraint stress decreased immobility during both sessions of the FST in animals treated with vehicle in the MeA. The decreased immobility during the first session was inhibited by intra-MeA administration of PD123319, whereas the effect during the second session was not identified in animals treated with A-779 into the MeA. Microinjection of PD123319 into the MeA also affected the pattern of active behaviors (i.e., swimming and climbing) during the second session of the FST. Taken together, these results indicate an involvement of angiotensinergic neurotransmissions within the MeA in behavioral changes in the FST evoked by stress.
Collapse
MESH Headings
- Angiotensin Receptor Antagonists/pharmacology
- Angiotensins/metabolism
- Animals
- Behavior, Animal/drug effects
- Corticomedial Nuclear Complex/drug effects
- Corticomedial Nuclear Complex/metabolism
- Corticomedial Nuclear Complex/physiopathology
- Disease Models, Animal
- Male
- Motor Activity/drug effects
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Rats, Wistar
- Reaction Time
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Renin-Angiotensin System/drug effects
- Restraint, Physical
- Signal Transduction
- Stress, Psychological/etiology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- Swimming
- Time Factors
- Rats
Collapse
Affiliation(s)
- Camila Marchi-Coelho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
| | - Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| | - Lilian L. Reis-Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| | - Carlos C. Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
18
|
Almeida-Santos AF, de Melo LA, Gonçalves SCA, Oliveira Amaral LB, Santos RAS, Campagnole-Santos MJ, Kangussu LM. Alamandine through MrgD receptor induces antidepressant-like effect in transgenic rats with low brain angiotensinogen. Horm Behav 2021; 127:104880. [PMID: 33129833 DOI: 10.1016/j.yhbeh.2020.104880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/25/2020] [Accepted: 10/22/2020] [Indexed: 01/30/2023]
Abstract
Alamandine (Ala1-Arg2-Val3-Tyr4-Ile5-His6-Pro7), a heptapeptide hormone of the renin-angiotensin system (RAS), exerts its effects through the Mas-related G-protein coupled receptor of the type D, MrgD, which is expressed in different tissues, including the brain. In the present study, we tested the hypothesis that alamandine could attenuate the depression-like behavior observed in transgenic rats with low brain angiotensinogen, TGR (ASrAOGEN)680. Transgenic rats exhibited a significant increase in the immobility time in forced swim test, a phenotype reversed by intracerebroventricular infusion of alamandine. Pretreatment with D-Pro7-Ang-(1-7), a Mas/MrgD receptor antagonist, prevented the antidepressant-like effect induced by this peptide demonstrating, for the first time, that alamandine through MrgD receptor, can modulate depression-like behavior in TGR (ASrAOGEN)680. This result shows an action of alamandine which strengthens the importance of the counter-regulatory arms of the RAS in fight and treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ana F Almeida-Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Leonardo A de Melo
- Department of Morphology of the Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Sthéfanie C A Gonçalves
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Laura B Oliveira Amaral
- Department of Morphology of the Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Robson A S Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - Lucas M Kangussu
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil; Department of Morphology of the Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
19
|
Mohite S, Sanches M, Teixeira AL. Exploring the Evidence Implicating the Renin-Angiotensin System (RAS) in the Physiopathology of Mood Disorders. Protein Pept Lett 2020; 27:449-455. [PMID: 31868144 DOI: 10.2174/0929866527666191223144000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023]
Abstract
Mood disorders include Major Depressive Disorder (MDD), Bipolar Disorder (BD) and variations of both. Mood disorders has a public health significance with high comorbidity, suicidal mortality and economic burden on the health system. Research related to mood disorders has evolved over the years to relate it with systemic conditions. The Renin Angiotensin System (RAS) has been noticed to play major physiological roles beyond renal and cardiovascular systems. Recent studies have linked RAS not only with neuro-immunological processes, but also with psychiatric conditions like mood and anxiety disorders. In this comprehensive review, we integrated basic and clinical studies showing the associations between RAS and mood disorders. Animal studies on mood disorders models - either depression or mania - were focused on the reversal of behavioral and/or cognitive symptoms through the inhibition of RAS components like the Angiotensin- Converting Enzyme (ACE), Angiotensin II Type 1 receptor (AT1) or Mas receptors. ACE polymorphisms, namely insertion-deletion (I/D), were linked to mood disorders and suicidal behavior. Hypertension was associated with neurocognitive deficits in mood disorders, which reversed with RAS inhibition. Low levels of RAS components (renin activity or aldosterone) and mood symptoms improvement with ACE inhibitors or AT1 blockers were also observed in mood disorders. Overall, this review reiterates the strong and under-researched connection between RAS and mood disorders.
Collapse
Affiliation(s)
- Satyajit Mohite
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Marsal Sanches
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77054, United States
| |
Collapse
|
20
|
Machado TCG, Guatimosim C, Kangussu LM. The Renin-Angiotensin System in Huntington's Disease: Villain or Hero? Protein Pept Lett 2020; 27:456-462. [PMID: 31933441 PMCID: PMC7403685 DOI: 10.2174/0929866527666200110154523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/22/2019] [Accepted: 11/15/2019] [Indexed: 11/22/2022]
Abstract
Huntington’s Disease (HD) is an autosomal dominant, progressive neurodegenerative disorder characterized by severe symptoms, including motor impairment, cognitive decline, and psychiatric alterations. Several systems, molecules, and mediators have been associated with the pathophysiology of HD. Among these, there is the Renin-Angiotensin System (RAS), a peptide hormone system that has been associated with the pathology of neuropsychiatric and neurodegenerative disorders. Important alterations in this system have been demonstrated in HD. However, the role of RAS components in HD is still unclear and needs further investigation. Nonetheless, modulation of the RAS components may represent a potential therapeutic strategy for the treatment of HD.
Collapse
Affiliation(s)
- Thatiane C G Machado
- Departamento de Morfologia - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristina Guatimosim
- Departamento de Morfologia - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas M Kangussu
- Departamento de Morfologia - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
21
|
de Melo LA, Almeida-Santos AF. Neuropsychiatric Properties of the ACE2/Ang-(1-7)/Mas Pathway: A Brief Review. Protein Pept Lett 2020; 27:476-483. [PMID: 31868143 DOI: 10.2174/0929866527666191223143230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
The current pharmacological strategies for the management of anxiety disorders and depression, serious conditions which are gaining greater prevalence worldwide, depend on only two therapeutic classes of mood-stabilizing drugs: Serotonin Reuptake Inhibitors (SSRIs) and Serotonin-Norepinephrine Reuptake Inhibitors (SNRIs). Although first line agents with proven efficacy, their clinical success in the management of anxiety disorders and depression is still considered highly complex due to the multifaceted nature of such conditions. Several studies have shown a possible therapeutic target could be found in the form of the Angiotensin-Converting Enzyme [ACE] type 2 (ACE2), Angiotensin [Ang]-(1-7) and Mas receptor pathway of the Renin- Angiotensin System (RAS), which as will be discussed, has been described to exhibit promising therapeutic properties for the management of anxiety disorders and depression. In this article, the literature to describe recent findings related to the role of the RAS in anxiety and depression disorders was briefly revised. The literature used covers a time range from 1988 to 2019 and were acquired from the National Center for Biotechnology Information's (NCBI) PubMed search engine. The results demonstrated in this review are promising and encourage the development of new research for the treatment of anxiety and depression disorders focusing on the RAS. In conclusion, the ACE2/Ang-(1-7)/Mas pathway may exhibit anxiolytic and anti-depressive effects through many possible biochemical mechanisms both centrally and peripherally, and result in highly promising mental health benefits which justifies further investigation into this system as a possible new therapeutic target in the management of neuropsychiatric disorders, including any as of yet undescribed risk-benefit analysis compared to currently-implemented pharmacological strategies.
Collapse
Affiliation(s)
- Leonardo Augusto de Melo
- Nucleo de Neurociencias, Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Flávia Almeida-Santos
- Nucleo de Neurociencias, Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
22
|
de Kloet AD, Cahill KM, Scott KA, Krause EG. Overexpression of angiotensin converting enzyme 2 reduces anxiety-like behavior in female mice. Physiol Behav 2020; 224:113002. [PMID: 32525008 PMCID: PMC7503770 DOI: 10.1016/j.physbeh.2020.113002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/19/2023]
Abstract
Accumulating evidence has revealed an intricate role for the renin-angiotensin system (RAS) in the progression or alleviation of stress-related disorders. Along these lines, the 'pro-stress' actions of angiotensin-II (Ang-II) are largely thought to be mediated by the angiotensin type-1a receptor (AT1aR). On the other hand, a counter regulatory limb of the RAS that depends on the conversion of Ang-II to angiotensin-(1-7) by angiotensin-converting enzyme 2 (ACE2) has been postulated to exert stress-dampening actions. We have previously found that augmenting ACE2 activity is potently anxiolytic and blunts stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis in male mice. Whether increasing ACE2 activity also relieves stress and anxiety in females has not yet been determined. Consequently, this series of experiments tests the hypothesis that augmenting ACE2 expression is anxiolytic and dampens the activity of the HPA axis in female mice. Using the Cre-LoxP system, we generated female mice that were homo-, heterozygous or wild-type for a mutated allele resulting in ubiquitous overexpression of ACE2. Next, we used qPCR to determine that levels of ACE2 mRNA isolated from central and peripheral tissues was dependent on genotype. That is, mice homo- and heterozygous for the ACE2 overexpression had significantly greater levels of ACE2 mRNA relative to littermate matched wild-type controls. Interestingly, anxiety-like behavior as determined by the elevated plus maze, light-dark box and novelty-induced hypophagia tests was also affected by genotype. Specifically, ACE2 overexpression significantly decreased anxiety-like behavior in paradigms dependent on approach-avoidance conflict and novelty; however, locomotor activity was similar amongst the genotypes. Final experiments measured plasma corticosterone to evaluate whether increasing ACE2 alters basal and/or stress-induced HPA axis activity. In contrast to what was previously found in males, increasing ACE2 expression had no effect on plasma corticosterone under basal conditions or subsequent to an acute restraint challenge. Collectively, these results suggest that increasing ACE2 expression potently elicits anxiolysis in female mice without altering HPA axis activity.
Collapse
Affiliation(s)
- Annette D de Kloet
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Karlena M Cahill
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Karen A Scott
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Eric G Krause
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
Moreno-Santos B, Marchi-Coelho C, Costa-Ferreira W, Crestani CC. Angiotensinergic receptors in the medial amygdaloid nucleus differently modulate behavioral responses in the elevated plus-maze and forced swimming test in rats. Behav Brain Res 2020; 397:112947. [PMID: 33011187 DOI: 10.1016/j.bbr.2020.112947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/01/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022]
Abstract
The brain renin-angiotensin system (RAS) has been implicated in anxiety and depression disorders, but the specific brain sites involved are poorly understood. The medial amygdaloid nucleus (MeA) is involved in expression of behavioral responses. However, despite evidence of the presence of all angiotensinergic receptors in this amygdaloid nucleus, regulation of anxiety- and depressive-like behaviors by angiotensinergic neurotransmissions within the MeA has never been reported. Thus, the present study aimed to investigate the role angiotensin II (AT1 and AT2 receptors) and angiotensin-(1-7) (Mas receptor) receptors present within the MeA in behavioral responses in the elevated plus-maze (EPM) and forced swimming test (FST). For this, male Wistar rats had cannula-guide bilaterally implanted into the MeA, and independent sets of animals received bilateral microinjections of either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319, the selective Mas receptor antagonist A-779 or vehicle into the MeA before the EPM and FST. Treatment of the MeA with either PD123319 or A-779 decreased the EPM open arms exploration, while losartan did not affect behavioral responses in this apparatus. However, intra-MeA microinjection of losartan decreased immobility in the FST. Administration of either PD123319 or A-779 into the MeA did not affect the immobility during the FST, but changed the pattern of the active behaviors swimming and climbing. Altogether, these results indicate the presence of different angiotensinergic mechanisms within the MeA controlling behavioral responses in the FST and EPM.
Collapse
Affiliation(s)
- Beatriz Moreno-Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Camila Marchi-Coelho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
24
|
Zhu D, Sun M, Liu Q, Yue Y, Lu J, Lin X, Shi J. Angiotensin (1-7) through modulation of the NMDAR-nNOS-NO pathway and serotonergic metabolism exerts an anxiolytic-like effect in rats. Behav Brain Res 2020; 390:112671. [PMID: 32437889 DOI: 10.1016/j.bbr.2020.112671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/05/2020] [Accepted: 04/21/2020] [Indexed: 01/02/2023]
Abstract
Although recent studies have shown that angiotensin (1-7) (Ang [1-7]) exerts anti-stress and anxiolytic-like effects, the underlying mechanisms remain elusive. The ventral hippocampus (VH) is proposed to be a critical brain region for mood and stress management through the N-methyl-d-aspartate receptor (NMDAR) signaling pathway. However, the role of VH NMDAR signaling in the effects of Ang (1-7) remains unclear. In the present study, Ang (1-7) was injected into the bilateral VH of stressed rats, or in combination with a Fyn kinase inhibitor, NMDAR antagonist, neuronal nitric oxide synthase (nNOS) inhibitor, or nitric oxide (NO) scavenger. Anxiety-like behaviors were assessed using the open field test and elevated plus maze test, while alterations in NMDAR-nNOS-NO signaling and serotonergic metabolism were examined in the VH. After 21 days of chronic restraint stress, anxiety-like behaviors were evident. Levels of phosphorylated NR2B (a key NMDAR subunit), its upstream kinase Fyn, as well as activity of nNOS and monoamine oxidase (MAO) were markedly reduced. In contrast, levels of serotonin were increased. Bilateral VH infusion of Ang (1-7) recovered NMDAR-nNOS-NO signaling and MAO-mediated serotonin metabolism, as well as reducing anxiety-like behaviors in stressed rats. These effects were diminished by blockade of MasR (Ang [1-7]-specific receptor), Fyn kinase, NMDAR, nNOS, or NO production. Altogether, these findings indicate that Ang (1-7) exerts anxiolytic effects through modulation of the NMDAR-nNOS-NO pathway and serotonergic metabolism. Future translational research should focus on the relationship between Ang (1-7), glutamatergic neurotransmission, and serotonergic neurotransmission in the VH.
Collapse
Affiliation(s)
- Donglin Zhu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Ming Sun
- Emergency Department, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Qinqin Liu
- Department of Neurology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, PR China
| | - Yu Yue
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jie Lu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
25
|
Kangussu LM, Marzano LAS, Souza CF, Dantas CC, Miranda AS, Simões e Silva AC. The Renin-Angiotensin System and the Cerebrovascular Diseases: Experimental and Clinical Evidence. Protein Pept Lett 2020; 27:463-475. [DOI: 10.2174/0929866527666191218091823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/07/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022]
Abstract
Cerebrovascular Diseases (CVD) comprise a wide spectrum of disorders, all sharing an
acquired or inherited alteration of the cerebral vasculature. CVD have been associated with
important changes in systemic and tissue Renin-Angiotensin System (RAS). The aim of this review
was to summarize and to discuss recent findings related to the modulation of RAS components in
CVD. The role of RAS axes is more extensively studied in experimentally induced stroke. By
means of AT1 receptors in the brain, Ang II hampers cerebral blood flow and causes tissue
ischemia, inflammation, oxidative stress, cell damage and apoptosis. On the other hand, Ang-(1-7)
by stimulating Mas receptor promotes angiogenesis in brain tissue, decreases oxidative stress,
neuroinflammation, and improves cognition, cerebral blood flow, neuronal survival, learning and
memory. In regard to clinical studies, treatment with Angiotensin Converting Enzyme (ACE)
inhibitors and AT1 receptor antagonists exerts preventive and therapeutic effects on stroke. Besides
stroke, studies support a similar role of RAS molecules also in traumatic brain injury and cerebral
aneurysm. The literature supports a beneficial role for the alternative RAS axis in CVD. Further
studies are necessary to investigate the therapeutic potential of ACE2 activators and/or Mas
receptor agonists in patients with CVD.
Collapse
Affiliation(s)
- Lucas M. Kangussu
- Department of Morphology – Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Alexandre Santos Marzano
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cássio Ferraz Souza
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina Couy Dantas
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline Silva Miranda
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões e Silva
- Interdisciplinary Laboratory of Medical Investigation - Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
26
|
Simões e Silva AC, Miranda AS, Rocha NP, Teixeira AL. Neuropsychiatric Disorders in Chronic Kidney Disease. Front Pharmacol 2019; 10:932. [PMID: 31474869 PMCID: PMC6707423 DOI: 10.3389/fphar.2019.00932] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
Neuropsychiatric conditions including depression, anxiety disorders, and cognitive impairment are prevalent in patients with chronic kidney disease (CKD). These conditions often make worse the quality of life and also lead to longer hospitalizations and higher mortality. Over the past decades, some hypotheses have tried to explain the connection between CKD and neuropsychiatric disorders. The most common hypothesis is based on the occurrence of cerebrovascular disease and accumulated uremic toxins in adult patients with CKD. However, the lack of a direct association between known vascular risk factors (e.g., diabetes and hypertension) with CKD-related cognitive deficits suggests that other mechanisms may also play a role in the pathophysiology shared by renal and neuropsychiatric diseases. This hypothesis is corroborated by the occurrence of neuropsychiatric comorbidities in pediatric patients with CKD preceding vascular damage, and the inconsistent findings on neuroprotective effects of antihypertensives. The aim of this narrative review was to summarize clinical evidence and potential mechanisms that links CKD and brain disorders, specifically in regard to cognitive impairment, anxiety, and depression.
Collapse
Affiliation(s)
| | - Aline Silva Miranda
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, UFMG, Houston, Brazil
| | - Natalia Pessoa Rocha
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Antônio Lúcio Teixeira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
27
|
The depressor axis of the renin–angiotensin system and brain disorders: a translational approach. Clin Sci (Lond) 2018; 132:1021-1038. [DOI: 10.1042/cs20180189] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
Abstract
All the components of the classic renin–angiotensin system (RAS) have been identified in the brain. Today, the RAS is considered to be composed mainly of two axes: the pressor axis, represented by angiotensin (Ang) II/angiotensin-converting enzyme/AT1 receptors, and the depressor and protective one, represented by Ang-(1–7)/ angiotensin-converting enzyme 2/Mas receptors. Although the RAS exerts a pivotal role on electrolyte homeostasis and blood pressure regulation, their components are also implicated in higher brain functions, including cognition, memory, anxiety and depression, and several neurological disorders. Overactivity of the pressor axis of the RAS has been implicated in stroke and several brain disorders, such as cognitive impairment, dementia, and Alzheimer or Parkinson’s disease. The present review is focused on the role of the protective axis of the RAS in brain disorders beyond its effects on blood pressure regulation. Furthermore, the use of drugs targeting centrally RAS and its beneficial effects on brain disorders are also discussed.
Collapse
|
28
|
Epigenetic Programming of Synthesis, Release, and/or Receptor Expression of Common Mediators Participating in the Risk/Resilience for Comorbid Stress-Related Disorders and Coronary Artery Disease. Int J Mol Sci 2018; 19:ijms19041224. [PMID: 29670001 PMCID: PMC5979500 DOI: 10.3390/ijms19041224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Corticotrophin releasing factor, vasopressin, oxytocin, natriuretic hormones, angiotensin, neuregulins, some purinergic substances, and some cytokines contribute to the long-term modulation and restructuring of cardiovascular regulation networks and, at the same time, have relevance in situations of comorbid abnormal stress responses. The synthesis, release, and receptor expression of these mediators seem to be under epigenetic control since early stages of life, possibly underlying the comorbidity to coronary artery disease (CAD) and stress-related disorders (SRD). The exposure to environmental conditions, such as stress, during critical periods in early life may cause epigenetic programming modifying the development of pathways that lead to stable and long-lasting alterations in the functioning of these mediators during adulthood, determining the risk of or resilience to CAD and SRD. However, in contrast to genetic information, epigenetic marks may be dynamically altered throughout the lifespan. Therefore, epigenetics may be reprogrammed if the individual accepts the challenge to undertake changes in their lifestyle. Alternatively, epigenetics may remain fixed and/or even be inherited in the next generation. In this paper, we analyze some of the common neuroendocrine functions of these mediators in CAD and SRD and summarize the evidence indicating that they are under early programming to put forward the theoretical hypothesis that the comorbidity of these diseases might be epigenetically programmed and modified over the lifespan of the individual.
Collapse
|
29
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 774] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
30
|
Blasco-Serra A, González-Soler EM, Cervera-Ferri A, Teruel-Martí V, Valverde-Navarro AA. A standardization of the Novelty-Suppressed Feeding Test protocol in rats. Neurosci Lett 2017; 658:73-78. [DOI: 10.1016/j.neulet.2017.08.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 12/15/2022]
|
31
|
Abstract
Depression remains a debilitating condition with an uncertain aetiology. Recently, attention has been given to the renin-angiotensin system. In the central nervous system, angiotensin II may be important in multiple pathways related to neurodevelopment and regulation of the stress response. Studies of drugs targeting the renin-angiotensin system have yielded promising results. Here, we review the potential beneficial effects of angiotensin blockers in depression and their mechanisms of action. Drugs blocking the angiotensin system have efficacy in several animal models of depression. While no randomised clinical trials were found, case reports and observational studies showed that angiotensin-converting enzyme inhibitors or angiotensin receptor blockers had positive effects on depression, whereas other antihypertensive agents did not. Drugs targeting the renin-angiotensin system act on inflammatory pathways implicated in depression. Both preclinical and clinical data suggest that these drugs possess antidepressant properties. In light of these results, angiotensin system-blocking agents offer new horizons in mood disorder treatment.
Collapse
|
32
|
Kangussu LM, Almeida-Santos AF, Moreira FA, Fontes MA, Santos RA, Aguiar DC, Campagnole-Santos MJ. Reduced anxiety-like behavior in transgenic rats with chronically overproduction of angiotensin-(1–7): Role of the Mas receptor. Behav Brain Res 2017; 331:193-198. [DOI: 10.1016/j.bbr.2017.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 01/05/2023]
|
33
|
Miranda A, Cordeiro T, dos Santos Lacerda Soares TM, Ferreira R, Simões e Silva A. Kidney–brain axis inflammatory cross-talk: from bench to bedside. Clin Sci (Lond) 2017; 131:1093-1105. [DOI: 10.1042/cs20160927] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Epidemiologic data suggest that individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing neuropsychiatric disorders, cognitive impairment, and dementia. This risk is generally explained by the high prevalence of both symptomatic and subclinical ischemic cerebrovascular lesions. However, other potential mechanisms, including cytokine/chemokine release, production of reactive oxygen species (ROS), circulating and local formation of trophic factors and of renin–angiotensin system (RAS) molecules, could also be involved, especially in the absence of obvious cerebrovascular disease. In this review, we discuss experimental and clinical evidence for the role of these mechanisms in kidney–brain cross-talk. In addition, we hypothesize potential pathways for the interactions between kidney and brain and their pathophysiological role in neuropsychiatric and cognitive changes found in patients with CKD. Understanding the pathophysiologic interactions between renal impairment and brain function is important in order to minimize the risk for future cognitive impairment and to develop new strategies for innovative pharmacological treatment.
Collapse
Affiliation(s)
- Aline Silva Miranda
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | - Thiago Macedo Cordeiro
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | | | - Rodrigo Novaes Ferreira
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Ana Cristina Simões e Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| |
Collapse
|
34
|
Karnik SS, Singh KD, Tirupula K, Unal H. Significance of angiotensin 1-7 coupling with MAS1 receptor and other GPCRs to the renin-angiotensin system: IUPHAR Review 22. Br J Pharmacol 2017; 174:737-753. [PMID: 28194766 PMCID: PMC5387002 DOI: 10.1111/bph.13742] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Angiotensins are a group of hormonal peptides and include angiotensin II and angiotensin 1-7 produced by the renin angiotensin system. The biology, pharmacology and biochemistry of the receptors for angiotensins were extensively reviewed recently. In the review, the receptor nomenclature committee was not emphatic on designating MAS1 as the angiotensin 1-7 receptor on the basis of lack of classical G protein signalling and desensitization in response to angiotensin 1-7, as well as a lack of consensus on confirmatory ligand pharmacological analyses. A review of recent publications (2013-2016) on the rapidly progressing research on angiotensin 1-7 revealed that MAS1 and two additional receptors can function as 'angiotensin 1-7 receptors', and this deserves further consideration. In this review we have summarized the information on angiotensin 1-7 receptors and their crosstalk with classical angiotensin II receptors in the context of the functions of the renin angiotensin system. It was concluded that the receptors for angiotensin II and angiotensin 1-7 make up a sophisticated cross-regulated signalling network that modulates the endogenous protective and pathogenic facets of the renin angiotensin system.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | | | - Kalyan Tirupula
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Biological E Limited, ShamirpetHyderabadIndia
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
- Department of Basic Sciences, Faculty of Pharmacy and Betul Ziya Eren Genome and Stem Cell CenterErciyes UniversityKayseriTurkey
| |
Collapse
|