1
|
Yamaguchi H, Guagliardo NA, Bell LA, Yamaguchi M, Matsuoka D, Xu F, Smith JP, Diagne M, Almeida LF, Medrano S, Barrett PQ, Nieh EH, Gomez RA, Sequeira-Lopez MLS. Inhibition of Renin Release, a Crucial Event in Homeostasis, is Mediated by Coordinated Calcium Oscillations within Juxtaglomerular Cell Clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.23.629519. [PMID: 39763801 PMCID: PMC11703171 DOI: 10.1101/2024.12.23.629519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
BACKGROUND Juxtaglomerular (JG) cells are sensors that control blood pressure (BP) and fluid-electrolyte homeostasis. They are arranged as clusters at the tip of each afferent arteriole. In response to a decrease in BP or extracellular fluid volume, JG cells secrete renin, initiating an enzymatic cascade that culminates in the production of angiotensin II (AngII), a potent vasoconstrictor that restores BP and fluid-electrolyte homeostasis. In turn, AngII exerts negative feedback on renin release concomitantly with increased intracellular Ca2+, preventing excessive circulating renin and hypertension. However, within their native structural organization, the intricacies of intracellular Ca2+ signaling dynamics and their sources remain uncharacterized. METHODS We generated mice expressing the JG cell-specific genetically encoded Ca2+ indicator (GCaMP6f) to investigate Ca2+ dynamics within JG cell clusters ex vivo and in vivo. For ex vivo Ca2+ imaging, acutely prepared kidney slices were perfused continuously with a buffer containing variable Ca2+ and AngII concentrations ± Ca2+ channel inhibitors. For in vivo Ca2+ image capture, native mouse kidneys were imaged in situ using multi-photon microscopy with and without AngII administration. ELISA measurements of renin concentrations determined acute renin secretion ex vivo and in vivo, respectively. RESULTS Ex vivo Ca2+ imaging revealed that JG cells exhibit robust and coordinated intracellular oscillatory signals with cell-cell propagation following AngII stimulation. AngII dose-dependently induced stereotypical burst patterns characterized by consecutive Ca2+ spikes, which inversely correlated with renin secretion. Pharmacological channel inhibition identified key sources of these oscillations: endoplasmic reticulum Ca2+ storage and release, extracellular Ca2+ uptake via ORAI channels, and intercellular communication through gap junctions. Blocking ORAI channels and gap junctions reduced AngII inhibitory effect on renin secretion. In vivo Ca2+ imaging demonstrated robust intracellular and intercellular Ca2+ oscillations within JG cell clusters under physiological conditions, exhibiting spike patterns consistent with those measured in ex vivo preparations. Administration of AngII enhanced the Ca2+ oscillatory signals and suppressed acute renin secretion in vivo. CONCLUSION AngII elicits coordinated intracellular and intercellular Ca2+ oscillations within JG cell clusters, ex vivo and in vivo. The effect is driven by endoplasmic reticulum-derived Ca2+ release, ORAI channels, and gap junctions, leading to suppressed renin secretion.
Collapse
Affiliation(s)
- Hiroki Yamaguchi
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nick A. Guagliardo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Laura A. Bell
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Manako Yamaguchi
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Daisuke Matsuoka
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Fang Xu
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jason P. Smith
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Mohamed Diagne
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lucas F. Almeida
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Silvia Medrano
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Paula Q. Barrett
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Edward H. Nieh
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - R. Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Maria Luisa S. Sequeira-Lopez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
2
|
Beliveau BJ, Akilesh S. A guide to studying 3D genome structure and dynamics in the kidney. Nat Rev Nephrol 2025; 21:97-114. [PMID: 39406927 PMCID: PMC12023896 DOI: 10.1038/s41581-024-00894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease.
Collapse
Affiliation(s)
- Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Fujioka K, Nagai T, Hattori T, Kagami S, Yasutomo K, Galjart N, Hirayama T, Kawachi H, Urushihara M. Renin-angiotensin blockade ameliorates the progression of glomerular injury in podocyte-specific Ctcf knockout mice. Nephrology (Carlton) 2024; 29:815-824. [PMID: 39350520 DOI: 10.1111/nep.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/27/2024] [Accepted: 09/15/2024] [Indexed: 11/22/2024]
Abstract
AIM Several studies have shown that the progression of proteinuria and renal tissue injury is associated with activation of the intrarenal renin-angiotensin system (RAS). CCCTC-binding factor (CTCF) is a DNA-binding factor that plays an essential role in the regulation of gene expression. In the present study, we aimed to investigate the phenotypic effects of CTCF deficiency in podocytes. METHODS Angiotensin II type 1 receptor blockers (ARBs) were administered to the podocyte-specific Ctcf knockout mice, and histological and biochemical analyzes were performed. We also investigated the changes in the expression of podocin in podocyte cell cultures with or without stimulation with angiotensin II from glomeruli isolated using magnetic beads from podocyte-specific Ctcf knockout mice. RESULTS Mice in which Ctcf was deleted from podocytes developed glomerulopathy and mice developed severe progressive proteinuria, and impaired renal function. Moreover, ARBs suppressed the development of glomerulopathy in podocyte-specific Ctcf knockout mice. Both real-time polymerase chain reaction and western blotting showed that podocin expression was decreased in cell cultures stimulated with angiotensin II. Furthermore, RAS components gene expressions in podocyte cell cultures isolated from podocyte-specific Ctcf knockout mice were significantly increased. CONCLUSION These results suggest that RAS is involved in the development of glomerulopathy in podocyte-specific Ctcf knockout mice. Elucidation of the pathophysiology of podocyte-specific Ctcf knockout mice may provide new insights into the relationship between podocyte injury and chronic glomerulonephritis.
Collapse
Affiliation(s)
- Keisuke Fujioka
- Department of Pediatrics, Institute of Health Biosciences, The Tokushima University Graduate School, Tokushima, Japan
| | - Takashi Nagai
- Department of Pediatrics, Institute of Health Biosciences, The Tokushima University Graduate School, Tokushima, Japan
| | - Tomoki Hattori
- Department of Pediatrics, Institute of Health Biosciences, The Tokushima University Graduate School, Tokushima, Japan
| | - Shoji Kagami
- Department of Pediatrics, Institute of Health Biosciences, The Tokushima University Graduate School, Tokushima, Japan
| | - Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Niels Galjart
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Teruyoshi Hirayama
- Department of Anatomy and Developmental Neurobiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Hiroshi Kawachi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Maki Urushihara
- Department of Pediatrics, Institute of Health Biosciences, The Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
4
|
Chen Y, Zhou T, Liao Z, Gao W, Wu J, Zhang S, Li Y, Liu H, Zhou H, Xu C, Su P. Hnrnpk is essential for embryonic limb bud development as a transcription activator and a collaborator of insulator protein Ctcf. Cell Death Differ 2023; 30:2293-2308. [PMID: 37608075 PMCID: PMC10589297 DOI: 10.1038/s41418-023-01207-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Proper development of the limb bud relies on the concordance of various signals, but its molecular mechanisms have not yet been fully illustrated. Here we report that heterogeneous nuclear ribonucleoprotein K (hnRNPK) is essential for limb bud development. Its ablation in the limb bud results in limbless forelimbs and severe deformities of the hindlimbs. In terms of mechanism, hnRNPK functions as a transcription activator for the vital genes involved in the three regulatory axes of limb bud development. Simultaneously, for the first time we elucidate that hnRNPK binds to and coordinates with the insulator protein CCCTC binding factor (CTCF) to maintain a three-dimensional chromatin architecture. Ablation of hnRNPK weakens the binding strength of CTCF to topologically associating domain (TAD) boundaries, then leading to the loose TADs, and decreased interactions between promoters and enhancers, and further decreased transcription of developmental genes. Our study establishes a fundamental and novel role of hnRNPK in regulating limb bud development.
Collapse
Affiliation(s)
- Yuyu Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Taifeng Zhou
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiheng Liao
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenjie Gao
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Jinna Wu
- Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Shun Zhang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongyong Li
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hengyu Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hang Zhou
- Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Caixia Xu
- Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Peiqiang Su
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Neyra JS, Medrano S, Goes Martini AD, Sequeira-Lopez MLS, Gomez RA. The role of Gata3 in renin cell identity. Am J Physiol Renal Physiol 2023; 325:F188-F198. [PMID: 37345845 PMCID: PMC10396225 DOI: 10.1152/ajprenal.00098.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
Renin cells are precursors for other cell types in the kidney and show high plasticity in postnatal life in response to challenges to homeostasis. Our previous single-cell RNA-sequencing studies revealed that the dual zinc-finger transcription factor Gata3, which is important for cell lineage commitment and differentiation, is expressed in mouse renin cells under normal conditions and homeostatic threats. We identified a potential Gata3-binding site upstream of the renin gene leading us to hypothesize that Gata3 is essential for renin cell identity. We studied adult mice with conditional deletion of Gata3 in renin cells: Gata3fl/fl;Ren1dCre/+ (Gata3-cKO) and control Gata3fl/fl;Ren1d+/+ counterparts. Gata3 immunostaining revealed that Gata3-cKO mice had significantly reduced Gata3 expression in juxtaglomerular, mesangial, and smooth muscle cells, indicating a high degree of deletion of Gata3 in renin lineage cells. Gata3-cKO mice exhibited a significant increase in blood urea nitrogen, suggesting hypovolemia and/or compromised renal function. By immunostaining, renin-expressing cells appeared very thin compared with their normal plump shape in control mice. Renin cells were ectopically localized to Bowman's capsule in some glomeruli, and there was aberrant expression of actin-α2 signals in the mesangium, interstitium, and Bowman's capsule in Gata3-cKO mice. Distal tubules showed dilated morphology with visible intraluminal casts. Under physiological threat, Gata3-cKO mice exhibited a lower increase in mRNA levels than controls. Hematoxylin-eosin, periodic acid-Schiff, and Masson's trichrome staining showed increased glomerular fusion, absent cubical epithelial cells in Bowman's capsule, intraglomerular aneurysms, and tubular dilation. In conclusion, our results indicate that Gata3 is crucial to the identity of cells of the renin lineage.NEW & NOTEWORTHY Gata3, a dual zinc-finger transcription factor, is responsible for the identity and localization of renin cells in the kidney. Mice with a conditional deletion of Gata3 in renin lineage cells have abnormal kidneys with juxtaglomerular cells that lose their characteristic location and are misplaced outside and around arterioles and glomeruli. The fundamental role of Gata3 in renin cell development offers a new model to understand how transcription factors control cell location, function, and pathology.
Collapse
Affiliation(s)
- Jesus S Neyra
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Silvia Medrano
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Alexandre De Goes Martini
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Maria Luisa S Sequeira-Lopez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - R Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| |
Collapse
|
6
|
Broeker KAE, Schrankl J, Fuchs MAA, Kurtz A. Flexible and multifaceted: the plasticity of renin-expressing cells. Pflugers Arch 2022; 474:799-812. [PMID: 35511367 PMCID: PMC9338909 DOI: 10.1007/s00424-022-02694-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
The protease renin, the key enzyme of the renin–angiotensin–aldosterone system, is mainly produced and secreted by juxtaglomerular cells in the kidney, which are located in the walls of the afferent arterioles at their entrance into the glomeruli. When the body’s demand for renin rises, the renin production capacity of the kidneys commonly increases by induction of renin expression in vascular smooth muscle cells and in extraglomerular mesangial cells. These cells undergo a reversible metaplastic cellular transformation in order to produce renin. Juxtaglomerular cells of the renin lineage have also been described to migrate into the glomerulus and differentiate into podocytes, epithelial cells or mesangial cells to restore damaged cells in states of glomerular disease. More recently, it could be shown that renin cells can also undergo an endocrine and metaplastic switch to erythropoietin-producing cells. This review aims to describe the high degree of plasticity of renin-producing cells of the kidneys and to analyze the underlying mechanisms.
Collapse
Affiliation(s)
- Katharina A E Broeker
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany.
| | - Julia Schrankl
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany
| | - Michaela A A Fuchs
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Universitätsstraβe 31, D-93053 , Regensburg, Germany
| |
Collapse
|
7
|
Watanabe H, Martini AG, Brown EA, Liang X, Medrano S, Goto S, Narita I, Arend LJ, Sequeira-Lopez MLS, Gomez RA. Inhibition of the renin-angiotensin system causes concentric hypertrophy of renal arterioles in mice and humans. JCI Insight 2021; 6:e154337. [PMID: 34762601 PMCID: PMC8783690 DOI: 10.1172/jci.insight.154337] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Inhibitors of the renin-angiotensin system (RAS) are widely used to treat hypertension. Using mice harboring fluorescent cell lineage tracers, single-cell RNA-Seq, and long-term inhibition of RAS in both mice and humans, we found that deletion of renin or inhibition of the RAS leads to concentric thickening of the intrarenal arteries and arterioles. This severe disease was caused by the multiclonal expansion and transformation of renin cells from a classical endocrine phenotype to a matrix-secretory phenotype: the cells surrounded the vessel walls and induced the accumulation of adjacent smooth muscle cells and extracellular matrix, resulting in blood flow obstruction, focal ischemia, and fibrosis. Ablation of the renin cells via conditional deletion of β1 integrin prevented arteriolar hypertrophy, indicating that renin cells are responsible for vascular disease. Given these findings, prospective morphological studies in humans are necessary to determine the extent of renal vascular damage caused by the widespread use of inhibitors of the RAS.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Alexandre G. Martini
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Evan A. Brown
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Xiuyin Liang
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Silvia Medrano
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Lois J. Arend
- Department of Pathology, Johns Hopkins University and Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Maria Luisa S. Sequeira-Lopez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - R. Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Cwiek A, Suzuki M, deRonde K, Conaway M, Bennett KM, El Dahr S, Reidy KJ, Charlton JR. Premature differentiation of nephron progenitor cell and dysregulation of gene pathways critical to kidney development in a model of preterm birth. Sci Rep 2021; 11:21667. [PMID: 34737344 PMCID: PMC8569166 DOI: 10.1038/s41598-021-00489-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
Preterm birth is a leading cause of neonatal morbidity. Survivors have a greater risk for kidney dysfunction and hypertension. Little is known about the molecular changes that occur in the kidney of individuals born preterm. Here, we demonstrate that mice delivered two days prior to full term gestation undergo premature cessation of nephrogenesis, resulting in a lower glomerular density. Kidneys from preterm and term groups exhibited differences in gene expression profiles at 20- and 27-days post-conception, including significant differences in the expression of fat-soluble vitamin-related genes. Kidneys of the preterm mice exhibited decreased proportions of endothelial cells and a lower expression of genes promoting angiogenesis compared to the term group. Kidneys from the preterm mice also had altered nephron progenitor subpopulations, early Six2 depletion, and altered Jag1 expression in the nephrogenic zone, consistent with premature differentiation of nephron progenitor cells. In conclusion, preterm birth alone was sufficient to shorten the duration of nephrogenesis and cause premature differentiation of nephron progenitor cells. These candidate genes and pathways may provide targets to improve kidney health in preterm infants.
Collapse
Affiliation(s)
- Aleksandra Cwiek
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA
- Cell & Developmental Biology Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Kimberly deRonde
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA
| | - Mark Conaway
- University of Virginia Health System, Charlottesville, VA, USA
- Division of Translational Research and Applied Statistics, Department of Public Health Sciences, University of Virginia School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Kevin M Bennett
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Samir El Dahr
- Department of Pediatrics, Tulane University School of Medicine and Children's Hospital of New Orleans, New Orleans, LA, USA
| | - Kimberly J Reidy
- Division of Nephrology, Department of Pediatrics, Children's Hospital at Montefiore, New York, NY, USA
| | - Jennifer R Charlton
- Division of Nephrology, Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA, 22903, USA.
| |
Collapse
|
9
|
Abstract
Renin cells are essential for survival perfected throughout evolution to ensure normal development and defend the organism against a variety of homeostatic threats. During embryonic and early postnatal life, they are progenitors that participate in the morphogenesis of the renal arterial tree. In adult life, they are capable of regenerating injured glomeruli, control blood pressure, fluid-electrolyte balance, tissue perfusion, and in turn, the delivery of oxygen and nutrients to cells. Throughout life, renin cell descendants retain the plasticity or memory to regain the renin phenotype when homeostasis is threatened. To perform all of these functions and maintain well-being, renin cells must regulate their identity and fate. Here, we review the major mechanisms that control the differentiation and fate of renin cells, the chromatin events that control the memory of the renin phenotype, and the major pathways that determine their plasticity. We also examine how chronic stimulation of renin cells alters their fate leading to the development of a severe and concentric hypertrophy of the intrarenal arteries and arterioles. Lastly, we provide examples of additional changes in renin cell fate that contribute to equally severe kidney disorders.
Collapse
Affiliation(s)
- Maria Luisa S. Sequeira-Lopez
- Departments of Pediatrics an Biology, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - R. Ariel Gomez
- Departments of Pediatrics an Biology, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
10
|
Vitamin D decreases silencer methylation to downregulate renin gene expression. Gene 2021; 786:145623. [PMID: 33798678 DOI: 10.1016/j.gene.2021.145623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023]
Abstract
Renin, encoded by REN, is an essential enzyme in the renin-angiotensin aldosterone system (RAAS) which is responsible for the maintenance of blood pressure homeostasis. Transcriptional regulation of REN has been linked to enhancer-promoter crosstalk, cAMP response element-binding protein (CREB), the active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and a less well-characterized intronic silencer element. We hypothesized that in addition to these, differential DNA methylation is linked to REN expression and influenced by 1,25(OH)2D3. REN expressing cells (HEK293) were used to elucidate the effect of 1,25(OH)2D3 on REN methylation and expression as quantified by methylation-sensitive qPCR and RT-qPCR, respectively. In vitro 1,25(OH)2D3 supplementation (10 nM) induced significant hypomethylation of the REN silencer (P < 0.050), which was linked to a significant reduction in REN expression (P < 0.010) but had no effect on enhancer methylation. In addition, 1,25(OH)2D3 increased VDR (P < 0.05), as well as TET1 (P < 0.05) expression, suggesting an association between 1,25(OH)2D3 and DNA methylation. Thus, it appears that the silencer element, which is controlled by DNA methylation and influenced by 1,25(OH)2D3, plays an essential role in regulating REN expression.
Collapse
|
11
|
Guessoum O, de Goes Martini A, Sequeira-Lopez MLS, Gomez RA. Deciphering the Identity of Renin Cells in Health and Disease. Trends Mol Med 2021; 27:280-292. [PMID: 33162328 PMCID: PMC7914220 DOI: 10.1016/j.molmed.2020.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/11/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Hypotension and changes in fluid-electrolyte balance pose immediate threats to survival. Juxtaglomerular cells respond to such threats by increasing the synthesis and secretion of renin. In addition, smooth muscle cells (SMCs) along the renal arterioles transform into renin cells until homeostasis has been regained. However, chronic unrelenting stimulation of renin cells leads to severe kidney damage. Here, we discuss the origin, distribution, function, and plasticity of renin cells within the kidney and immune compartments and the consequences of distorting the renin program. Understanding how chronic stimulation of these cells in the context of hypertension may lead to vascular pathology will serve as a foundation for targeted molecular therapies.
Collapse
Affiliation(s)
- Omar Guessoum
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Pediatrics, University of Virginia, Charlottesville, VA, USA; Child Health Research Center, University of Virginia, Charlottesville, VA, USA
| | - Alexandre de Goes Martini
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA; Child Health Research Center, University of Virginia, Charlottesville, VA, USA
| | - Maria Luisa S Sequeira-Lopez
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Pediatrics, University of Virginia, Charlottesville, VA, USA; Child Health Research Center, University of Virginia, Charlottesville, VA, USA
| | - R Ariel Gomez
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Pediatrics, University of Virginia, Charlottesville, VA, USA; Child Health Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|