1
|
Yao G, Zhang X, Zhang T, Jin J, Qin Z, Ren X, Wang X, Zhang S, Yin X, Tian Z, Zhang Y, Zhang J, Wang Z, Zhang Q. The role of dysbiotic gut mycobiota in modulating risk for abdominal aortic aneurysm. Microbiol Spectr 2024; 12:e0177624. [PMID: 39315850 PMCID: PMC11537029 DOI: 10.1128/spectrum.01776-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a large-vessel disease with high mortality, characterized by complex pathogenic mechanisms. Current therapeutic approaches remain insufficient to halt its progression. Fungi are important members of the gut microbiota. However, their characteristic alterations and roles in AAA remain unclear. This study investigated the role of gut fungal communities in the development of AAA through metagenomic sequencing of fecal samples from 31 healthy individuals and 33 AAA patients. We observed significant dysbiosis in the gut mycobiomes of AAA patients compared to healthy individuals, characterized by an increase in pathogenic fungi like Candida species and a decrease in beneficial yeasts such as Saccharomyces cerevisiae. The changes in fungal populations correlated strongly with clinical indicators of AAA, highlighting their potential for diagnosing and predicting AAA progression. Furthermore, our animal experiments demonstrated that Saccharomyces cerevisiae significantly ameliorated pathological alterations in AAA mice, suggesting a protective role for specific yeast strains against AAA development. These findings underscore the significant impact of gut mycobiomes on AAA and suggest that modulating these fungal communities could offer a novel therapeutic approach. Our research advances the understanding of the influence of gut microbiome on vascular diseases and suggests potential non-surgical approaches for managing AAA. By elucidating the diagnostic and therapeutic potential of gut fungi in AAA, this study provided important clues for future clinical strategies and therapeutic developments in the field of vascular medicine. IMPORTANCE Our research highlights the crucial role of gut fungi in abdominal aortic aneurysm (AAA) development. By analyzing fecal samples from AAA patients and healthy controls, we discovered significant dysbiosis in gut fungal communities, characterized by an increase in harmful Candida species and a decrease in beneficial yeasts like Saccharomyces cerevisiae. This dysbiosis was correlated with the severity of AAA. Importantly, in animal experiments, supplementing with Saccharomyces cerevisiae significantly slowed AAA progression. These findings suggest that modulating gut fungi may offer a novel, non-surgical approach to the diagnosis and treatment of AAA, potentially reducing the need for invasive procedures.
Collapse
Affiliation(s)
- Guixiang Yao
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinjie Zhang
- Department of Biology, University College London, London, United Kingdom
| | - Tongxue Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiajia Jin
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zihan Qin
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyu Ren
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaowei Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shucui Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xianlun Yin
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhenyu Tian
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyong Zhang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhe Wang
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qunye Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Hou N, Zhou H, Li J, Xiong X, Deng H, Xiong S. Macrophage polarization and metabolic reprogramming in abdominal aortic aneurysm. Immun Inflamm Dis 2024; 12:e1268. [PMID: 39530309 PMCID: PMC11555488 DOI: 10.1002/iid3.1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a macrovascular disease with high morbidity and mortality in the elderly. The limitation of the current management is that most patients can only be followed up until the AAA diameter increases to a threshold, and surgical intervention is recommended. The development of preventive and curative drugs for AAA is urgently needed. Macrophage-mediated immune inflammation is one of the key pathological links in the occurrence and development of AAA. AIMS This review article aims to evaluate the impact of immunometabolism on macrophage biology and its role in AAA. METHODS We analyze publications focusing on the polarization and metabolic reprogramming in macrophages as well as their potential impact on AAA, and summarize the potential interventions that are currently available to regulate these processes. RESULTS The phenotypic and functional changes in macrophages are accompanied by significant alterations in metabolic pathways. The interaction between macrophage polarization and metabolic pathways significantly influences the progression of AAA. CONCLUSION Macrophage polarization is a manifestation of the gross dichotomy of macrophage function into pro-inflammatory killing and tissue repair, that is, classically activated M1 macrophages and alternatively activated M2 macrophages. Macrophage functions are closely linked to metabolic changes, and the emerging field of immunometabolism is providing unique insights into the role of macrophages in AAA. It is essential to further investigate the precise metabolic changes and their functional consequences in AAA-associated macrophages.
Collapse
Affiliation(s)
- Ningxin Hou
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongmin Zhou
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jun Li
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hongping Deng
- Department of Vascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Sizheng Xiong
- Department of Vascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
3
|
Li J, Liu Y, Wei Z, Cheng J, Wu Y. The occurrence and development of abdominal aortic aneurysm may be related to the energy metabolism disorder and local inflammation. Heliyon 2024; 10:e27912. [PMID: 38496900 PMCID: PMC10944252 DOI: 10.1016/j.heliyon.2024.e27912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Background The cellular mechanism of the formation of abdominal aortic aneurysm (AAA) is very complicated. A series of sophisticated events eventually led to significant pathological changes in the anatomical structure and function of the arterial wall and they are still not clear nowadays. Methods We pooled publicly available GEO datasets (GSE57691 and GSE47472) to get a comprehensive comparisons between normal tissues and AAA tissues to try to reveal molecular mechanism underlying the disease. Total 63 AAA samples and 18 normal tissue samples were compared and we fond that there were 784 significantly different gene (DEGs, threshold set as adjusted P < 0.05 and Log FC < 1) were identified. At the same time, we validate the possible signaling factor expression of AAA by comparing the normal tissue of the human body with the AAA tissue. Results In the pathway enrichment, we found that FOXP3 related signaling pathways, inflammation-related cytokine signaling pathways, interleukin-8-CXCR1 related signaling pathways and VEGFA and FGFR1 related signal pathway were significantly enrichmented. In Weighted gene co-expression network analysis (WGCNA), we found that the key hub genes were significantly related to lipid catabolic metabolism, which further verified the possibility that AAA might relate to energy metabolism disorders. Conclusion Based on the comprehensive analysis of previous high-throughput data and the validation of basic experiments, we found that the occurrence of AAA may be related to energy metabolism disorders and local inflammation.
Collapse
Affiliation(s)
- Jun Li
- Department of Endovascular and Vascular Surgery, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yang Liu
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhitao Wei
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jie Cheng
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yongfa Wu
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
4
|
Wang W, Liu R, Liao W, Ji L, Mei J, Su D. NOTCH2 gene mutation and gamma-secretase inhibitor in mediating the malignancy of ovarian cancer. Aging (Albany NY) 2023; 15:9743-9758. [PMID: 37728427 PMCID: PMC10564443 DOI: 10.18632/aging.205045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023]
Abstract
The carcinogenic mechanisms by which serous ovarian cancer (OC) occurs remain to be explored. Currently, we have conducted whole-exome sequencing (WES) and targeted deep sequencing to validate new molecular markers, including NOTCH2, that impede the progression of cell malignancy in ovarian cancer (OC). Following NOTCH2 P2113S mutation and NOTCH signaling pathway inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) treatment, the cell proliferation, migration, and invasion of A2780 and SKOV3 OC cells were examined in vitro. WES identified the P2113S point mutation in NOTCH2. The NOTCH2 mutation rate was 26.67 % among the 75 OC cases. The NOTCH2 P2113S mutation and DAPT treatment downregulated Notch-2 protein levels in the two OC cells. Functionally, interfering with NOTCH2 expression promoted the migrative, proliferative, and invasive capacities of OC cells. Western blotting further confirmed that NOTCH2-mediated tumorigenesis lies in reducing apoptosis through dysregulation of Bax/Bcl2, affecting repair of DNA damage through reducing DNA-PK and blocking the transcription factor Hes1 along with increasing immune regulator p65. Furthermore, the NOTCH2-mediated tumorigenesis was mostly reversed after NF-κB inhibitor Bay11-7082 treatment. These findings identified the NOTCH2 P2113S mutation in ovarian carcinogenesis, and NOTCH2 P2113S is a potential target in treating OC.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Ruiqian Liu
- Deyang People’s Hospital, Deyang 618099, Sichuan, China
| | - Wei Liao
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Landie Ji
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jie Mei
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610054, Sichuan, China
| | - Dan Su
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610054, Sichuan, China
| |
Collapse
|
5
|
Wang X, Chen S, Wang J, Chen Y, Guo Y, Wang Q, Liu Z, Zeng H, Xu C. Olfactomedin-4 deletion exacerbates DSS-induced colitis through a matrix metalloproteinase-9-dependent mechanism. Int J Biol Sci 2023; 19:2150-2166. [PMID: 37151883 PMCID: PMC10158032 DOI: 10.7150/ijbs.80441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Background and Aims: Olfactomedin-4 is a glycoprotein that is upregulated in inflamed gastrointestinal tissues. This study aimed to investigate the role and underlying mechanisms of olfactomedin-4 in ulcerative colitis. Methods: C57BL/6 mice and olfactomedin-4 knockout mice were fed dextran sulfate sodium in drinking water to establish a colitis model. An in vitro inflammation model was constructed in HCT116 and NCM460 cells stimulated with lipopolysaccharide. The expression of olfactomedin-4 was detected by Western blotting, immunohistochemistry staining, and qRT‒PCR. The differences in the severity of colitis between olfactomedin-4 knockout mice and wild-type mice were compared, and the underlying mechanisms were explored. Results: Olfactomedin-4 expression was significantly upregulated in colonic tissues of active ulcerative colitis patients and in cellular and mouse models of colitis. Compared with wild-type littermates, olfactomedin-4 knockout mice were more susceptible to dextran sulfate sodium-induced colitis and produced higher levels of proinflammatory cytokines and chemokines. In addition, olfactomedin-4 deficiency significantly promoted intestinal epithelial cell apoptosis and increased intestinal permeability, which was mediated by the p53 pathway. Moreover, olfactomedin-4 directly interacted with and negatively regulated matrix metalloproteinase-9. Inhibiting matrix metalloproteinase-9 significantly decreased colonic p53 expression and ameliorated experimental colitis in olfactomedin-4 knockout mice, while overexpression of matrix metalloproteinase-9 aggravated colitis. Further experiments showed that matrix metalloproteinase-9 regulated p53 through the Notch1 signaling pathway to promote ulcerative colitis progression. Conclusions: Olfactomedin-4 is significantly upregulated in ulcerative colitis and may protect against colitis by directly inhibiting matrix metalloproteinase-9 and further decreasing p53-mediated apoptosis via Notch1 signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
6
|
Dong CX, Malecki C, Robertson E, Hambly B, Jeremy R. Molecular Mechanisms in Genetic Aortopathy-Signaling Pathways and Potential Interventions. Int J Mol Sci 2023; 24:ijms24021795. [PMID: 36675309 PMCID: PMC9865322 DOI: 10.3390/ijms24021795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Thoracic aortic disease affects people of all ages and the majority of those aged <60 years have an underlying genetic cause. There is presently no effective medical therapy for thoracic aneurysm and surgery remains the principal intervention. Unlike abdominal aortic aneurysm, for which the inflammatory/atherosclerotic pathogenesis is well established, the mechanism of thoracic aneurysm is less understood. This paper examines the key cell signaling systems responsible for the growth and development of the aorta, homeostasis of endothelial and vascular smooth muscle cells and interactions between pathways. The evidence supporting a role for individual signaling pathways in pathogenesis of thoracic aortic aneurysm is examined and potential novel therapeutic approaches are reviewed. Several key signaling pathways, notably TGF-β, WNT, NOTCH, PI3K/AKT and ANGII contribute to growth, proliferation, cell phenotype and survival for both vascular smooth muscle and endothelial cells. There is crosstalk between pathways, and between vascular smooth muscle and endothelial cells, with both synergistic and antagonistic interactions. A common feature of the activation of each is response to injury or abnormal cell stress. Considerable experimental evidence supports a contribution of each of these pathways to aneurysm formation. Although human information is less, there is sufficient data to implicate each pathway in the pathogenesis of human thoracic aneurysm. As some pathways i.e., WNT and NOTCH, play key roles in tissue growth and organogenesis in early life, it is possible that dysregulation of these pathways results in an abnormal aortic architecture even in infancy, thereby setting the stage for aneurysm development in later life. Given the fine tuning of these signaling systems, functional polymorphisms in key signaling elements may set up a future risk of thoracic aneurysm. Multiple novel therapeutic agents have been developed, targeting cell signaling pathways, predominantly in cancer medicine. Future investigations addressing cell specific targeting, reduced toxicity and also less intense treatment effects may hold promise for effective new medical treatments of thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Charlotte Xue Dong
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Cassandra Malecki
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
| | - Elizabeth Robertson
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Brett Hambly
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Richmond Jeremy
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
- Correspondence:
| |
Collapse
|
7
|
Fan L, Liu H, Zhu G, Singh S, Yu Z, Wang S, Luo H, Liu S, Xu Y, Ge J, Jiang D, Pang J. Caspase-4/11 is critical for angiogenesis by repressing Notch1 signaling via inhibiting γ-secretase activity. Br J Pharmacol 2022; 179:4809-4828. [PMID: 35737588 DOI: 10.1111/bph.15904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Notch1 activation mediated by γ-secretase is critical for angiogenesis. GeneCards database predicted that Caspase-4 (CASP4, with murine ortholog CASP11) interacts with presenilin-1, the catalytic core of γ-secretase. Therefore, we investigated the role of CASP4/11 in angiogenesis. EXPERIMENTAL APPROACH In vivo, we studied the role of Casp11 in several angiogenesis mouse models using Casp11 wild-type and knockout mice. In vitro, we detected the effects of CASP4 on endothelial functions and Notch signaling by depleting or overexpressing CASP4 in human umbilical vein endothelial cells (HUVECs). The functional domain responsible for the binding of CASP4 and presenilin-1 was detected by mutagenesis and co-immunoprecipitation. KEY RESULTS Casp11 deficiency remarkably impaired adult angiogenesis in ischemic hindlimbs, melanoma xenografts and Matrigel plugs, but not the developmental angiogenesis of retina. Bone marrow transplantation revealed that the pro-angiogenic effect depended on CASP11 derived from non-hematopoietic cells. CASP4 expression was induced by inflammatory factors and CASP4 knockdown decreased cell viability, proliferation, migration and tube formation in HUVECs. Mechanistically, CASP4/11 deficiency increased Notch1 activation in vivo and in vitro, while CASP4 overexpression repressed Notch1 signaling in HUVECs. Moreover, CASP4 knockdown increased γ-secretase activity. γ-Secretase inhibitor DAPT restored the effects of CASP4 siRNA on Notch1 activation and angiogenesis in HUVECs. Notably, the catalytic activity of CASP4/11 was dispensable. Instead, CASP4 directly interacted with presenilin-1 through the caspase recruitment domain (CARD). CONCLUSIONS AND IMPLICATIONS These findings reveal a critical role of CASP4/11 in adult angiogenesis and make this molecule a promising therapeutic target for angiogenesis-related diseases in the future.
Collapse
Affiliation(s)
- Linlin Fan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Hao Liu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guofu Zhu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shekhar Singh
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ze Yu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shumin Wang
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Hong Luo
- Department of Medical Laboratory, College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Shiying Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junbo Ge
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Dongyang Jiang
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinjiang Pang
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
8
|
Gao N, Xiao L, Tao Z, Zheng Y, Wang W, Huang H. Preliminary Research of Main Components of Dll4/ Notch-VEGF Signaling Pathway Under High-Glucose Stimulation in vitro. Diabetes Metab Syndr Obes 2022; 15:1165-1171. [PMID: 35464260 PMCID: PMC9031991 DOI: 10.2147/dmso.s355004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/10/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To establish a high-glucose (HG) stressed cell model and study the expression of main components of the Dll4/Notch-VEGF signaling pathway under high-glucose stimulation. METHODS A model of HG-conditioned cells (human umbilical vein endothelial cells, HUVECs) was first established, and then the expression of Dll4, Notch1, Notch4 and VEGF in HG-stressed cells with or without Notch pathway blockage was analyzed by RT-PCR and Western blot. To observe cell migration, we also evaluated the Transwell assay. RESULTS HUVECs stimulated with 30mmol/L HG was selected as a cell model. RT-PCR and Western blot results showed that HG stimulation induced the expression of Dll4, Notch1 and VEGF and downregulated Notch4. The expressions were reversed after Notch pathway blockage; meanwhile, the blockage of Notch pathway inhibited cell migration under HG condition. CONCLUSION The function of Notch4 in responses to HG stimulation deserves further researching. Combination therapy by blocking Dll4/Notch and VEGF pathways may provide us with a new way for anti-neovascularization.
Collapse
Affiliation(s)
- Na Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Linghui Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Zheng Tao
- Eye College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Yanlin Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Wanjie Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Hui Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Correspondence: Hui Huang, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610072, Sichuan Province, People’s Republic of China, Tel +86-18782917219, Fax +86-28-87732407, Email
| |
Collapse
|
9
|
Xu X, Wu Y, Li H, Xie J, Cao D, Huang X. Notch pathway inhibitor DAPT accelerates in vitro proliferation and adipogenesis in infantile hemangioma stem cells. Oncol Lett 2021; 22:854. [PMID: 34777588 PMCID: PMC8581475 DOI: 10.3892/ol.2021.13115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/03/2021] [Indexed: 11/06/2022] Open
Abstract
The Notch signaling pathway is crucial in both adipogenesis and tumor development. It serves a vital role in the development and stability of blood vessels and may be involved in the proliferative phase of infantile hemangiomas, which express various related receptors. Therefore, it was hypothesized that the Notch signaling pathway inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor, might help accelerate the regression of infantile hemangiomas. The present in vitro study evaluated whether inhibition of the Notch signaling pathway using DAPT could alter adipogenesis in hemangioma stem cells (HemSCs) derived from infantile hemangioma (IH) specimens. A total of 20 infants (age, ≤6 months) with hemangiomas who had not yet received any treatment were selected, and their discarded hemangioma tissues were obtained. HemSCs were isolated from the fresh, sterile IH specimens and treated with DAPT. Reverse transcription-quantitative PCR and western blotting were used to demonstrate the inhibition of the Notch signaling pathway by DAPT. A proliferation assay (Cell Counting Kit-8), oil red O staining, flow cytometry and a transwell assay were used to detect proliferation, adipogenesis, apoptosis and migration of HemSCs. Treatment with DAPT upregulated the expression levels of CCAAT/enhancer-binding protein (C/EBP) α, C/EBPβ, peroxisome proliferator-activated receptor-γ, adiponectin and insulin-like growth factor 1, and promoted the proliferation, apoptosis, migration and lipid accumulation in HemSCs in vitro. Targeting the Notch signaling pathway using DAPT may potentially accelerate the regression of infantile hemangiomas.
Collapse
Affiliation(s)
- Xing Xu
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Yao Wu
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Honghong Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Juan Xie
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Dongsheng Cao
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Xueying Huang
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230000, P.R. China
| |
Collapse
|
10
|
Sawada H, Lu HS, Daugherty A. Single-cell transcriptomics as a building block for determining mechanistic insight of abdominal aortic aneurysm formation. Cardiovasc Res 2021; 117:1243-1244. [PMID: 33723571 DOI: 10.1093/cvr/cvab083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, BBSRB, B251, 741 South Limestone Street, Lexington, KY 40536-0509, USA.,Saha Aortic Center, College of Medicine, University of Kentucky, BBSRB, B251, 741 South Limestone Street, Lexington, KY 40536-0509, USA.,Department of Physiology, College of Medicine, University of Kentucky, BBSRB, B251, 741 South Limestone Street, Lexington, KY 40536-0509, USA
| | - Hong S Lu
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, BBSRB, B251, 741 South Limestone Street, Lexington, KY 40536-0509, USA.,Saha Aortic Center, College of Medicine, University of Kentucky, BBSRB, B251, 741 South Limestone Street, Lexington, KY 40536-0509, USA.,Department of Physiology, College of Medicine, University of Kentucky, BBSRB, B251, 741 South Limestone Street, Lexington, KY 40536-0509, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, BBSRB, B251, 741 South Limestone Street, Lexington, KY 40536-0509, USA.,Saha Aortic Center, College of Medicine, University of Kentucky, BBSRB, B251, 741 South Limestone Street, Lexington, KY 40536-0509, USA.,Department of Physiology, College of Medicine, University of Kentucky, BBSRB, B251, 741 South Limestone Street, Lexington, KY 40536-0509, USA
| |
Collapse
|