1
|
Yousef A, Fang L, Heidari M, Kranrod J, Seubert JM. The role of CYP-sEH derived lipid mediators in regulating mitochondrial biology and cellular senescence: implications for the aging heart. Front Pharmacol 2024; 15:1486717. [PMID: 39703395 PMCID: PMC11655241 DOI: 10.3389/fphar.2024.1486717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
Cellular senescence is a condition characterized by stable, irreversible cell cycle arrest linked to the aging process. The accumulation of senescent cells in the cardiac muscle can contribute to various cardiovascular diseases (CVD). Telomere shortening, epigenetic modifications, DNA damage, mitochondrial dysfunction, and oxidative stress are known contributors to the onset of cellular senescence in the heart. The link between mitochondrial processes and cellular senescence contributed to the age-related decline in cardiac function. These include changes in mitochondrial functions and behaviours that arise from various factors, including impaired dynamics, dysregulated biogenesis, mitophagy, mitochondrial DNA (mtDNA), reduced respiratory capacity, and mitochondrial structural changes. Thus, regulation of mitochondrial biology has a role in cellular senescence and cardiac function in aging hearts. Targeting senescent cells may provide a novel therapeutic approach for treating and preventing CVD associated with aging. CYP epoxygenases metabolize N-3 and N-6 polyunsaturated fatty acids (PUFA) into epoxylipids that are readily hydrolyzed to diol products by soluble epoxide hydrolase (sEH). Increasing epoxylipids levels or inhibition of sEH has demonstrated protective effects in the aging heart. Evidence suggests they may play a role in cellular senescence by regulating mitochondria, thus reducing adverse effects of aging in the heart. In this review, we discuss how mitochondria induce cellular senescence and how epoxylipids affect the senescence process in the aged heart.
Collapse
Affiliation(s)
- Ala Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Liye Fang
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mobina Heidari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Ostadal B, Kolar F. Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences. Physiol Res 2024; 73:S35-S48. [PMID: 38634652 PMCID: PMC11412335 DOI: 10.33549/physiolres.935337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
In 2023, six decades have elapsed since the first experimental work on the heart muscle was published, in which a member of the Institute of Physiology of the Czech Academy of Sciences participated as an author; Professor Otakar Poupa was the founder and protagonist of this research domain. Sixty years - more than half of the century - is certainly significant enough anniversary that is worth looking back and reflecting on what was achieved during sometimes very complicated periods of life. It represents the history of an entire generation of experimental cardiologists; it is possible to learn from its successes and mistakes. The objective of this review is to succinctly illuminate the scientific trajectory of an experimental cardiological department over a 60-year span, from its inaugural publication to the present. The old truth - historia magistra vitae - is still valid. Keywords: Heart, Adaptation, Development, Hypoxia, Protection.
Collapse
Affiliation(s)
- B Ostadal
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
3
|
Zhang Y, Lu J, Huang S, Zhang Y, Liu J, Xu Y, Yao B, Wang X. CYP2J deficiency leads to cardiac injury and presents dual regulatory effects on cardiac function in rats. Toxicol Appl Pharmacol 2023; 473:116610. [PMID: 37385478 DOI: 10.1016/j.taap.2023.116610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Cytochrome P450 2 J2 (CYP2J2) enzyme is widely expressed in aortic endothelial cells and cardiac myocytes and affects cardiac function, but the underlying mechanism is still unclear. Based on CYP2J knockout (KO) rats, we have directly studied the metabolic regulation of CYP2J on cardiac function during aging. The results showed that CYP2J deficiency significantly reduced the content of epoxyeicosatrienoic acids (EETs) in plasma, aggravated myocarditis, myocardial hypertrophy, as well as fibrosis, and inhibited the mitochondrial energy metabolism signal network Pgc-1α/Ampk/Sirt1. With the increase of age, the levels of 11,12-EET and 14,15-EET in plasma of KO rats decreased significantly, and the heart injury was more serious. Interestingly, we found that after CYP2J deletion, the heart initiated a self-protection mechanism by upregulating cardiac mechanism factors Myh7, Dsp, Tnni3, Tnni2, and Scn5a, as well as mitochondrial fusion factors Mfn2 and Opa1. However, this protective effect disappeared with aging. In conclusion, CYP2J deficiency not only reduces the amount of EETs, but also plays a dual regulatory role in cardiac function.
Collapse
Affiliation(s)
- Yanfang Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jian Lu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuan Xu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Cho C, Aliwarga T, Wiley AM, Totah RA. Cardioprotective mechanisms of cytochrome P450 derived oxylipins from ω-3 and ω-6 PUFAs. ADVANCES IN PHARMACOLOGY 2023; 97:201-227. [DOI: 10.1016/bs.apha.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
ElKhatib MAW, Isse FA, El-Kadi AOS. Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metab Rev 2022; 55:50-74. [PMID: 36573379 DOI: 10.1080/03602532.2022.2162075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of heart failure (HF) is generally preceded by cardiac hypertrophy (CH), which is the enlargement of cardiac myocytes in response to stress. During CH, the metabolism of arachidonic acid (AA), which is present in the cell membrane phospholipids, is modulated. Metabolism of AA gives rise to hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) via cytochrome P450 (CYP) ω-hydroxylases and CYP epoxygenases, respectively. A plethora of studies demonstrated the involvement of CYP-mediated AA metabolites in the pathogenesis of CH. Also, inflammation is known to be a characteristic hallmark of CH. In this review, our aim is to highlight the impact of inflammation on CYP-derived AA metabolites and CH. Inflammation is shown to modulate the expression of various CYP ω-hydroxylases and CYP epoxygenases and their respective metabolites in the heart. In general, HETEs such as 20-HETE and mid-chain HETEs are pro-inflammatory, while EETs are characterized by their anti-inflammatory and cardioprotective properties. Several mechanisms are implicated in inflammation-induced CH, including the modulation of NF-κB and MAPK. This review demonstrated the inflammatory modulation of cardiac CYPs and their metabolites in the context of CH and the anti-inflammatory strategies that can be employed in the treatment of CH and HF.
Collapse
Affiliation(s)
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
6
|
Zhang Y, Gao L, Yao B, Huang S, Zhang Y, Liu J, Liu Z, Wang X. Role of epoxyeicosatrienoic acids in cardiovascular diseases and cardiotoxicity of drugs. Life Sci 2022; 310:121122. [DOI: 10.1016/j.lfs.2022.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
|
7
|
Alhashim A, Abdelbary M, Sullivan JC, Naeini SE, Elmarakby AA. Sexual dimorphism in renal heme oxygenase-1 and arachidonic acid metabolizing enzymes in spontaneously hypertensive rats versus normotensive Wistar Kyoto rats. Prostaglandins Other Lipid Mediat 2022; 161:106650. [PMID: 35618157 DOI: 10.1016/j.prostaglandins.2022.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Numerous studies have demonstrated a sexual dimorphism in blood pressure (BP) control in spontaneously hypertensive rats (SHR), however the mechanisms remain to be further elucidated. Based on the established role of arachidonic acid metabolites and heme oxygenase (HO) in BP control, we hypothesize that higher BP in male SHR is associated with differential expression in renal HO and arachidonic acid metabolizing enzymes vs. female SHR. Higher BP in male SHR coincided with significant increases in renal cortical superoxide production and thiobarbituric acid reactive substances (TBARs) levels as measures of oxidative stress compared to normotensive female WKY and female SHR. The elevations in BP and oxidative stress in male SHR were also associated with a decrease in cortical heme oxygenase-1 (HO-1) expression when compared to normotensive female WKY. Although there was no sex or strain differences in cortical expression of the epoxyeicosatrienoic acids (EETs) producing enzyme, cytochrome P450 epoxygenase (CYP2C23), in male and female SHR and WKY, SHR had greater expression of the EETs metabolizing enzyme, soluble epoxide hydrolase (sEH) vs. WKY. Cortical expression of the 20-hydroxyeicosatetraenoic acid (20-HETE) producing enzyme, cytochrome P450 hydroxylase (CYP4A), was less in female WKY and SHR compared to strain-matched males and cortical 20-HETE levels were also less in female SHR vs. male SHR. Cortical cyclooxygenase-2 (COX-2) expression was significantly greater in female SHR and WKY vs. males and cortical prostaglandin E2 (PGE2) levels in female SHR was significantly greater than male WKY. In conclusion, our data suggest that sex differences in renal oxidative stress, HO-1 and arachidonic acid metabolizing enzymes could contribute to sexual dimorphism in hypertension in young SHR.
Collapse
Affiliation(s)
| | - Mahmoud Abdelbary
- Department of Physiology, Augusta University, Augusta, GA 30912, USA
| | | | - Sahar Emami Naeini
- Department of Oral Biology & Diagnostic Sciences, Augusta University, Augusta, GA 30912, USA
| | - Ahmed A Elmarakby
- Department of Oral Biology & Diagnostic Sciences, Augusta University, Augusta, GA 30912, USA; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| |
Collapse
|
8
|
Zhang M, Shu H, Chen C, He Z, Zhou Z, Wang DW. Epoxyeicosatrienoic acid: A potential therapeutic target of heart failure with preserved ejection fraction. Biomed Pharmacother 2022; 153:113326. [PMID: 35759865 DOI: 10.1016/j.biopha.2022.113326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) reduces the quality of life, costs substantial medical resources, and has a high mortality. However, we lack an effective therapy for HFpEF due to our limited knowledge of its mechanism. Therefore, it is crucial to explore novel therapeutics, such as those with endogenous protective roles, and seek new targeted therapies. Epoxyeicosatrienoic acids (EETs) are endogenous bioactive metabolites of arachidonic acids produced by cytochrome P450 (CYP) epoxygenases. EETs can function as endogenous cardioprotective factors with potent inhibitory roles in inflammation, endothelial dysfunction, cardiac remodeling, and fibrosis, which are the fundamental mechanisms of HFpEF. This suggests that EETs have the potential function to protect against HFpEF. Therefore, we present an overview of the ever-expanding world of EETs and how they might help alleviate the pathophysiology underlying HFpEF to provide new insights for research in this field.
Collapse
Affiliation(s)
- Min Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zuowen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zhou Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
9
|
Sedmera D. Mass cytometry imaging in physiology. Acta Physiol (Oxf) 2022; 235:e13822. [PMID: 35403830 DOI: 10.1111/apha.13822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Affiliation(s)
- David Sedmera
- Laboratory of Developmental Cardiology Institute of Physiology Czech Academy of Sciences Prague Czech Republic
- First Faculty of Medicine Institute of Anatomy Charles University Prague Czech Republic
| |
Collapse
|
10
|
Imig JD, Cervenka L, Neckar J. Epoxylipids and soluble epoxide hydrolase in heart diseases. Biochem Pharmacol 2022; 195:114866. [PMID: 34863976 PMCID: PMC8712413 DOI: 10.1016/j.bcp.2021.114866] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular and heart diseases are leading causes of morbidity and mortality. Coronary artery endothelial and vascular dysfunction, inflammation, and mitochondrial dysfunction contribute to progression of heart diseases such as arrhythmias, congestive heart failure, and heart attacks. Classes of fatty acid epoxylipids and their enzymatic regulation by soluble epoxide hydrolase (sEH) have been implicated in coronary artery dysfunction, inflammation, and mitochondrial dysfunction in heart diseases. Likewise, genetic and pharmacological manipulations of epoxylipids have been demonstrated to have therapeutic benefits for heart diseases. Increasing epoxylipids reduce cardiac hypertrophy and fibrosis and improve cardiac function. Beneficial actions for epoxylipids have been demonstrated in cardiac ischemia reperfusion injury, electrical conductance abnormalities and arrhythmias, and ventricular tachycardia. This review discusses past and recent findings on the contribution of epoxylipids in heart diseases and the potential for their manipulation to treat heart attacks, arrhythmias, ventricular tachycardia, and heart failure.
Collapse
Affiliation(s)
- John D Imig
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ludek Cervenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Neckar
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Imig JD. Orally active epoxyeicosatrienoic acid analogs in hypertension and renal injury. ADVANCES IN PHARMACOLOGY 2022; 94:27-55. [PMID: 35659375 PMCID: PMC10105514 DOI: 10.1016/bs.apha.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites synthesized by cytochrome P450 epoxygenases. Biological activities for EETs include vasodilation, decreasing inflammation, opposing apoptosis, and inhibiting renal sodium reabsorption. These actions are beneficial in lowering blood pressure and slowing kidney disease progression. Furthermore, evidence in human and experimental animal studies have found that decreased EET levels contribute to hypertension and kidney diseases. Consequently, EET mimics/analogs have been developed as a potential therapeutic for hypertension and acute and chronic kidney diseases. Their development has resulted in EET analogs that are orally active with favorable pharmacological profiles. Analogs for 8,9-EET, 11,12-EET, and 14,15-EET have been tested in several hypertension and kidney disease animal models. More recently, kidney targeted EET analogs have been synthesized and tested against drug-induced nephrotoxicity. Experimental evidence has demonstrated compelling therapeutic potential for EET analogs to oppose cardiovascular and kidney diseases. These EET analogs lower blood pressure, decrease kidney inflammation, improve vascular endothelial function, and decrease kidney fibrosis and apoptosis. Overall, these preclinical studies support the likelihood that EET analogs will advance to clinical trials for hypertension and associated comorbidities or acute and chronic kidney diseases.
Collapse
Affiliation(s)
- John D Imig
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
12
|
Epoxyeicosatrienoic Acids and Fibrosis: Recent Insights for the Novel Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms221910714. [PMID: 34639055 PMCID: PMC8509622 DOI: 10.3390/ijms221910714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Organ fibrosis often ends in eventual organ failure and leads to high mortality. Although researchers have identified many effector cells and molecular pathways, there are few effective therapies for fibrosis to date and the underlying mechanism needs to be examined and defined further. Epoxyeicosatrienoic acids (EETs) are endogenous lipid metabolites of arachidonic acid (ARA) synthesized by cytochrome P450 (CYP) epoxygenases. EETs are rapidly metabolized primarily via the soluble epoxide hydrolase (sEH) pathway. The sEH pathway produces dihydroxyeicosatrienoic acids (DHETs), which have lower activity. Stabilized or increased EETs levels exert several protective effects, including pro-angiogenesis, anti-inflammation, anti-apoptosis, and anti-senescence. Currently, intensive investigations are being carried out on their anti-fibrotic effects in the kidney, heart, lung, and liver. The present review provides an update on how the stabilized or increased production of EETs is a reasonable theoretical basis for fibrosis treatment.
Collapse
|
13
|
Effects of Epoxyeicosatrienoic Acid-Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II-Dependent Rat Hypertension: From mRNA Analysis towards Functional In Vivo Evaluation. Biomedicines 2021; 9:biomedicines9081053. [PMID: 34440257 PMCID: PMC8393645 DOI: 10.3390/biomedicines9081053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022] Open
Abstract
This study evaluates the effects of chronic treatment with EET-A, an orally active epoxyeicosatrienoic acid (EETs) analog, on the course of aorto-caval fistula (ACF)-induced heart failure (HF) in Ren-2 transgenic rats (TGR), a model characterized by hypertension and augmented activity of the renin-angiotensin system (RAS). The results were compared with standard pharmacological blockade of the RAS using angiotensin-converting enzyme inhibitor (ACEi). The rationale for employing EET-A as a new treatment approach is based on our findings that apart from increased RAS activity, untreated ACF TGR also shows kidney and left ventricle (LV) tissue deficiency of EETs. Untreated ACF TGR began to die 17 days after creating ACF and were all dead by day 84. The treatment with EET-A alone or ACEi alone improved the survival rate: in 156 days after ACF creation, it was 45.5% and 59.4%, respectively. The combined treatment with EET-A and ACEi appeared to improve the final survival to 71%; however, the difference from either single treatment regimen did not reach significance. Nevertheless, our findings support the notion that targeting the cytochrome P-450-dependent epoxygenase pathway of arachidonic acid metabolism should be considered for the treatment of HF.
Collapse
|
14
|
Liu Q, Zhang Y, Zhao H, Yao X. Increased Epoxyeicosatrienoic Acids and Hydroxyeicosatetraenoic Acids After Treatment of Iodide Intake Adjustment and 1,25-Dihydroxy-Vitamin D 3 Supplementation in High Iodide Intake-Induced Hypothyroid Offspring Rats. Front Physiol 2021; 12:669652. [PMID: 34381374 PMCID: PMC8352438 DOI: 10.3389/fphys.2021.669652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Aim: This study aimed to investigate the potential role of fatty acids in high iodide intake-induced hypothyroidism and its complications and also in the intervention of iodide intake adjustment and 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3] supplementation. Methods: Pregnant rats were allocated to two groups, namely, normal iodide (NI, 7.5 μg/day) intake and 100 times higher-than-normal iodide (100 HI, 750 μg/day) intake. The offspring were continuously administered potassium iodide from weaning [i.e., postnatal day 21 (PN21)] to PN90. After PN90, the offspring were either administered iodide intake adjustment (7.5 μg/day) or 1,25(OH)2D3 supplementation (5 μg·kg-1·day-1), or both, for 4 weeks. Thyroid function tests (free triiodothyronine, free thyroxine, thyrotropin, thyroid peroxidase antibody, and thyroglobulin antibody), blood lipids (triglyceride, total cholesterol, free fatty acid, and low-density lipoprotein cholesterol), and vitamin D3 (VD3) levels were detected by ELISA. Cardiac function was measured by echocardiography. Blood pressure was measured using a non-invasive tail-cuff system. The serum fatty acids profile was analyzed by liquid chromatography-mass spectrometry. Results: In the offspring rats with continued 100 HI administration, the levels of 8,9-dihydroxyeicosatrienoic acid (8,9-DHET) and thromboxane B2 (TXB2) were decreased, while those of prostaglandin J2 (PGJ2), prostaglandin B2 (PGB2), 4-hydroxydocosahexaenoic acid (4-HDoHE), 7-HDoHE, 8-HDoHE, and 20-HDoHE were increased. Significant correlations were found between PGB2, 8,9-DHET, 7-HDoHE levels and thyroid dysfunction, between PGJ2, 20-HDoHE, PGB2, 8,9-DHET levels and cardiac dysfunction, between PGJ2, 20-HDoHE levels and hypertension, between 4-HDoHE, 8-HDoHE, TXB2 levels and dyslipidemia, and between PGB2 and decreased VD3 level. After the treatment of iodide intake adjustment and 1,25(OH)2D3 supplementation, the levels of 16-hydroxyeicosatetraenoic acids (16-HETE), 18-HETE, 5,6-epoxyeicosatrienoic acid (5,6-EET), 8,9-EET, 11,12-EET, 14,15-EET, PGE2, 5-oxo-ETE, and 15-oxo-ETE were increased. The significant associations between PGE2, 16-HETE, 18-HETE and improved thyroid function and also between 5,6-EET, 11,12-EET, 14,15-EET, 16-HETE, 15-oxo-ETE and attenuated dyslipidemia were detected. Conclusion: Increased levels of prostaglandins (PGs) and HDoHEs and decreased levels of 8,9-DHET and TXB2 might occur in the progression of cardiac dysfunction, hypertension, and dyslipidemia in high iodide intake-induced hypothyroidism. The increased levels of EETs and HETEs might help to ameliorate these complications after iodide intake adjustment and 1,25(OH)2D3 supplementation.
Collapse
Affiliation(s)
- Qing Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailing Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaomei Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Lai J, Chen C. The Role of Epoxyeicosatrienoic Acids in Cardiac Remodeling. Front Physiol 2021; 12:642470. [PMID: 33716791 PMCID: PMC7943617 DOI: 10.3389/fphys.2021.642470] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid by cytochrome P450 (CYP) epoxygenases, which include four regioisomers: 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET. Each of them possesses beneficial effects against inflammation, fibrosis, and apoptosis, which could combat cardiovascular diseases. Numerous studies have demonstrated that elevation of EETs by overexpression of CYP2J2, inhibition of sEH, or treatment with EET analogs showed protective effects in various cardiovascular diseases, including hypertension, myocardial infarction, and heart failure. As is known to all, cardiac remodeling is the major pathogenesis of cardiovascular diseases. This review will begin with the introduction of EETs and their protective effects in cardiovascular diseases. In the following, the roles of EETs in cardiac remodeling, with a particular emphasis on myocardial hypertrophy, apoptosis, fibrosis, inflammation, and angiogenesis, will be summarized. Finally, it is suggested that upregulation of EETs is a potential therapeutic strategy for cardiovascular diseases. The EET-related drug development against cardiac remodeling is also discussed, including the overexpression of CYP2J2, inhibition of sEH, and the analogs of EET.
Collapse
Affiliation(s)
- Jinsheng Lai
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Lichý M, Szobi A, Hrdlička J, Neckář J, Kolář F, Adameová A. Programmed Cell Death in the Left and Right Ventricle of the Late Phase of Post-Infarction Heart Failure. Int J Mol Sci 2020; 21:E7782. [PMID: 33096720 PMCID: PMC7589581 DOI: 10.3390/ijms21207782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 01/03/2023] Open
Abstract
While necroptosis has been shown to contribute to the pathogenesis of post-infarction heart failure (HF), the role of autophagy remains unclear. Likewise, linkage between these two cell death modalities has not been sufficiently investigated. HF was induced by 60-min left coronary occlusion in adult Wistar rats and heart function was assessed 6 weeks later followed by immunoblotting analysis of necroptotic and autophagic proteins in both the left (LV) and right ventricle (RV). HF had no effect on RIP1 and RIP3 expression. PhosphoSer229-RIP3, acting as a pro-necroptotic signal, was increased in LV while deceased in RV of failing hearts. Total MLKL was elevated in RV only. Decrease in pSer555-ULK1, increase in pSer473-Akt and no significant elevation in beclin-1 and LC3-II/I ratio indicated rather a lowered rate of autophagy in LV. No beclin-1 upregulation and decreased LC3 processing also suggested the inhibition of both autophagosome formation and maturation in RV of failing hearts. In contrast, p89 PARP1 fragment, a marker of executed apoptosis, was increased in RV only. This is the first study showing a different signaling in ventricles of the late phase of post-infarction HF, highlighting necroptosis itself rather than its linkage with autophagy in LV, and apoptosis in RV.
Collapse
Affiliation(s)
- Martin Lichý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 83232 Bratislava, Slovakia; (M.L.); (A.S.)
| | - Adrián Szobi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 83232 Bratislava, Slovakia; (M.L.); (A.S.)
| | - Jaroslav Hrdlička
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (J.H.); (J.N.); (F.K.)
| | - Jan Neckář
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (J.H.); (J.N.); (F.K.)
| | - František Kolář
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (J.H.); (J.N.); (F.K.)
| | - Adriana Adameová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 83232 Bratislava, Slovakia; (M.L.); (A.S.)
| |
Collapse
|
17
|
Keshavarz-Bahaghighat H, Darwesh AM, Sosnowski DK, Seubert JM. Mitochondrial Dysfunction and Inflammaging in Heart Failure: Novel Roles of CYP-Derived Epoxylipids. Cells 2020; 9:E1565. [PMID: 32604981 PMCID: PMC7408578 DOI: 10.3390/cells9071565] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Age-associated changes leading to a decline in cardiac structure and function contribute to the increased susceptibility and incidence of cardiovascular diseases (CVD) in elderly individuals. Indeed, age is considered a risk factor for heart failure and serves as an important predictor for poor prognosis in elderly individuals. Effects stemming from chronic, low-grade inflammation, inflammaging, are considered important determinants in cardiac health; however, our understanding of the mechanisms involved remains unresolved. A steady decline in mitochondrial function is recognized as an important biological consequence found in the aging heart which contributes to the development of heart failure. Dysfunctional mitochondria contribute to increased cellular stress and an innate immune response by activating the NLRP-3 inflammasomes, which have a role in inflammaging and age-related CVD pathogenesis. Emerging evidence suggests a protective role for CYP450 epoxygenase metabolites of N-3 and N-6 polyunsaturated fatty acids (PUFA), epoxylipids, which modulate various aspects of the immune system and protect mitochondria. In this article, we provide insight into the potential roles N-3 and N-6 PUFA have modulating mitochondria, inflammaging and heart failure.
Collapse
Affiliation(s)
- Hedieh Keshavarz-Bahaghighat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - Ahmed M. Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - Deanna K. Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta 2020-M Katz Group Centre for Pharmacy and Health Research 11361-87 Avenue, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
18
|
Combined treatment with epoxyeicosatrienoic acid analog and 20-hydroxyeicosatetraenoic acid antagonist provides substantial hypotensive effect in spontaneously hypertensive rats. J Hypertens 2020; 38:1802-1810. [DOI: 10.1097/hjh.0000000000002462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Piper K, Garelnabi M. Eicosanoids: Atherosclerosis and cardiometabolic health. J Clin Transl Endocrinol 2020; 19:100216. [PMID: 32071878 PMCID: PMC7013337 DOI: 10.1016/j.jcte.2020.100216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/22/2020] [Accepted: 02/01/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular diseases (CVD) have been the leading causes of death in the U.S. for nearly a century. Numerous studies have linked eicosanoids to cardiometabolic disease. Objectives and Methods: This review summaries recent advances and innovative research in eicosanoids and CVD. Numerous review articles and their original human or animal studies were assessed in the relevant and recent studies. OUTCOME We identified and discussed recent trends in eicosanoids known for their roles in CVD. Their subsequent relationships were assessed for any possible implications associated with consumption of different dietary lipids, essentially omega fatty acids. Eicosanoids have been heavily sought after over recent decades for their direct role in mediating the enhancement and resolution of acute immune responses. Given the short half-life of these oxidized lipid metabolites, studies on atherosclerosis have had to rely on the metabolites that are actively involved in eicosanoid production, signaling or redox reactions as markers for atherosclerosis-related molecular behaviors. CONCLUSION Further investigations expending current knowledge, should be applied to narrow the specific class and species of eicosanoids responsible for inciting inflammation especially in the context of recent clinical studies assessing the role of dietary lipid in cardiovascular diseases.
Collapse
|
20
|
Pullen AB, Jadapalli JK, Rhourri-Frih B, Halade GV. Re-evaluating the causes and consequences of non-resolving inflammation in chronic cardiovascular disease. Heart Fail Rev 2020; 25:381-391. [PMID: 31201605 PMCID: PMC6911017 DOI: 10.1007/s10741-019-09817-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac injuries, like heart attacks, drive the secondary pathology with advanced heart failure. In this process, non-resolving inflammation is a prime component of accelerated cardiovascular disease and subsequent fatal events associated with imbalanced diet, physical inactivity, disrupted circadian rhythms, neuro-hormonal stress, and poly- or co-medication. Laboratory rodents have established that splenic leukocyte-directed resolution mechanisms are essential for cardiac repair after injury. Here, we discuss the impact of three lifestyle-related factors that are prime causes of derailed cardiac healing, putative non-resolving inflammation-resolution mechanisms in cardiovascular diseases, and progressive heart failure after cardiac injury. The presented review resurfaces the lifestyle-related risks and future research directions required to understand the molecular and cellular mechanisms between the causes of cardiovascular disease and their related consequences of non-resolving inflammation.
Collapse
Affiliation(s)
- Amanda B Pullen
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeevan Kumar Jadapalli
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Boutayna Rhourri-Frih
- Chimie et Biologie des Membranes et Nanoobjets, University of Bordeaux, CNRS UMR 5248, 146, rue Léo Saignat, 33076, Bordeaux, France
| | - Ganesh V Halade
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|