1
|
Bai R, Liang B, Guo Y, Liu W, Wen Z, Wang Z, Zhang Y, Du J, Song Y, Yu Z, Ma X. ACE2 Inhibits Dermal Regeneration Through Ang II in Tissue Expansion. J Cosmet Dermatol 2025; 24:e16767. [PMID: 39829293 PMCID: PMC11744341 DOI: 10.1111/jocd.16767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Tissue expansion is a widely employed technique in reconstructive surgery aimed at addressing considerable skin defects. Nevertheless, matters like inadequate expansion capability and the potential for skin breakage due to the fragility of the expanded tissue present notable hurdles in enhancing skin regeneration during this process. Angiotensin-converting enzyme 2 (ACE2) is recognized for its essential role in facilitating tissue renewal and regeneration. However, its precise impact on skin renewal during tissue expansion remains underexplored. This study seeks to elucidate ACE2's contribution to skin regeneration, specifically examining its role in collagen synthesis. METHODS This study evaluated the expression and distribution of ACE2 in expanded skin using samples derived from both rats and human patients. Additionally, we investigated ACE2 expression in stretched keratinocytes in vitro. ACE2 knockout keratinocytes were transfected with small interfering RNA (siRNA) and cocultured with fibroblasts to observe fibroblast proliferation and migration. MLN-4760 was utilized to inhibit the ACE2 enzymatic activity. Additionally, we analyzed parameters such as the size of expanded skin, dermal thickness, and the levels of collagen I (COL I), collagen III (COL III), and transforming growth factor β (TGF-β) to elucidate the role of ACE2 in the context of expanded skin. RESULTS The thinning of the expanded dermis was linked with elevated ACE2 expression. Enzymatic activity and ACE2 expression were both increased by mechanical stress. Additionally, ACE2 utilized Ang II to activate the migration and proliferation of human dermal fibroblasts. In vivo, the ACE2 inhibitor MLN-4760 promoted skin regeneration and reduced dermal thinning by elevating COL I, COL III, and TGF-β during expansion. CONCLUSIONS This finding suggest that mechanical stretch increases ACE2 expression, which in turn promotes the regeneration of expanded skin. The basis for using ACE2 in clinical settings to increase tissue expansion efficacy is provided by this work.
Collapse
Affiliation(s)
- Ruoxue Bai
- Department of Plastic and Reconstructive SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Baoyan Liang
- Department of Plastic and Reconstructive SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Yaotao Guo
- Department of Plastic and Reconstructive SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Wei Liu
- Department of Plastic and Reconstructive SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Zhuoyue Wen
- Department of Plastic and Reconstructive SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Zhantong Wang
- Xijing 986 Hospital DepartmentFourth Military Medical UniversityXi'anShaanxiChina
| | - Yu Zhang
- Department of Plastic and Reconstructive SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Jing Du
- Key Laboratory of Aerospace Medicine of Ministry of EducationSchool of Aerospace Medicine, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Yajuan Song
- Department of Plastic and Reconstructive SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Zhou Yu
- Department of Plastic and Reconstructive SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Xianjie Ma
- Department of Plastic and Reconstructive SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
2
|
Yao X, Cao X, Chen L, Liao W. Research Progress of Food-Derived Antihypertensive Peptides in Regulating the Key Factors of the Renin-Angiotensin System. Nutrients 2024; 17:97. [PMID: 39796531 PMCID: PMC11722916 DOI: 10.3390/nu17010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Food protein-derived antihypertensive peptides have attracted substantial attention as a safer alternative for drugs. The regulation of the renin-angiotensin system (RAS) is an essential aspect underlying the mechanisms of antihypertensive peptides. Most of the identified antihypertensive peptides exhibit the angiotensin-converting enzyme (ACE) inhibitory effect. In addition, artificial intelligence has improved the efficiency of ACE inhibitory peptide identifications. Moreover, the inhibition of renin and blockade or down-regulation of angiotensin type I receptor (AT1R) have also been demonstrated to be effective intervention strategies. With the identification of the ACE2/Ang (1-7)/MasR axis, activation or up-regulation of angiotensin-converting enzyme 2 (ACE2) has also emerged as a new intervention pathway. This review summarizes the research progress of antihypertensive peptides in intervening with hypertension from the perspective of their properties, sources, and key factors. The objective of this review is to provide theoretical references for the development of antihypertensive peptides and the explorations of the molecular mechanisms.
Collapse
Affiliation(s)
- Xinyu Yao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Y.); (X.C.)
| | - Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Y.); (X.C.)
| | - Liang Chen
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China;
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Y.); (X.C.)
| |
Collapse
|
3
|
Lin X, Zhuang Y, Gao F. ACE2 Alleviates Endoplasmic Reticulum Stress and Protects against Pyroptosis by Regulating Ang1-7/Mas in Ventilator-Induced Lung Injury. FRONT BIOSCI-LANDMRK 2024; 29:334. [PMID: 39344337 DOI: 10.31083/j.fbl2909334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 02/04/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is a consequence of inflammation and increased alveolar-capillary membrane permeability due to alveolar hyperdistention or elevated intrapulmonary pressure, but the precise mechanisms remain unclear. The aim of the study was to analyze the mechanism by which angiotensin converting enzyme 2 (ACE2) alleviates endoplasmic reticulum stress (ERS) and protects alveolar cells from pyroptosis in VILI by regulating angiotensin (Ang)1-7/Mas. METHODS VILI was induced in mice by mechanical ventilation by regulating the tidal volume. The alveolar cell line, A549, mimics VILI in vitro by cyclic stretch (CS). Ang (1-7) (100 nmol/L) was added to the medium. ERS was induced in cells by stimulating with tunicamycin (TM, 2 μg/mL). ERS was inhibited by tracheal instillation of 4-phenylbutyric acid (4-PBA) (1 mg/kg). ACE2's enzymatic function was activated or inhibited by subcutaneous injection of resorcinolnaphthalein (RES, 20 μg/kg) or MLN-4760 (20 μg/kg). pGLV-EF1a-GFP-ACE2 was instilled into the trachea to increase the protein expression of ACE2. The Ang (1-7) receptor, Mas, was antagonized by injecting A779 subcutaneously (80 μg/kg). RESULTS ACE2 protein levels decreased after modeling. Ang (1-7) level was decreased and Ang II was accumulated. ERS was significantly induced in VILI mice, and pyroptosis was observed in cells. When ERS was inhibited, pyroptosis under the VILI condition was significantly inhibited. Ang (1-7) alleviated ERS and pyroptosis under CS. When ERS was continuously activated, the function of Ang (1-7) in inhibiting pyroptosis was blocked. Resorcinolnaphthalein (RES) effectively promoted Ang II conversion, alleviated the Ang (1-7) level in VILI, ameliorated lung injury, and inhibited ERS and cell pyroptosis. Inhibiting ACE2's function in VILI hindered the production of Ang (1-7), promoted the accumulation of Ang II, and exacerbated ERS and pyroptosis, along with lung injury. The Mas antagonist significantly blocked the inhibitory effects of ACE2 on ERS and pyroptosis in VILI. CONCLUSIONS Reduced ACE2 expression in VILI is involved in ERS and pyroptosis-related injury. ACE2 can alleviate ERS in alveolar cells by catalyzing the production of Ang (1-7), thus inhibiting pyroptosis in VILI.
Collapse
Affiliation(s)
- Xingsheng Lin
- Department of Intensive Care Unit, Fuzhou University Affiliated Provincial Hospital, 350001 Fuzhou, Fujian, China
| | - Yingfeng Zhuang
- Department of Intensive Care Unit, Fuzhou University Affiliated Provincial Hospital, 350001 Fuzhou, Fujian, China
| | - Fengying Gao
- Department of Pulmonary Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071 Shanghai, China
| |
Collapse
|
4
|
Li Q, Lu H, Ruan Y, Geng Y, Zhao Z, Liu Y, Feng L, Guo W. Andrographolide suppresses SARS-CoV-2 infection by downregulating ACE2 expression: A mechanistic study. Antivir Ther 2024; 29:13596535241259952. [PMID: 38873947 DOI: 10.1177/13596535241259952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the receptor that enables SARS-CoV-2 to invade host cells. Previous studies have reported that reducing ACE2 expression may have an anti-SARS-CoV-2 effect. In this study, we constructed a pGL4.10-F2-ACE2 vector with double luciferase genes (firefly and Renilla luciferase) under the control of the ACE2 promoter and used it to screen compounds from Chinese traditional medicinal herbs (CTMHs) that can inhibit ACE2 transcription in human cells. We transfected HEK293T cells with pGL4.10-F2-ACE2 and treated them with CTMH compounds and then measured fluorescence to evaluate the indirect inhibition of ACE2 transcription. Out of 37 compounds tested, andrographolide demonstrated a dose-dependent inhibition of ACE2 transcription. We further confirmed by RT-qPCR and Western blot assays that andrographolide also reduced ACE2 expression in BEAS-2B cells in a dose-dependent manner. Moreover, pseudovirus infection assays in BEAS-2B cells demonstrated that andrographolide can inhibit SARS-CoV-2 infection in a dose-dependent manner. These results suggest that andrographolide has potential anti-SARS-CoV-2 activity and could be a candidate drug for COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Qing Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Donguan, China
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongmei Lu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Donguan, China
| | - Yongdui Ruan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Donguan, China
| | - Yuxuan Geng
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zuguo Zhao
- School of Basic Medicine, Guangdong Medical University, Donguan, China
| | - Ying Liu
- Department of Pharmacy, DongGuan SongShan Lake Tung Wah Hospital, DongGuan, China
| | - Long Feng
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wentao Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Donguan, China
- School of Basic Medicine, Guangdong Medical University, Donguan, China
| |
Collapse
|
5
|
Mei X, Mell B, Aryal S, Manandhar I, Tummala R, Zubcevic J, Lai K, Yang T, Li Q, Yeoh BS, Joe B. Genetically engineered Lactobacillus paracasei rescues colonic angiotensin converting enzyme 2 (ACE2) and attenuates hypertension in female Ace2 knock out rats. Pharmacol Res 2023; 196:106920. [PMID: 37716548 PMCID: PMC10976180 DOI: 10.1016/j.phrs.2023.106920] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Engineered gut microbiota represents a new frontier in medicine, in part serving as a vehicle for the delivery of therapeutic biologics to treat a range of host conditions. The gut microbiota plays a significant role in blood pressure regulation; thus, manipulation of gut microbiota is a promising avenue for hypertension treatment. In this study, we tested the potential of Lactobacillus paracasei, genetically engineered to produce and deliver human angiotensin converting enzyme 2 (Lacto-hACE2), to regulate blood pressure in a rat model of hypertension with genetic ablation of endogenous Ace2 (Ace2-/- and Ace2-/y). Our findings reveal a sex-specific reduction in blood pressure in female (Ace2-/-) but not male (Ace2-/y) rats following colonization with the Lacto-hACE2. This beneficial effect of lowering blood pressure was aligned with a specific reduction in colonic angiotensin II, but not renal angiotensin II, suggesting the importance of colonic Ace2 in the regulation of blood pressure. We conclude that this approach of targeting the colon with engineered bacteria for delivery of ACE2 represents a promising new paradigm in the development of antihypertensive therapeutics.
Collapse
Affiliation(s)
- Xue Mei
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Blair Mell
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Sachin Aryal
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ishan Manandhar
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ramakumar Tummala
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Jasenka Zubcevic
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Khanh Lai
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Tao Yang
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Beng San Yeoh
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
6
|
Yeh CL, Wu JM, Chen KY, Wu MH, Yang PJ, Lee PC, Chen PD, Kuo TC, Yeh SL, Lin MT. Potential therapeutic implications of calcitriol administration and weight reduction on CD4 T cell dysregulation and renin angiotensin system-associated acute lung injury in septic obese mice. Biomed Pharmacother 2023; 165:115127. [PMID: 37423172 DOI: 10.1016/j.biopha.2023.115127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023] Open
Abstract
This study investigated the effects of weight reduction and/or calcitriol administration on regulating CD4 T cell subsets and renin-angiotensin system (RAS)-associated acute lung injury (ALI) in obese mice with sepsis. Half of the mice were fed a high-fat diet for 16 weeks, half of them had high-fat diet for 12 weeks then were transferred to a low-energy diet for 4 weeks. After feeding the respective diets, cecal ligation and puncture (CLP) were performed to induce sepsis. There were four sepsis groups: OSS group, obese mice injected with saline; OSD group, obese mice given calcitriol; WSS group, mice with weight reduction and saline; WSD group, mice with weight reduction and calcitriol. Mice were sacrificed after CLP. The findings showed that CD4 T subsets distribution did not differ among the experimental groups. Calcitriol-treated groups had higher RAS-associated AT2R, MasR, ACE2, and angiopoietin 1-7 (Ang(1-7)) levels in the lungs. Also, higher tight junction proteins were noted 12 h after CLP. At 24 h post-CLP, weight reduction and/or calcitriol treatment reduced plasma inflammatory mediator production. Calcitriol-treated groups had higher CD4/CD8, T helper (Th)1/Th2 and lower Th17/regulatory T (Treg) ratios than the groups without calcitriol. In the lungs, calcitriol-treated groups had lower AT1R levels, whereas the RAS anti-inflammatory protein levels were higher than those groups without calcitriol. Lower injury scores were also noted at this time point. These findings suggested weight reduction decreased systemic inflammation. However, calcitriol administration produced a more-balanced Th/Treg distribution, upregulated the RAS anti-inflammatory pathway, and attenuated ALI in septic obese mice.
Collapse
Affiliation(s)
- Chiu-Li Yeh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Kuen-Yuan Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ming-Hsun Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Po-Jen Yang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Po-Da Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ting-Chun Kuo
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sung-Ling Yeh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
7
|
Azouz AA, Abdel-Rahman DM, Messiha BAS. Balancing renal Ang-II/Ang-(1-7) by xanthenone; an ACE2 activator; contributes to the attenuation of Ang-II/p38 MAPK/NF-κB p65 and Bax/caspase-3 pathways in amphotericin B-induced nephrotoxicity in rats. Toxicol Mech Methods 2023:1-11. [PMID: 36747322 DOI: 10.1080/15376516.2023.2177218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite the great importance of amphotericin B for the management of life-threatening systemic fungal infections, its nephrotoxic effect restricts its repeated administration. This study was designed to examine the prospective modulatory effects of xanthenone, an ACE2 activator, against amphotericin B nephrotoxicity. Male Wistar rats were allocated into four groups; control (1st), Xanthenone (2nd), Amphotericin B (3rd), and Xanthenone + Amphotericin B (4th). The second and fourth groups received xanthenone (2 mg/kg; s.c.) daily for 14 consecutive days. Amphotericin B (18.5 mg/kg; i.p.) was administered to the third and fourth groups daily starting from day 8. After 2 weeks, samples were withdrawn for analysis. The histopathological findings, molecular and biochemical markers showed that amphotericin B caused marked renal injury. Pretreatment with xanthenone ameliorated amphotericin B-induced deterioration in kidney function biomarkers (creatinine, urea, cystatin C, KIM-1) and guarded against the disturbance of serum electrolytes (Na+, K+, Mg2+) due to amphotericin B-induced tubular dysfunction. Besides, the ACE2 activator xanthenone-balanced renal Ang-II/Ang-(1-7), and so the inflammatory signaling p38 MAPK/NF-κB p65 and its downstream inflammatory cytokines (TNF-α, IL-6) were attenuated. Meanwhile, the anti-oxidant signaling Nrf2/HO-1 and glutathione content were preserved, but the lipid peroxidation marker MDA was declined. These regulatory effects of xanthenone eventually enhanced Bcl-2 (anti-apoptotic), but reduced Bax (pro-apoptotic) and cleaved caspase-3 (apoptotic executioner) protein expressions. Collectively, the regulatory effects of xanthenone on renal Ang-II/Ang-(1-7) could at least partially contribute to the mitigation of amphotericin B nephrotoxicity by attenuating inflammatory signaling, oxidative stress, and apoptosis, thus improving the tolerability to amphotericin B.
Collapse
Affiliation(s)
- Amany A Azouz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Doaa M Abdel-Rahman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
8
|
Countering the classical renin-angiotensin system. Clin Sci (Lond) 2021; 135:2619-2623. [PMID: 34878506 DOI: 10.1042/cs20211043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
It is well-established that Ang-(1-7) counteracts the effects of Ang II in the periphery, while stimulating vasopressin release and mimicking the activity of Ang II in the brain, through interactions with various receptors. The rapid metabolic inactivation of Ang-(1-7) has proven to be a limitation to therapeutic administration of the peptide. To circumvent this problem, Alves et al. (Clinical Science (2021) 135(18), https://doi.org/10.1042/CS20210599) developed a new transgenic rat model that overexpresses an Ang-(1-7)-producing fusion protein. In this commentary, we discuss potential concerns with this model while also highlighting advances that can ensue from this significant technical feat.
Collapse
|
9
|
Cooper SL, Boyle E, Jefferson SR, Heslop CRA, Mohan P, Mohanraj GGJ, Sidow HA, Tan RCP, Hill SJ, Woolard J. Role of the Renin-Angiotensin-Aldosterone and Kinin-Kallikrein Systems in the Cardiovascular Complications of COVID-19 and Long COVID. Int J Mol Sci 2021; 22:8255. [PMID: 34361021 PMCID: PMC8347967 DOI: 10.3390/ijms22158255] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe and life-threatening symptoms. Although COVID-19 has a respiratory focus, there are major cardiovascular complications (CVCs) associated with infection. The reported CVCs include myocarditis, heart failure, arrhythmias, thromboembolism and blood pressure abnormalities. These occur, in part, because of dysregulation of the Renin-Angiotensin-Aldosterone System (RAAS) and Kinin-Kallikrein System (KKS). A major route by which SARS-CoV-2 gains cellular entry is via the docking of the viral spike (S) protein to the membrane-bound angiotensin converting enzyme 2 (ACE2). The roles of ACE2 within the cardiovascular and immune systems are vital to ensure homeostasis. The key routes for the development of CVCs and the recently described long COVID have been hypothesised as the direct consequences of the viral S protein/ACE2 axis, downregulation of ACE2 and the resulting damage inflicted by the immune response. Here, we review the impact of COVID-19 on the cardiovascular system, the mechanisms by which dysregulation of the RAAS and KKS can occur following virus infection and the future implications for pharmacological therapies.
Collapse
Affiliation(s)
- Samantha L. Cooper
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Eleanor Boyle
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Sophie R. Jefferson
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Calum R. A. Heslop
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Pirathini Mohan
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Gearry G. J. Mohanraj
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Hamza A. Sidow
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Rory C. P. Tan
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
10
|
Abstract
Recently, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has spread around the world and is receiving worldwide attention. Approximately 20% of infected patients are suffering from severe disease of multiple systems and in danger of death, while the ocular complications of SARS-CoV-2-infected patients have not been reported generally. Herein, we focus on two major receptors of SARS-CoV-2, ACE2 and CD147 (BSG), in human ocular cells, and interpret the potential roles of coronaviruses in human ocular tissues and diseases.
Collapse
Affiliation(s)
- Yan-Ping Li
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing 100730 China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing 100730 China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing 100730 China.
| |
Collapse
|
11
|
ACE2, a multifunctional protein - from cardiovascular regulation to COVID-19. Clin Sci (Lond) 2020; 134:3229-3232. [PMID: 33305790 DOI: 10.1042/cs20201493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/02/2023]
Abstract
This Editorial, written by Guest Editors Professor Michael Bader, Professor Anthony J. Turner and Dr Natalia Alenina, proudly introduces the Clinical Science-themed collection on angiotensin-converting enzyme 2 (ACE2), a multifunctional protein - from cardiovascular regulation to coronavirus disease 2019 (COVID-19).
Collapse
|