1
|
Zhang Z, Shen Z, Xie S, Li J, Zhang Z, Zhang S, Peng B, Huang Q, Li M, Ma S, Huang Q. Rapamycin exerts neuroprotective effects by inhibiting FKBP12 instead of mTORC1 in the mouse model of Parkinson's disease. Neuropharmacology 2025; 275:110504. [PMID: 40345576 DOI: 10.1016/j.neuropharm.2025.110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Parkinson's disease (PD), characterized by the selective loss of nigral dopaminergic neurons, is a common neurodegenerative disorder for which effective disease-modifying therapies remain unavailable. Rapamycin, a clinical immunosuppressant used for decades, has demonstrated neuroprotective effects in various animal models of neurological diseases, including PD. These effects are believed to be mediated through the inhibition of mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling, with rapamycin binding to FKBP12. However, recent studies have suggested that mTOR activation can be neuroprotective in degenerating dopaminergic neurons, presenting a paradox to the neuroprotective mechanism of rapamycin via mTORC1 inhibition. In this study, we showed that mTORC1 signaling was inactivated in nigral dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Notably, the optimal neuroprotective dose of rapamycin did not inhibit mTORC1 signaling nor restore autophagy defects in nigral dopaminergic neurons of MPTP-treated male C57BL/6 mice. Furthermore, acute Raptor knockout in dopaminergic neurons, which abolishes mTORC1 activity, did not diminish rapamycin's neuroprotective effects, suggesting that its protection is independent of mTORC1 inhibition. Importantly, rapamycin is also a potent inhibitor of FKBP12, a peptidyl-prolyl cis-trans isomerase highly expressed in the brain. Selective knockdown of FKBP12 in nigral dopaminergic neurons confers neuroprotective effects comparable to that of rapamycin, with no synergism observed when the two are combined. Collectively, our results indicate that rapamycin exerts neuroprotective effects in parkinsonian mice through inhibition of FKBP12 rather than mTORC1 signaling. These findings suggest that FKBP12 may serve as a novel target for disease-modifying therapies in PD.
Collapse
Affiliation(s)
- Zeyan Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ziyue Shen
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Shiming Xie
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Junyu Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zeyu Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bo Peng
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 200032, China
| | - Qianchu Huang
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Harrison BR, Lee MB, Zhang S, Young B, Han K, Sukomol J, Paus V, Tran S, Kim D, Fitchett H, Pan Y, Tesfaye P, Johnson AW, Zhao X, Djukovic D, Raftery D, Promislow DEL. Wide-ranging genetic variation in sensitivity to rapamycin in Drosophila melanogaster. Aging Cell 2024; 23:e14292. [PMID: 39135281 PMCID: PMC11561674 DOI: 10.1111/acel.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/18/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
The progress made in aging research using laboratory organisms is undeniable. Yet, with few exceptions, these studies are conducted in a limited number of isogenic strains. The path from laboratory discoveries to treatment in human populations is complicated by the reality of genetic variation in nature. To model the effect of genetic variation on the action of the drug rapamycin, here we use the growth of Drosophila melanogaster larvae. We screened 140 lines from the Drosophila Genetic References Panel for the extent of developmental delay and found wide-ranging variation in their response, from lines whose development time is nearly doubled by rapamycin, to those that appear to be completely resistant. Sensitivity did not associate with any single genetic marker, nor with any gene. However, variation at the level of genetic pathways was associated with rapamycin sensitivity and might provide insight into sensitivity. In contrast to the genetic analysis, metabolomic analysis showed a strong response of the metabolome to rapamycin, but only among the sensitive larvae. In particular, we found that rapamycin altered levels of amino acids in sensitive larvae, and in a direction strikingly similar to the metabolome response to nutrient deprivation. This work demonstrates the need to evaluate interventions across genetic backgrounds and highlights the potential of omic approaches to reveal biomarkers of drug efficacy and to shed light on mechanisms underlying sensitivity to interventions aimed at increasing lifespan.
Collapse
Affiliation(s)
- Benjamin R. Harrison
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | | | - Shufan Zhang
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Bill Young
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Kenneth Han
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Jiranut Sukomol
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Vanessa Paus
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Sarina Tran
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - David Kim
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Hannah Fitchett
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Yu‐Chen Pan
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Philmon Tesfaye
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Alia W. Johnson
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Xiaqing Zhao
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain MedicineUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain MedicineUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
- Department of BiologyUniversity of WashingtonSeattleWashingtonUSA
- Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonMassachusettsUSA
| |
Collapse
|
3
|
Yin J, Zhao C, Huang J, Chen C, Lei T, He J, Qiu D. Diabetic conditions promote drug coating degradation but prevent endothelial coverage after stenting. Acta Biomater 2024; 177:189-202. [PMID: 38307481 DOI: 10.1016/j.actbio.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
The endothelialization of drug-eluting stents is delayed after implantation in patients with diabetes. Although numerous factors were implicated in hyperglycemia-induced endothelial dysfunction, the effects of stent drug coating degradation on endothelial dysfunction remains unclear. We hypothesized that diabetic conditions promote drugcoating degradation and enhance antiproliferative agent release, but that the rapid release of these antiproliferative agents inhibits endothelial cell proliferation leading to poor reendothelialization post-stenting. To verify this hypothesis, a dynamic hyperglycemic circulation system was introduced to measure the profile of drugcoating degradation in vitro. Flow cytometry and RNA sequencing were performed to evaluate endothelial cell proliferation. Moreover, a Type 1 diabetic rabbit model was generated and a rescue experiment conducted to evaluate the effects of rapid drugcoating elution on endothelial coverage in vivo. The main findings were as follows: 1) diabetic conditions promoted drugcoating degradation and increased antiproliferative agent release; 2) this increase in antiproliferative agent release inhibited endothelial cell proliferation and delayed endothelial coverage; and 3) strict glycemic control attenuated drugcoating degradation and promoted endothelial coverage post-stenting. This is the first study to illustrate rapid drugcoating degradation and its potential effects on endothelial recovery under diabetic conditions, highlighting the importance of strict glycemic management in patients with diabetes after drug-eluting stent implantation. STATEMENT OF SIGNIFICANCE: Diabetic conditions promote drug coating degradation and increase the release of antiproliferative agents. Rapid drug coating degradation under diabetic conditions inhibits endothelial cell proliferation and delays endothelialization. Strict glycemic control attenuates drug coating degradation and promotes endothelialization.
Collapse
Affiliation(s)
- Jun Yin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chunguang Zhao
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, Hunan Province, China.
| | - Jiabing Huang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, PR China
| | - Changqing Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Ting Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China.
| | - Jiawei He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Dongxu Qiu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Pettinato M, Aghajan M, Guo S, Bavuso Volpe L, Carleo R, Nai A, Pagani A, Altamura S, Silvestri L. A functional interplay between the two BMP-SMAD pathway inhibitors TMPRSS6 and FKBP12 regulates hepcidin expression in vivo. Am J Physiol Gastrointest Liver Physiol 2024; 326:G310-G317. [PMID: 38252872 DOI: 10.1152/ajpgi.00305.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
The Activin A Receptor type I (ALK2) is a critical component of BMP-SMAD signaling that, in the presence of ligands, phosphorylates cytosolic SMAD1/5/8 and modulates important biological processes, including bone formation and iron metabolism. In hepatocytes, the BMP-SMAD pathway controls the expression of hepcidin, the liver peptide hormone that regulates body iron homeostasis via the BMP receptors ALK2 and ALK3, and the hemochromatosis proteins. The main negative regulator of the pathway in the liver is transmembrane serine protease 6 (TMPRSS6), which downregulates hepcidin by cleaving the BMP coreceptor hemojuvelin. ALK2 function is inhibited also by the immunophilin FKBP12, which maintains the receptor in an inactive conformation. FKBP12 sequestration by tacrolimus or its silencing upregulates hepcidin in primary hepatocytes and in vivo in acute but not chronic settings. Interestingly, gain-of-function mutations in ALK2 that impair FKBP12 binding to the receptor and activate the pathway cause a bone phenotype in patients affected by Fibrodysplasia Ossificans Progressiva but not hepcidin and iron metabolism dysfunction. This observation suggests that additional mechanisms are active in the liver to compensate for the increased BMP-SMAD signaling. Here we demonstrate that Fkbp12 downregulation in hepatocytes by antisense oligonucleotide treatment upregulates the expression of the main hepcidin inhibitor Tmprss6, thus counteracting the ALK2-mediated activation of the pathway. Combined downregulation of both Fkbp12 and Tmprss6 blocks this compensatory mechanism. Our findings reveal a previously unrecognized functional cross talk between FKBP12 and TMPRSS6, the main BMP-SMAD pathway inhibitors, in the control of hepcidin transcription.NEW & NOTEWORTHY This study uncovers a previously unrecognized mechanism of hepcidin and BMP-SMAD pathway regulation in hepatocytes mediated by the immunophilin FKBP12 and the transmembrane serine protease TMPRSS6.
Collapse
Affiliation(s)
- Mariateresa Pettinato
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- San Raffaele Vita-Salute University, Milan, Italy
| | - Mariam Aghajan
- Ionis Pharmaceuticals, Inc., Carlsbad, California, United States
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, California, United States
| | - Letizia Bavuso Volpe
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Rossana Carleo
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antonella Nai
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- San Raffaele Vita-Salute University, Milan, Italy
| | - Alessia Pagani
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- San Raffaele Vita-Salute University, Milan, Italy
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Laura Silvestri
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- San Raffaele Vita-Salute University, Milan, Italy
| |
Collapse
|
5
|
Zhao Y, Weng Z, Zhou X, Xu Z, Cao B, Wang B, Li J. Mesenchymal stromal cells promote the drug resistance of gastrointestinal stromal tumors by activating the PI3K-AKT pathway via TGF-β2. J Transl Med 2023; 21:219. [PMID: 36966336 PMCID: PMC10040136 DOI: 10.1186/s12967-023-04063-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Gastrointestinal stromal tumors (GISTs) are the prevailing sarcomas of the gastrointestinal tract. Tyrosine kinase inhibitors (TKIs) therapy, exemplified by Imatinib mesylate (IM), constitutes the established adjuvant therapy for GISTs. Nevertheless, post-treatment resistance poses a challenge that all patients must confront. The presence of tumor heterogeneity and secondary mutation mechanisms fail to account for some instances of acquired drug resistance. Certain investigations suggest a strong association between tumor drug resistance and mesenchymal stromal cells (MSC) in the tumor microenvironment, but the underlying mechanism remains obscure. Scarce research has explored the connection between GIST drug resistance and the tumor microenvironment, as well as the corresponding mechanism. METHODS Immunofluorescence and fluorescence-activated cell sorting (FACS) methodologies were employed to detect the presence of MSC in GIST samples. The investigation encompassed the examination of MSC migration towards tumor tissue and the impact of MSC on the survival of GIST cells under IM treatment. Through ELISA, western blotting, and flow cytometry analyses, it was confirmed that Transforming Growth Factor Beta 2 (TGF-β2) triggers the activation of the PI3K-AKT pathway by MSC, thereby facilitating drug resistance in GIST. RESULTS Our findings revealed a positive correlation between a high proportion of MSC and both GIST resistance and a poor prognosis. In vitro studies demonstrated the ability of MSC to migrate towards GIST. Additionally, MSC were observed to secrete TGF-β2, consequently activating the PI3K-AKT pathway and augmenting GIST resistance. CONCLUSIONS Our investigation has revealed that MSC within GISTs possess the capacity to augment drug resistance, thereby highlighting their novel mechanism and offering a promising target for intervention in GIST therapy.
Collapse
Affiliation(s)
- Yu Zhao
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Zuyi Weng
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Xuan Zhou
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Zhi Xu
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Bei Cao
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| | - Juan Li
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| |
Collapse
|
6
|
Gori T. Restenosis after Coronary Stent Implantation: Cellular Mechanisms and Potential of Endothelial Progenitor Cells (A Short Guide for the Interventional Cardiologist). Cells 2022; 11:cells11132094. [PMID: 35805178 PMCID: PMC9265311 DOI: 10.3390/cells11132094] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Coronary stents are among the most common therapies worldwide. Despite significant improvements in the biocompatibility of these devices throughout the last decades, they are prone, in as many as 10–20% of cases, to short- or long-term failure. In-stent restenosis is a multifactorial process with a complex and incompletely understood pathophysiology in which inflammatory reactions are of central importance. This review provides a short overview for the clinician on the cellular types responsible for restenosis with a focus on the role of endothelial progenitor cells. The mechanisms of restenosis are described, along with the cell-based attempts made to prevent it. While the focus of this review is principally clinical, experimental evidence provides some insight into the potential implications for prevention and therapy of coronary stent restenosis.
Collapse
Affiliation(s)
- Tommaso Gori
- German Center for Cardiac and Vascular Research (DZHK) Standort Rhein-Main, Department of Cardiology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
7
|
Chu T, Dai C, Li X, Gao L, Yin H, Ge J. Extravascular rapamycin film inhibits the endothelial-to-mesenchymal transition through the autophagy pathway to prevent vein graft restenosis. BIOMATERIALS ADVANCES 2022; 137:212836. [PMID: 35929241 DOI: 10.1016/j.bioadv.2022.212836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Following vein grafting, the vein must adapt to arterial hemodynamics, which can lead to intimal hyperplasia (IH) and restenosis. Moreover, endothelial-to-mesenchymal transition (EndMT) components are highly associated with IH. Therefore, in this study, we aimed to design an extravascular film loaded with rapamycin (extravascular rapamycin film [ERF]) to limit vein graft stenosis. The film exhibited stable physicochemical properties as well as in vivo and in vitro biocompatibility. In vivo, the film inhibited the EndMT by activating the autophagy pathway. Moreover, rapamycin enhanced this biological effect. Collectively, these findings highlighted the applicability of ERF as a new therapeutic target for preventing vein graft restenosis.
Collapse
Affiliation(s)
- Tianshu Chu
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chun Dai
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiang Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Gao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Hongyan Yin
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Jianjun Ge
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
8
|
Lou D, Xing X, Liang Y. Dendrobine modulates autophagy to alleviate ox-LDL-induced oxidative stress and senescence in HUVECs. Drug Dev Res 2022; 83:1125-1137. [PMID: 35417048 DOI: 10.1002/ddr.21937] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
Dendrobine has potential advantages in suppressing atherosclerosis (AS). FK506-binding protein 1A (FKBP1A) is implicated in the regulation of autophagy, inflammation, and apoptosis. To reveal the mechanism by which dendrobine inhibits AS by modulating autophagy, oxidative stress, apoptosis, and senescence. An in vitro AS cell model was induced by culturing human umbilical vein endothelial cells (HUVECs) with oxidized low-density lipoprotein (ox-LDL). The cells were treated with dendrobine alone or in combination with short hairpin RNA (shRNA) targeting FKBP1A or together with 3-methyladenine (3MA), an autophagy inhibitor. Inflammatory cytokines levels tumor necrosis factor-α, interleukin-6 (IL-6), and IL-1β were analyzed and oxidative stress levels were detected by the analysis of reactive oxygen species, malondialdehyde, and superoxide dismutase levels, followed by the analysis of apoptosis levels through terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Cell senescence was evaluated by senescence-associated β-galactosidase and light chain 3 (LC3) levels were detected by immunofluorescence (IF) staining. The targeting relationship of dendrobine and FKBP1A was predicted by SwissTarget, PyMol, Autodock, and Open Babel software. Dendrobine reduced the levels of proinflammation factors, oxidative stress levels, apoptosis levels, and senescence phenotype in ox-LDL-induced HUVECs. Besides, cell viability has an opposite change. Furthermore, there was an increase in LC3 IF tensity, and LC3-II/I and Beclin1 expressions, and a decrease in p62 expression. However, these effects of dendrobine could be markedly destroyed by shRNA silencing FKBP1A and 3MA. Dendrobine can suppress inflammatory responses, oxidative stress, apoptosis, and senescence via FKBP1A-involved autophagy ox-LDL-treated HUVECs.
Collapse
Affiliation(s)
- Danfei Lou
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyue Xing
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunyu Liang
- Geriatrics Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Chen G, Xu H, Wu Y, Han X, Xie L, Zhang G, Liu B, Zhou Y. Myricetin suppresses the proliferation and migration of vascular smooth muscle cells and inhibits neointimal hyperplasia via suppressing TGFBR1 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153719. [PMID: 34500301 DOI: 10.1016/j.phymed.2021.153719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/06/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Neointimal formation, mediated by the proliferation and migration of vascular smooth muscle cells (VSMCs), is a common pathological basis for atherosclerosis and restenosis. Myricetin, a natural flavonoid, reportedly exerts anti-atherosclerotic effects. However, the effect and mechanism of myricetin on VSMCs proliferation and migration and neointimal hyperplasia (NIH) remain unknown. PURPOSE We investigated myricetin's effect on NIH, as well as the potential involvement of transforming growth factor-beta receptor 1 (TGFBR1) signaling in mediating myricetin's anti-atherosclerotic and anti-restenotic actions. METHODS Myricetin's effects on the proliferation and migration of HASMCs and A7R5 cells were determined by CCK-8, EdU assays, wound healing, Transwell assays, and western blotting (WB).Molecular docking, molecular dynamics (MD) simulation, surface plasmon resonance (SPR) and TGFBR1 kinase activity assays were employed to investigate the interaction between myricetin and TGFBR1. An adenovirus vector encoding TGFBR1 was used to verify the effects of myricetin. In vivo, the left common carotid artery (LCCA) ligation mouse model was adopted to determine the impacts of myricetin on neointimal formation and TGFBR1 activation. RESULTS Myricetin dose-dependently inhibited the migration and proliferation in VSMCs, suppressed the expression of CDK4, cyclin D3, MMP2, and MMP9. Molecular docking revealed that myricetin binds to key regions for TGFBR1 antagonist binding, and the binding energy was -9.61 kcal/mol. MD simulation indicated stable binding between TGFBR1 and myricetin. Additionally, SPR revealed an equilibrium dissociation constant of 4.35 × 10-5 M between myricetin and TGFBR1. According to the TGFBR1 kinase activity assay, myricetin directly inhibited TGFBR1 kinase activity (IC50 = 8.551 μM). Furthermore, myricetin suppressed the phosphorylation level of TGFBR1, Smad2, and Smad3 in a dose-dependent pattern, which was partially inhibited by TGFBR1 overexpression. Consistently, TGFBR1 overexpression partially rescued the suppressive roles of myricetin on VSMCs migration and proliferation. Moreover, myricetin dramatically inhibited NIH and reduced TGFBR1, Smad2, and Smad3 phosphorylation in the LCCA. CONCLUSION This is the first study to demonstrate that myricetin suppresses NIH and VSMC proliferation and migration via inhibiting TGFBR1 signaling. Myricetin can be developed as a potential therapeutic candidate for treating atherosclerosis and vascular restenosis.
Collapse
Affiliation(s)
- Guanghong Chen
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Honglin Xu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Yuting Wu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Xin Han
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Lingpeng Xie
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Guoyong Zhang
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Bin Liu
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, China.
| | - YingChun Zhou
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
10
|
Bai GL, Wang P, Huang X, Wang ZY, Cao D, Liu C, Liu YY, Li RL, Chen AJ. Rapamycin Protects Skin Fibroblasts From UVA-Induced Photoaging by Inhibition of p53 and Phosphorylated HSP27. Front Cell Dev Biol 2021; 9:633331. [PMID: 33614662 PMCID: PMC7892968 DOI: 10.3389/fcell.2021.633331] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022] Open
Abstract
Skin aging caused by UV radiation is called photoaging is characterized by skin roughness and dryness accompanied by a significant reduction of dermal collagen. Rapamycin is a macrolide immunosuppressant which has been shown to exhibit “anti-aging” effects in cells and organisms, however, its roles in the skin photoaging remains unclear. Here, we investigate the role of rapamycin and HSP27, which we have previously identified as an inhibitor of UV-induced apoptosis and senescence in HaCat cells, in a UVA-induced photoaging model of primary human dermal fibroblasts (HDFs). Results from senescence-associated beta-galactosidase (SA-β-gal) staining revealed that rapamycin significantly reduced senescence in UVA-treated HDFs. In addition, treatment with rapamycin significantly increased cell autophagy levels, decreased the expression of p53 and phosphorylated HSP27, and reduced genotoxic and oxidative cellular stress levels in UVA-induced HDFs. Knockdown of HSP27 resulted in a significant increase of MMP-1 and MMP-3 as well as a decrease in type I collagen expression. Rapamycin mitigated these effects by activation of the classical TGF-β/Smad signaling pathway and increasing the transcriptional activity of MAPK/AP-1. Taken together, these results suggest that rapamycin may potentially serve as a preventive and therapeutic agent for UVA-induced photoaging of the skin.
Collapse
Affiliation(s)
- Gen-Long Bai
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Xin Huang
- Prescriptions Department, College of Traditional Chinese Medicine, Chongqing Medical University, Yuzhong, China
| | - Zi-Yue Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Di Cao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Chuan Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Yi-Yi Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Ruo-Lin Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Ai-Jun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| |
Collapse
|
11
|
Nezami FR, Athanasiou LS, Edelman ER. Endovascular drug-delivery and drug-elution systems. BIOMECHANICS OF CORONARY ATHEROSCLEROTIC PLAQUE 2021:595-631. [DOI: 10.1016/b978-0-12-817195-0.00028-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
12
|
Yang Q, Lei D, Huang S, Yang Y, Jiang C, Shi H, Chen W, Zhao Q, You Z, Ye X. A novel biodegradable external stent regulates vein graft remodeling via the Hippo-YAP and mTOR signaling pathways. Biomaterials 2020; 258:120254. [PMID: 32805499 DOI: 10.1016/j.biomaterials.2020.120254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023]
Abstract
Coronary artery bypass graft (CABG) has been confirmed to effectively improve the prognosis of coronary artery disease, which is a major public health concern worldwide. As the most frequently used conduits in CABG, saphenous vein grafts have the disadvantage of being susceptible to restenosis due to intimal hyperplasia. To meet the urgent clinical demand, adopting external stents (eStents) and illuminating the potential mechanisms underlying their function are important for preventing vein graft failure. Here, using 4-axis printing technology, we fabricated a novel biodegradable and flexible braided eStent, which exerts excellent inhibitory effect on intimal hyperplasia. The stented grafts downregulate Yes-associated protein (YAP), indicating that the eStent regulates vein graft remodeling via the Hippo-YAP signaling pathway. Further, as a drug-delivery vehicle, a rapamycin (RM)-coated eStent was designed to amplify the inhibitory effect of eStent on intimal hyperplasia through the synergistic effects of the Hippo and mammalian target of rapamycin (mTOR) signaling pathways. Overall, this study uncovers the underlying mechanisms of eStent function and identifies a new therapeutic target for the prevention of vein graft restenosis.
Collapse
Affiliation(s)
- Qi Yang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Dong Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yang Yang
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Chenyu Jiang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Hongpeng Shi
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Wenyi Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
13
|
Annett S, Moore G, Robson T. FK506 binding proteins and inflammation related signalling pathways; basic biology, current status and future prospects for pharmacological intervention. Pharmacol Ther 2020; 215:107623. [PMID: 32622856 DOI: 10.1016/j.pharmthera.2020.107623] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
FK506 binding (FKBP) proteins are part of the highly conserved immunophilin family and its members have fundamental roles in the regulation of signalling pathways involved in inflammation, adaptive immune responses, cancer and developmental biology. The original member of this family, FKBP12, is a well-known binding partner for the immunosuppressive drugs tacrolimus (FK506) and sirolimus (rapamycin). FKBP12 and its analog, FKBP12.6, function as cis/trans peptidyl prolyl isomerases (PPIase) and they catalyse the interconversion of cis/trans prolyl conformations. Members of this family uniquely contain a PPIase domain, which may not be functional. The larger FKBPs, such as FKBP51, FKBP52 and FKBPL, contain extra regions, including tetratricopeptide repeat (TPR) domains, which are important for their versatile protein-protein interactions with inflammation-related signalling pathways. In this review we focus on the pivotal role of FKBP proteins in regulating glucocorticoid signalling, canonical and non-canonical NF-κB signalling, mTOR/AKT signalling and TGF-β signalling. We examine the mechanism of action of FKBP based immunosuppressive drugs on these cell signalling pathways and how off target interactions lead to the development of side effects often seen in the clinic. Finally, we discuss the latest advances in the role of FKBPs as therapeutic targets and the development of novel agents for a range of indications of unmet clinical need, including glucocorticoid resistance, obesity, stress-induced inflammation and novel cancer immunotherapy.
Collapse
Affiliation(s)
- Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gillian Moore
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
14
|
Sasaki N, Itakura Y, Toyoda M. Rapamycin promotes endothelial-mesenchymal transition during stress-induced premature senescence through the activation of autophagy. Cell Commun Signal 2020; 18:43. [PMID: 32164764 PMCID: PMC7069020 DOI: 10.1186/s12964-020-00533-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Rapamycin is known to be effective in suppressing senescence and the senescence-associated secretory phenotype (SASP). Therefore, it is highly expected to represent an anti-aging drug. Its anti-aging effect has been demonstrated at the mouse individual level. However, there are not many clinical findings with respect to its activity in humans. Here, we aimed to clarify the effect of rapamycin on human endothelial cells (ECs) as an in vitro model of human blood vessels. Methods Over the course of oxidative stress-induced senescence using hydrogen peroxide, we examined the effect of rapamycin on human coronary artery ECs (HCAECs). Senescence was evaluated by detecting senescence-associated β-galactosidase (SA-β-Gal) activity and the real-time PCR analysis of p16INK4a. Furthermore, expression levels of SASP factors were examined by real-time PCR and the expression of senescence-related antigens, such as intercellular adhesion molecule-1 (ICAM-1) and ganglioside GM1, were examined by fluorescence-activated cell sorting analysis and immunostaining. The inhibitory effect of rapamycin on mTOR signaling was examined by immunoblotting. The adhesion of leukocytes to HCAECs was evaluated by adhesion assays. Endothelial–mesenchymal transition (EndMT) induced by rapamycin treatment was evaluated by real-time PCR analysis and immunostaining for EndMT markers. Finally, we checked the activation of autophagy by immunoblotting and examined its contribution to EndMT by using a specific inhibitor. Furthermore, we examined how the activation of autophagy influences TGF-β signaling by immunoblotting for Smad2/3 and Smad7. Results A decrease in SA-β-Gal activity and the suppression of SASP factors were observed in HCAECs undergoing stress-induced premature senescence (SIPS) after rapamycin treatment. In contrast, ICAM-1 and ganglioside GM1 were upregulated by rapamycin treatment. In addition, leukocyte adhesion to HCAECs was promoted by this treatment. In rapamycin-treated HCAECs, morphological changes and the promotion of EndMT were also observed. Furthermore, we found that autophagy activation induced by rapamycin treatment, which led to activation of the TGF-β pathway, contributed to EndMT induction. Conclusions We revealed that although rapamycin functions to inhibit senescence and suppress SASP in HCAECs undergoing SIPS, EndMT is induced due to the activation of autophagy. Video abstract
Collapse
Affiliation(s)
- Norihiko Sasaki
- Department of Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yoko Itakura
- Department of Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Masashi Toyoda
- Department of Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
15
|
Lin B, Jia X, Xie Z, Su T, Wei Y, Tang J, Yang C, Cui C, Liu J. Vascular Endothelial Cells Activate Peripheral Natural Killer T Cells and Participate in Regulation of Downstream Immune Cascades in Patients with Sepsis. Med Sci Monit 2018; 24:7387-7398. [PMID: 30324936 PMCID: PMC6199819 DOI: 10.12659/msm.911466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background This study investigated the effect of supernatant of endothelial cells stimulated by peripheral blood serum from sepsis patients on phenotype and function of peripheral NKT cells. Material/Methods Twenty-one patients with sepsis and 21 healthy subjects were included. Peripheral blood (5 ml) was collected from all patients and healthy subjects. To isolate peripheral blood mononuclear cells (PBMCs), Ficoll lymphocyte separation solution was used. Flow cytometry was carried out to determine NKT cell ratio, activity, and cytokine secretion. Human umbilical vein endothelial cells were cultured with serum from sepsis patients for 48 h before changing to fresh medium, and supernatant was collected. The supernatant was used to co-culture PBMCs before analyzing NKT activity and cytokines. Results The ratios of CD3-CD56+NK cells and CD3+CD56+NKT cells were increased in peripheral blood from sepsis patients. Surface receptors p30, G2D, and p44 of CD3+CD56+NKT cells were elevated, while inhibitory receptors NKG2A and 158b were decreased. CD4+ NKT cells in peripheral blood from sepsis patients were enhanced. GranB, IFN-γ, IL-4, and IL-17 in NKT cells from sepsis patients were up-regulated. After co-culture with vascular endothelial cells treated with sepsis serum, expression of p30 and G2D in NKT cells was upregulated, and number of TCRVα24-positive cells was increased. In addition, ratio of CD4+NKT cells was increased, and intracellular expression of IL-4 and IFN-γ was elevated. Conclusions The study demonstrates that the level of NKT cells in peripheral blood from sepsis patients is increased, and their activity is enhanced. In addition, vascular endothelial cells from sepsis patients can regulate the activity of NKT cells.
Collapse
Affiliation(s)
- Bing Lin
- Department of Intensive Medicine, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xinju Jia
- Department of Intensive Medicine, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Zuohua Xie
- Department of Intensive Medicine, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ting Su
- Department of Intensive Medicine, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ying Wei
- Department of Intensive Medicine, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jiping Tang
- Department of Intensive Medicine, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Chengzhi Yang
- Graduate School, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Chuanbao Cui
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jinxiang Liu
- Department of Intensive Medicine, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
16
|
Eberhardt W, Nasrullah U, Pfeilschifter J. Activation of renal profibrotic TGFβ controlled signaling cascades by calcineurin and mTOR inhibitors. Cell Signal 2018; 52:1-11. [PMID: 30145216 DOI: 10.1016/j.cellsig.2018.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
The calcineurin inhibitors (CNI) cyclosporine A (CsA) and tacrolimus represent potent immunosuppressive agents frequently used for solid organ transplantation and treatment of autoimmune disorders. Despite of their immense therapeutic benefits, residual fibrosis mainly in the kidney represents a common side effect of long-term therapy with CNI. Regardless of the immunosuppressive action, an increasing body of evidence implicates that a drug-induced increase in TGFβ and subsequent activation of TGFβ-initiated signaling pathways is closely associated with the development and progression of CNI-induced nephropathy. Mechanistically, an increase in reactive oxygen species (ROS) generation due to drug-induced changes in the intracellular redox homeostasis functions as an important trigger of the profibrotic signaling cascades activated under therapy with CNI. Although, inhibitors of the mechanistic target of rapamycin (mTOR) kinase have firmly been established as alternative compounds with a lower nephrotoxic potential, an activation of fibrogenic signaling cascades has been reported for these drugs as well. This review will comprehensively summarize recent advances in the understanding of profibrotic signaling events modulated by these widely used compounds with a specific focus put on mechanisms occurring independent of their respective immunosuppressive action. Herein, the impact of redox modulation, the activation of canonical TGFβ and non-Smad pathways and modulation of autophagy by both classes of immunosuppressive drugs will be highlighted and discussed in a broader perspective. The comprehensive knowledge of profibrotic signaling events specifically accompanying the immunomodulatory activity of these widely used drugs is needed for a reliable benefit-risk assessment under therapeutic regimens.
Collapse
Affiliation(s)
- Wolfgang Eberhardt
- Pharmazentrum frankfurt/ZAFES, Universitätsklinikum und Goethe-Universität, Frankfurt am Main, Germany.
| | - Usman Nasrullah
- Pharmazentrum frankfurt/ZAFES, Universitätsklinikum und Goethe-Universität, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum frankfurt/ZAFES, Universitätsklinikum und Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|