1
|
A Yehia FAZ, Abbas HA, Ibrahim TM, Mansour B, Awan ZA, Al-Rabia MW, Abdulaal WH, Zeyadi MA, Okbazghi SZ, Ibrahim TS, Hegazy WAH, Gomaa SE. Celastrol boosts fluconazole efficacy against vaginal candidiasis: in vitro and in vivo evidence. AMB Express 2025; 15:18. [PMID: 39881021 PMCID: PMC11780038 DOI: 10.1186/s13568-025-01824-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/12/2025] [Indexed: 01/31/2025] Open
Abstract
Candida albicans is a commensal fungus that naturally inhabits the vagina. However, overgrowth of C. albicans can result in vulvovaginal candidiasis (VVC), one of the most prevalent fungal infections affecting women. The rapid emergence of azole resistance in C. albicans, in addition to the limited available antifungal agents, complicates the treatment and emphasizes the urgent need for novel therapeutic options. Efflux-mediated azole resistance is a common resistance mechanism in fluconazole (FLZ)-resistant C. albicans. Combination therapy using natural compounds is a potential approach that can restore fluconazole's antifungal activity in azole-resistant isolates via efflux pump inhibition. This study aimed to evaluate the ability of celastrol, a natural triterpene, to retrieve FLZ antifungal activity against azole-resistant C. albicans in vitro and in vivo. Celastrol did not exhibit antifungal activity against the tested clinical isolates; however, the sub-MIC of celastrol inhibited rhodamine 6G (R6G) efflux and increased R6G accumulation inside celastrol-treated C. albicans cells. Synergy was spotted between celastrol and FLZ via a checkerboard assay. Quantification of m-RNA levels of efflux-mediated azole resistance genes within azole-resistant C. albicans demonstrated CDR1 overexpression. Upon celastrol treatment, a significant decline in ABC transporters transcript levels were detected. Moreover, molecular docking demonstrated that celastrol is a potential ABC efflux transporters blocker that successfully fits into target binding pockets. A negligible hemolytic effect of celastrol against human erythrocytes was observed. In the in vivo model of VVC, the combination of FLZ and celastrol in vaginal gel revealed a drastic reduction in the fungal burden with apparently normal vaginal tissue. Celastrol promising in vitro and in vivo findings strengthen its future use for the treatment of azole-resistant C. albicans.
Collapse
Affiliation(s)
- Fatma Al-Zahraa A Yehia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Tarek M Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Basem Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Belqas, 11152, Egypt
- Department of Pharmaceutical Chemistry, Kut University College, Al Kut, Wasit, 52001, Iraq
| | - Zuhier A Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed W Al-Rabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wesam H Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mustafa Adnan Zeyadi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Solomon Z Okbazghi
- Global Analytical and Pharmaceutical Development, Alexion Pharmaceuticals, New Haven, Connecticut, 06510, USA
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
- Pharmacy Program, Department of Pharmaceutical Sciences, College of Health Sciences, 113, Muscat, Oman.
| | - Salwa E Gomaa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
Khoury DM, Ghaoui N, El Tayar E, Dagher R, El Hawa M, Rubeiz N, Abbas O, Kurban M. Topical statins as antifungals: a review. Int J Dermatol 2024; 63:747-753. [PMID: 38344878 DOI: 10.1111/ijd.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 05/25/2024]
Abstract
Cutaneous fungal infections affect millions around the world. However, severe, multi-resistant fungal infections are increasingly being reported over the past years. As a result of the high rate of resistance which urged for drug repurposing, statins were studied and found to have multiple pleiotropic effects, especially when combined with other already-existing drugs. An example of this is the synergism found between several typical antifungals and statins, such as antifungals Imidazole and Triazole with a wide range of statins shown in this review. The main mechanisms in which they exert an antifungal effect are ergosterol inhibition, protein prenylation, mitochondrial disruption, and morphogenesis/mating inhibition. This article discusses multiple in vitro studies that have proven the antifungal effect of systemic statins against many fungal species, whether used alone or in combination with other typical antifungals. However, as a result of the high rate of drug-drug interactions and the well-known side effects of systemic statins, topical statins have become of increasing interest. Furthermore, patients with dyslipidemia treated with systemic statins who have a new topical fungal infection could benefit from the antifungal effect of their statin. However, it is still not indicated to initiate systemic statins in patients with topical mycotic infections if they do not have another indication for statin use, which raises the interest in using topical statins for fungal infections. This article also tackles the different formulations that have been studied to enhance topical statins' efficacy, as well as the effect of different topical statins on distinct dermatologic fungal diseases.
Collapse
Affiliation(s)
- Dana M Khoury
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nohra Ghaoui
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Ruby Dagher
- American University of Beirut, Beirut, Lebanon
| | - Mariana El Hawa
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nelly Rubeiz
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
3
|
Gao L, Xia X, Gong X, Zhang H, Sun Y. In vitro interactions of proton pump inhibitors and azoles against pathogenic fungi. Front Cell Infect Microbiol 2024; 14:1296151. [PMID: 38304196 PMCID: PMC10831725 DOI: 10.3389/fcimb.2024.1296151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Introduction Azole resistance has been increasingly reported and become an issue for clinical managements of invasive mycoses. New strategy with combination therapy arises as a valuable and promising alternative option. The aim of the present study is to investigate the in vitro combinational effect of proton pump inhibitors (PPIs) and azoles against pathogenic fungi. Methods In vitro interactions of PPIs including omeprazole (OME), lansoprazole (LAN), pantoprazole (PAN), and rabeprazole (RAB), and commonly used azoles including itraconazole (ITC), posaconazole (POS), voriconazole (VRC) and fluconazole (FLC), were investigated via broth microdilution chequerboard procedure adapted from the CLSI M27-A3 and M38-A2. A total of 67 clinically isolated strains, namely 27 strains of Aspergillus spp., 16 strains of Candida spp., and 24 strains of dematiaceous fungi, were studied. C. parapsilosis (ATCC 22019) and A. flavus (ATCC 204304) was included to ensure quality control. Results PPIs individually did not exert any significant antifungal activity. The combination of OME with ITC, POS, or VRC showed synergism against 77.6%, 86.6%, and 4% strains of tested pathogenic fungi, respectively, while synergism of OME/FLC was observed in 50% strains of Candida spp. Synergism between PAN and ITC, POS, or VRC was observed against 47.8%, 77.6% and 1.5% strains of tested fungi, respectively, while synergism of PNA/FLC was observed in 50% strains of Candida spp. Synergism of LAN with ITC, POS, or VRC was observed against 86.6%, 86.6%, and 3% of tested strains, respectively, while synergism of LAN/FLC was observed in 31.3% strains of Candida spp. Synergy of the combination of RAB with ITC, POS, or VRC was observed against 25.4%, 64.2%, and 4.5% of tested strains, respectively, while synergism of RAB/FLC was observed in 12.5% of Candida spp.. Among PPIs, synergism was least observed between RAB and triazoles, while among triazoles, synergism was least observed between VRC and PPIs. Among species, synergy was much more frequently observed in Aspergillus spp. and dematiaceous fungi as compared to Candida spp. Antagonism between PPIs with ITC or VRC was occasionally observed in Aspergillus spp. and dematiaceous fungi. It is notable that PPIs combined with azoles showed synergy against azole resistant A. fumigatus, and resulted in category change of susceptibility of ITC and POS against Candida spp. Discussion The results suggested that PPIs combined with azoles has the potential to enhance the susceptibilities of azoles against multiple pathogenic fungi and could be a promising strategy to overcome azole resistance issues. However, further investigations are warranted to study the combinational efficacy in more isolates and more species, to investigate the underlying mechanism of interaction and to evaluate the potential for concomitant use of these agents in human.
Collapse
Affiliation(s)
- Lujuan Gao
- Department of Dermatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuqiong Xia
- Department of Dermatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Gong
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Heng Zhang
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
4
|
Banerjee A, Pata J, Chaptal V, Boumendjel A, Falson P, Prasad R. Structure, function, and inhibition of catalytically asymmetric ABC transporters: Lessons from the PDR subfamily. Drug Resist Updat 2023; 71:100992. [PMID: 37567064 DOI: 10.1016/j.drup.2023.100992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
ATP-binding cassette (ABC) superfamily comprises a large group of ubiquitous transmembrane proteins that play a crucial role in transporting a diverse spectrum of substrates across cellular membranes. They participate in a wide array of physiological and pathological processes including nutrient uptake, antigen presentation, toxin elimination, and drug resistance in cancer and microbial cells. ABC transporters couple ATP binding and hydrolysis to undergo conformational changes allowing substrate translocation. Within this superfamily, a set of ABC transporters has lost the capacity to hydrolyze ATP at one of their nucleotide-binding sites (NBS), called the non-catalytic NBS, whose importance became evident with extensive biochemistry carried out on yeast pleiotropic drug resistance (PDR) transporters. Recent single-particle cryogenic electron microscopy (cryo-EM) advances have further catapulted our understanding of the architecture of these pumps. We provide here a comprehensive overview of the structural and functional aspects of catalytically asymmetric ABC pumps with an emphasis on the PDR subfamily. Furthermore, given the increasing evidence of efflux-mediated antifungal resistance in clinical settings, we also discuss potential grounds to explore PDR transporters as therapeutic targets.
Collapse
Affiliation(s)
- Atanu Banerjee
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India.
| | - Jorgaq Pata
- Drug Resistance & Membrane Proteins group, CNRS-Lyon 1 University Laboratory 5086, IBCP, Lyon, France
| | - Vincent Chaptal
- Drug Resistance & Membrane Proteins group, CNRS-Lyon 1 University Laboratory 5086, IBCP, Lyon, France
| | | | - Pierre Falson
- Drug Resistance & Membrane Proteins group, CNRS-Lyon 1 University Laboratory 5086, IBCP, Lyon, France.
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India.
| |
Collapse
|
5
|
Rabaan AA, Sulaiman T, Al-Ahmed SH, Buhaliqah ZA, Buhaliqah AA, AlYuosof B, Alfaresi M, Al Fares MA, Alwarthan S, Alkathlan MS, Almaghrabi RS, Abuzaid AA, Altowaileb JA, Al Ibrahim M, AlSalman EM, Alsalman F, Alghounaim M, Bueid AS, Al-Omari A, Mohapatra RK. Potential Strategies to Control the Risk of Antifungal Resistance in Humans: A Comprehensive Review. Antibiotics (Basel) 2023; 12:antibiotics12030608. [PMID: 36978475 PMCID: PMC10045400 DOI: 10.3390/antibiotics12030608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/30/2023] Open
Abstract
Fungal infections are becoming one of the main causes of morbidity and mortality in people with weakened immune systems. Mycoses are becoming more common, despite greater knowledge and better treatment methods, due to the regular emergence of resistance to the antifungal medications used in clinical settings. Antifungal therapy is the mainstay of patient management for acute and chronic mycoses. However, the limited availability of antifungal drug classes limits the range of available treatments. Additionally, several drawbacks to treating mycoses include unfavourable side effects, a limited activity spectrum, a paucity of targets, and fungal resistance, all of which continue to be significant issues in developing antifungal drugs. The emergence of antifungal drug resistance has eliminated accessible drug classes as treatment choices, which significantly compromises the clinical management of fungal illnesses. In some situations, the emergence of strains resistant to many antifungal medications is a major concern. Although new medications have been developed to address this issue, antifungal drug resistance has grown more pronounced, particularly in patients who need long-term care or are undergoing antifungal prophylaxis. Moreover, the mechanisms that cause resistance must be well understood, including modifications in drug target affinities and abundances, along with biofilms and efflux pumps that diminish intracellular drug levels, to find novel antifungal drugs and drug targets. In this review, different classes of antifungal agents, and their resistance mechanisms, have been discussed. The latter part of the review focuses on the strategies by which we can overcome this serious issue of antifungal resistance in humans.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Zainab A Buhaliqah
- Department of Family Medicine, Primary Healthcare Center, Dammam 32433, Saudi Arabia
| | - Ali A Buhaliqah
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthina AlYuosof
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Zayed Military Hospital, Abu Dhabi 3740, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mohammed S Alkathlan
- Infectious Diseases Department, King Fahad Specialist Hospital, Buraydah 52382, Saudi Arabia
| | - Reem S Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Abdulmonem A Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Jaffar A Altowaileb
- Microbiology Laboratory, Laboratory Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Maha Al Ibrahim
- Microbiology Laboratory, Laboratory Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Eman M AlSalman
- Department of Family Medicine, Primary Health Care Centers, Qatif Health Network, Qatif 31911, Saudi Arabia
| | - Fatimah Alsalman
- Department of Emergency Medicine, Oyun City Hospital, Al-Ahsa 36312, Saudi Arabia
| | | | - Ahmed S Bueid
- Microbiology Laboratory, King Faisal General Hospital, Al-Ahsa 31982, Saudi Arabia
| | - Awad Al-Omari
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Research Center, Dr. Sulaiman Al Habib Medical Group, Riyadh 11372, Saudi Arabia
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| |
Collapse
|
6
|
Carradori S, Ammazzalorso A, De Filippis B, Şahin AF, Akdemir A, Orekhova A, Bonincontro G, Simonetti G. Azole-Based Compounds That Are Active against Candida Biofilm: In Vitro , In Vivo and In Silico Studies. Antibiotics (Basel) 2022; 11:antibiotics11101375. [PMID: 36290033 PMCID: PMC9598150 DOI: 10.3390/antibiotics11101375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Fungal pathogens, including Candida spp., Aspergillus spp. and dermatophytes, cause more than a billion human infections every year. A large library of imidazole- and triazole-based compounds were in vitro screened for their antifungal activity against C. albicans, C. glabrata, C. krusei, A. fumigatus and dermatophytes, such as Microsporum gypseum, Trichophyton rubrum and Trichophyton mentagrophytes. The imidazole carbamate 12 emerged as the most active compound, showing a valuable antifungal activity against C. glabrata (MIC 1−16 μg/mL) and C. krusei (MIC 4−24 μg/mL). No activity against A. fumigatus or the dermatophytes was observed among all the tested compounds. The compound 12 inhibited the formation of C. albicans, C. glabrata and C. krusei biofilms and reduced the mature Candida biofilm. In the Galleria mellonella larvae, 12 showed a significant reduction in the Candida infection, together with a lack of toxicity at the concentration used to activate its antifungal activity. Moreover, the in silico prediction of the putative targets revealed that the concurrent presence of the imidazole core, the carbamate and the p-chlorophenyl is important for providing a strong affinity for lanosterol 14α-demethylase (CgCYP51a1) and the fungal carbonic anhydrase (CgNce103), the S-enantiomer being more productive in these interactions.
Collapse
Affiliation(s)
- Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Alessandra Ammazzalorso
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Correspondence:
| | - Barbara De Filippis
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Ahmet Fatih Şahin
- Department of Drug Discovery and Development, Institute of Health Sciences, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Atilla Akdemir
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
- Department of Drug Discovery and Development, Institute of Health Sciences, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Anastasia Orekhova
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Graziana Bonincontro
- Department of Environmental Biology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Giovanna Simonetti
- Department of Environmental Biology, “Sapienza” University of Rome, 00185 Rome, Italy
| |
Collapse
|
7
|
Genomic landscape of the DHA1 family in Candida auris and mapping substrate repertoire of CauMdr1. Appl Microbiol Biotechnol 2022; 106:7085-7097. [PMID: 36184687 DOI: 10.1007/s00253-022-12189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
The last decade has witnessed the rise of an extremely threatening healthcare-associated multidrug-resistant non-albicans Candida (NAC) species, Candida auris. Since besides target alterations, efflux mechanisms contribute maximally to antifungal resistance, it is imperative to investigate their contributions in this pathogen. Of note, within the major facilitator superfamily (MFS) of efflux pumps, drug/H+ antiporter family 1 (DHA1) has been established as a predominant contributor towards xenobiotic efflux. Our study provides a complete landscape of DHA1 transporters encoded in the genome of C. auris. This study identifies 14 DHA1 transporters encoded in the genome of the pathogen. We also construct deletion and heterologous overexpression strains for the most important DHA1 drug transporter, viz., CauMdr1 to map the spectrum of its substrates. While the knockout strain did not show any significant changes in the resistance patterns against most of the tested substrates, the ortholog when overexpressed in a minimal background Saccharomyces cerevisiae strain, AD1-8u-, showed significant enhancement in the minimum inhibitory concentrations (MICs) against a large panel of antifungal molecules. Altogether, the present study provides a comprehensive template for investigating the role of DHA1 members of C. auris in antifungal resistance mechanisms. KEY POINTS: • Fourteen putative DHA1 transporters are encoded in the Candida auris genome. • Deletion of the CauMDR1 gene does not lead to major changes in drug resistance. • CauMdr1 recognizes and effluxes numerous xenobiotics, including prominent azoles.
Collapse
|
8
|
Mendoza SR, Liedke SC, de La Noval CR, da Silva Ferreira M, Gomes KX, Honorato L, Nimrichter L, Peralta JM, Guimarães AJ. In vitro and in vivo efficacies of Dectin-1-Fc(IgG)(s) fusion proteins against invasive fungal infections. Med Mycol 2022; 60:6648754. [PMID: 35867978 DOI: 10.1093/mmy/myac050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Fungal infections have increased in the last years, particularly associated to an increment in the number of immunocompromised individuals and the emergence of known or new resistant species, despite the difficulties in the often time-consuming diagnosis. The controversial efficacy of the currently available strategies for their clinical management, apart from their high toxicity and severe side effects, have renewed the interest in the research and development of new broad antifungal alternatives. These encompass vaccines and passive immunization strategies with monoclonal antibodies (mAbs), recognizing ubiquitous fungal targets, such as fungal cell wall β-1,3-glucan polysaccharides, which could be used in early therapeutic intervention without the need for the diagnosis at species-level. As additional alternatives, based on the Dectin-1 great affinity to β-1,3-glucan, our group developed broad antibody-like Dectin1-Fc(IgG)(s) from distinct subclasses (IgG2a and IgG2b) and compared their antifungal in vitro and passive immunizations in vivo performances. Dectin1-Fc(IgG2a) and Dectin1-Fc(IgG2b) demonstrated high affinity to laminarin and the fungal cell wall by ELISA, flow cytometry and microscopy. Both Dectin-1-Fc(IgG)(s) inhibited H. capsulatum and C. neoformans growth in a dose-dependent fashion. For C. albicans, such inhibitory effect was observed with concentrations as low as 0.098 and 0.049 µg/mL, respectively, which correlated with the impairment of the kinetics and lengths of germ tubes in comparison to controls. Previous opsonization with Dectin-1-Fc(IgG)(s) enhanced considerably the macrophage antifungal effector functions, increasing the fungi macrophages-interactions and significantly reducing the intraphagosome fungal survival, as lower CFUs were observed. The administration of both Dectin1-Fc(IgG)(s) reduced the fungal burden and mortality in murine histoplasmosis and candidiasis models, in accordance with previous evaluations in aspergillosis model. These results altogether strongly suggested that therapeutic interventions with Dectin-1-Fc(IgG)(s) fusion proteins could directly impact the innate immunity and disease outcome in favor of the host, by direct neutralization, opsonization, phagocytosis, and fungal elimination, providing interesting information on the potential of these new strategies for the control of invasive fungal infections.
Collapse
Affiliation(s)
- S R Mendoza
- Laboratório de Bioquímica e Imunologia das Micoses, Instituto Biomédico, Fluminense Federal University, Brazil.,Programa de Pós-Graduação em Imunologia e Inflamação, Federal University of Rio de Janeiro, Brazil
| | - S C Liedke
- Laboratório de Diagnóstico Imunológico e Molecular de Doenças Infecciosas e Parasitárias, Federal University of Rio de Janeiro, Brazil
| | - C R de La Noval
- Laboratório de Bioquímica e Imunologia das Micoses, Instituto Biomédico, Fluminense Federal University, Brazil.,Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Federal University of Rio de Janeiro, Brazil
| | - M da Silva Ferreira
- Laboratório de Bioquímica e Imunologia das Micoses, Instituto Biomédico, Fluminense Federal University, Brazil.,Programa de Pós-Graduação em Imunologia e Inflamação, Federal University of Rio de Janeiro, Brazil
| | - K X Gomes
- Laboratório de Bioquímica e Imunologia das Micoses, Instituto Biomédico, Fluminense Federal University, Brazil.,Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), RJ, Brazil
| | - L Honorato
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Federal University of Rio de Janeiro, Brazil
| | - L Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Federal University of Rio de Janeiro, Brazil.,Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), RJ, Brazil
| | - J M Peralta
- Laboratório de Diagnóstico Imunológico e Molecular de Doenças Infecciosas e Parasitárias, Federal University of Rio de Janeiro, Brazil
| | - A J Guimarães
- Laboratório de Bioquímica e Imunologia das Micoses, Instituto Biomédico, Fluminense Federal University, Brazil.,Programa de Pós-Graduação em Imunologia e Inflamação, Federal University of Rio de Janeiro, Brazil.,Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), RJ, Brazil.,Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Fluminense Federal University, Brazil
| |
Collapse
|
9
|
Zhen C, Lu H, Jiang Y. Novel Promising Antifungal Target Proteins for Conquering Invasive Fungal Infections. Front Microbiol 2022; 13:911322. [PMID: 35783432 PMCID: PMC9243655 DOI: 10.3389/fmicb.2022.911322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Invasive fungal infections (IFIs) pose a serious clinical problem, but the antifungal arsenal is limited and has many disadvantages, such as drug resistance and toxicity. Hence, there is an urgent need to develop antifungal compounds that target novel target proteins of pathogenic fungi for treating IFIs. This review provides a comprehensive summary of the biological functions of novel promising target proteins for treating IFIs in pathogenic fungi and their inhibitors. Inhibitors of inositol phosphoramide (IPC) synthases (such as Aureobasidin A, Khafrefungin, Galbonolide A, and Pleofungin A) have potent antifungal activities by inhibiting sphingolipid synthesis. Disrupting glycosylphosphatidylinositol (GPI) biosynthesis by Jawsamycin (an inhibitor of Spt14), M720 (an inhibitor of Mcd4), and APX001A (an inhibitor of Gwt1) is a promising strategy for treating IFIs. Turbinmicin is a natural-compound inhibitor of Sec14 and has extraordinary antifungal efficacy, broad-antifungal spectrum, low toxicity, and is a promising new compound for treating IFIs. CMLD013075 targets fungal heat shock protein 90 (Hsp90) and has remarkable antifungal efficacy. Olorofim, as an inhibitor of dihydrolactate dehydrogenase, is a breakthrough drug treatment for IFIs. These novel target proteins and their inhibitors may overcome the limitations of currently available antifungal drugs and improve patient outcomes in the treatment of IFIs.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Palmarumycin P3 reverses Mrr1-mediated azole resistance by blocking the efflux pump Mdr1. Antimicrob Agents Chemother 2022; 66:e0212621. [PMID: 35041505 DOI: 10.1128/aac.02126-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Palmarumycin P3 (PP3) reduces fluconazole-induced MDR1 transcription to reverse azole resistance in clinical Candida strains. Here, we demonstrated that PP3 restores the susceptibility of C. albicans strains with gain-of-function mutations in the transcription factor Mrr1 to several antifungal drugs. In addition, PP3 inhibits the efflux of Mdr1 substrates by C. albicans strains harbouring hyperactive MRR1 alleles. Molecular docking revealed that PP3 is a potential Mdr1 blocker that binds to the substrate-binding pocket of Mdr1.
Collapse
|
11
|
Abstract
In the present study, in vitro and in vivo interactions of TOR inhibitor AZD8055 and azoles, including itraconazole, voriconazole, posaconazole and fluconazole, against a variety of pathogenic fungi were investigated. A total of 69 isolates were studied via broth microdilution checkerboard technique, including 23 isolates of Aspergillus spp., 20 isolates of Candida spp., 9 isolates of Cryptococcus neoformans complex, and 17 isolates of Exophiala dermatitidis. The results revealed that AZD8055 individually did not exert any significant antifungal activity. However, synergistic effects between AZD8055 and itraconazole, voriconazole or posaconazole were observed in 23 (33%), 13 (19%) and 57 (83%) isolates, respectively, including azole-resistant A. fumigatus strains and Candida spp., potentiating the efficacy of azoles. The combination effect of AZD8055 and fluconazole was investigated against non-auris Candida spp. and C. neoformans complex. Synergism between AZD8055 and fluconazole was observed in six strains (60%) of Candida spp., resulting in reversion of fluconazole resistance. Synergistic combinations resulted in 4-fold to 256-fold reduction of effective MICs of AZD8055 and azoles. No antagonism was observed. In vivo effects of AZD8055-azole combinations were evaluated by survival assay in Galleria mellonella model infected with A. fumigatus strain AF002, E. dermatitidis strain BMU00038, C. auris strain 383, C. albicans strain R15, and C. neoformans complex strain Z2. AZD8055 acted synergistically with azoles and significantly increased larvae survival (P < 0.05). In summary, the results suggested that AZD8055 combined with azoles may help to enhance the antifungal susceptibilities of azoles against pathogenic fungi and had the potential to overcome azole resistance issues. IMPORTANCE Limited options of antifungals and the emergence of drug resistance in fungal pathogens has been a multifaceted clinical challenge. Combination therapy represents a valuable alternative to antifungal monotherapy. The target of rapamycin (TOR), a conserved serine/threonine kinase from yeast to humans, participates in a signaling pathway that governs cell growth and proliferation in response to nutrient availability, growth factors, and environmental stimuli. AZD8055 is an orally bioavailable, potent, and selective TOR kinase inhibitor that binds to the ATP binding cleft of TOR kinase and inhibits both TORC1 and TORC2. Synergism between AZD8055 and azoles suggested that the concomitant application of AZD8055 and azoles may help to enhance azole therapeutic efficacy and impede azole resistance. TOR inhibitor with fungal specific target is promising to be served as combination regimen with azoles.
Collapse
|
12
|
Du J, Ma W, Fan J, Liu X, Wang Y, Zhou X. The A756T Mutation of the ERG11 Gene Associated With Resistance to Itraconazole in Candida Krusei Isolated From Mycotic Mastitis of Cows. Front Vet Sci 2021; 8:634286. [PMID: 34458346 PMCID: PMC8385537 DOI: 10.3389/fvets.2021.634286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/14/2021] [Indexed: 01/11/2023] Open
Abstract
Candida krusei (C. krusei) has been recently recognized as an important pathogen involved in mycotic mastitis of cows. The phenotypic and molecular characteristics of 15 C. krusei clinical isolates collected from cows with clinical mastitis in three herds of Yinchuan, Ningxia, were identified by matrix-assisted laser desorption ionization–time of flight mass spectrometry. In addition to sequencing analysis, the ERG11 gene that encodes 14α-demethylases, the expression of the ERG11 gene, and efflux transporters ABC1 and ABC2 in itraconazole-susceptible (S), itraconazole-susceptible dose dependent (SDD), and itraconazole-resistant (R) C. krusei isolates was also quantified by a quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) assay. Sequencing analysis revealed three synonymous codon substitutions of the ERG11 gene including T939C, A756T, and T642C in these C. krusei clinical isolates. Among them, T642C and T939C mutations were detected in itraconazole-resistant and -susceptible C. krusei isolates, but the A756T substitution was found only in itraconazole-resistant isolates. Importantly, the expression of the ERG11 gene in itraconazole-resistant isolates was significantly higher compared with itraconazole-SDD and itraconazole-susceptible isolates (p = 0.052 and p = 0.012, respectively), as determined by the qRT-PCR assay. Interestingly, the expression of the ABC2 gene was also significantly higher in itraconazole-resistant isolates relative to the itraconazole-SDD and itraconazole-susceptible strains. Notably, the expression of ERG11 was positively associated with resistance to itraconazole (p = 0.4177 in SDD compared with S, p = 0.0107 in SDD with R, and p = 0.0035 in S with R, respectively). These data demonstrated that mutations of the ERG11 gene were involved in drug resistance in C. krusei. The A756T synonymous codon substitution of the ERG11 gene was correlated with an increased expression of drug-resistant genes including ERG11 and ABC2 in itraconazole-resistant C. krusei isolates examined in this study.
Collapse
Affiliation(s)
- Jun Du
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| | - Wenshuang Ma
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| | - Jiaqi Fan
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| | - Xiaoming Liu
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| | - Yujiong Wang
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| | - Xuezhang Zhou
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
13
|
Jamiu AT, Albertyn J, Sebolai OM, Pohl CH. Update on Candida krusei, a potential multidrug-resistant pathogen. Med Mycol 2021; 59:14-30. [PMID: 32400853 DOI: 10.1093/mmy/myaa031] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Although Candida albicans remains the main cause of candidiasis, in recent years a significant number of infections has been attributed to non-albicans Candida (NAC) species, including Candida krusei. This epidemiological change can be partly explained by the increased resistance of NAC species to antifungal drugs. C. krusei is a diploid, dimorphic ascomycetous yeast that inhabits the mucosal membrane of healthy individuals. However, this yeast can cause life-threatening infections in immunocompromised patients, with hematologic malignancy patients and those using prolonged azole prophylaxis being at higher risk. Fungal infections are usually treated with five major classes of antifungal agents which include azoles, echinocandins, polyenes, allylamines, and nucleoside analogues. Fluconazole, an azole, is the most commonly used antifungal drug due to its low host toxicity, high water solubility, and high bioavailability. However, C. krusei possesses intrinsic resistance to this drug while also rapidly developing acquired resistance to other antifungal drugs. The mechanisms of antifungal resistance of this yeast involve the alteration and overexpression of drug target, reduction in intracellular drug concentration and development of a bypass pathway. Antifungal resistance menace coupled with the paucity of the antifungal arsenal as well as challenges involved in antifungal drug development, partly due to the eukaryotic nature of both fungi and humans, have left researchers to exploit alternative therapies. Here we briefly review our current knowledge of the biology, pathophysiology and epidemiology of a potential multidrug-resistant fungal pathogen, C. krusei, while also discussing the mechanisms of drug resistance of Candida species and alternative therapeutic approaches.
Collapse
Affiliation(s)
- A T Jamiu
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - J Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - O M Sebolai
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - C H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| |
Collapse
|
14
|
Banerjee A, Pata J, Sharma S, Monk BC, Falson P, Prasad R. Directed Mutational Strategies Reveal Drug Binding and Transport by the MDR Transporters of Candida albicans. J Fungi (Basel) 2021; 7:jof7020068. [PMID: 33498218 PMCID: PMC7908972 DOI: 10.3390/jof7020068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/11/2021] [Accepted: 01/17/2021] [Indexed: 01/13/2023] Open
Abstract
Multidrug resistance (MDR) transporters belonging to either the ATP-Binding Cassette (ABC) or Major Facilitator Superfamily (MFS) groups are major determinants of clinical drug resistance in fungi. The overproduction of these proteins enables the extrusion of incoming drugs at rates that prevent lethal effects. The promiscuity of these proteins is intriguing because they export a wide range of structurally unrelated molecules. Research in the last two decades has used multiple approaches to dissect the molecular basis of the polyspecificity of multidrug transporters. With large numbers of drug transporters potentially involved in clinical drug resistance in pathogenic yeasts, this review focuses on the drug transporters of the important pathogen Candida albicans. This organism harbors many such proteins, several of which have been shown to actively export antifungal drugs. Of these, the ABC protein CaCdr1 and the MFS protein CaMdr1 are the two most prominent and have thus been subjected to intense site-directed mutagenesis and suppressor genetics-based analysis. Numerous results point to a common theme underlying the strategy of promiscuity adopted by both CaCdr1 and CaMdr1. This review summarizes the body of research that has provided insight into how multidrug transporters function and deliver their remarkable polyspecificity.
Collapse
Affiliation(s)
- Atanu Banerjee
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon 122413, India; (A.B.); (S.S.)
| | - Jorgaq Pata
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, Institut de Biologie et Chimie des Protéines, CNRS-Lyon 1 University UMR5086, 69367 Lyon, France;
| | - Suman Sharma
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon 122413, India; (A.B.); (S.S.)
| | - Brian C. Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand;
| | - Pierre Falson
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, Institut de Biologie et Chimie des Protéines, CNRS-Lyon 1 University UMR5086, 69367 Lyon, France;
- Correspondence: (P.F.); (R.P.)
| | - Rajendra Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon 122413, India; (A.B.); (S.S.)
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon 122413, India
- Correspondence: (P.F.); (R.P.)
| |
Collapse
|
15
|
Sternicki LM, Nguyen S, Pacholarz KJ, Barran P, Pendini NR, Booker GW, Huet Y, Baltz R, Wegener KL, Pukala TL, Polyak SW. Biochemical characterisation of class III biotin protein ligases from Botrytis cinerea and Zymoseptoria tritici. Arch Biochem Biophys 2020; 691:108509. [PMID: 32717225 DOI: 10.1016/j.abb.2020.108509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Biotin protein ligase (BPL) is an essential enzyme in all kingdoms of life, making it a potential target for novel anti-infective agents. Whilst bacteria and archaea have simple BPL structures (class I and II), the homologues from certain eukaryotes such as mammals, insects and yeast (class III) have evolved a more complex structure with a large extension on the N-terminus of the protein in addition to the conserved catalytic domain. The absence of atomic resolution structures of any class III BPL hinders structural and functional analysis of these enzymes. Here, two new class III BPLs from agriculturally important moulds Botrytis cinerea and Zymoseptoria tritici were characterised alongside the homologue from the prototypical yeast Saccharomyces cerevisiae. Circular dichroism and ion mobility-mass spectrometry analysis revealed conservation of the overall tertiary and secondary structures of all three BPLs, corresponding with the high sequence similarity. Subtle structural differences were implied by the different thermal stabilities of the enzymes and their varied Michaelis constants for their interactions with ligands biotin, MgATP, and biotin-accepting substrates from different species. The three BPLs displayed different preferences for fungal versus bacterial protein substrates, providing further evidence that class III BPLs have a 'substrate validation' activity for selecting only appropriate proteins for biotinylation. Selective, potent inhibition of these three BPLs was demonstrated despite sequence and structural homology. This highlights the potential for targeting BPL for novel, selective antifungal therapies against B. cinerea, Z. tritici and other fungal species.
Collapse
Affiliation(s)
- Louise M Sternicki
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Stephanie Nguyen
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, South Australia, 5005, Australia
| | - Kamila J Pacholarz
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicole R Pendini
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Grant W Booker
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Yoann Huet
- Bayer SAS CropScience, La Dargoire Research Centre, Lyon, 69263 Cedex 09, France
| | - Rachel Baltz
- Bayer SAS CropScience, La Dargoire Research Centre, Lyon, 69263 Cedex 09, France
| | - Kate L Wegener
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, South Australia, 5005, Australia
| | - Tara L Pukala
- School of Physical Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Steven W Polyak
- School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
16
|
Identification of Genomewide Alternative Splicing Events in Sequential, Isogenic Clinical Isolates of Candida albicans Reveals a Novel Mechanism of Drug Resistance and Tolerance to Cellular Stresses. mSphere 2020; 5:5/4/e00608-20. [PMID: 32817456 PMCID: PMC7426172 DOI: 10.1128/msphere.00608-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of resistance in Candida albicans, an opportunistic pathogen, against the commonly used antifungals is becoming a major obstacle in its treatment. The necessity to identify new drug targets demands fundamental insights into the mechanisms used by this organism to develop drug resistance. C. albicans has introns in 4 to 6% of its genes, the functions of which remain largely unknown. Using the RNA-sequencing data from isogenic pairs of azole-sensitive and -resistant isolates of C. albicans, here, we show how C. albicans uses modulations in mRNA splicing to overcome antifungal drug stress. Alternative splicing (AS)—a process by which a single gene gives rise to different protein isoforms in eukaryotes—has been implicated in many basic cellular processes, but little is known about its role in drug resistance and fungal pathogenesis. The most common human fungal pathogen, Candida albicans, has introns in 4 to 6% of its genes, the functions of which remain largely unknown. Here, we report AS regulating drug resistance in C. albicans. Comparative RNA-sequencing of two different sets of sequential, isogenic azole-sensitive and -resistant isolates of C. albicans revealed differential expression of splice isoforms of 14 genes. One of these was the superoxide dismutase gene SOD3, which contains a single intron. The sod3Δ/Δ mutant was susceptible to the antifungals amphotericin B (AMB) and menadione (MND). While AMB susceptibility was rescued by overexpression of both the spliced and unspliced SOD3 isoforms, only the spliced isoform could overcome MND susceptibility, demonstrating the functional relevance of this splicing in developing drug resistance. Furthermore, unlike AMB, MND inhibits SOD3 splicing and acts as a splicing inhibitor. Consistent with these observations, MND exposure resulted in increased levels of unspliced SOD3 isoform that are unable to scavenge reactive oxygen species (ROS), resulting in increased drug susceptibility. Collectively, these observations suggest that AS is a novel mechanism for stress adaptation and overcoming drug susceptibility in C. albicans. IMPORTANCE The emergence of resistance in Candida albicans, an opportunistic pathogen, against the commonly used antifungals is becoming a major obstacle in its treatment. The necessity to identify new drug targets demands fundamental insights into the mechanisms used by this organism to develop drug resistance. C. albicans has introns in 4 to 6% of its genes, the functions of which remain largely unknown. Using the RNA-sequencing data from isogenic pairs of azole-sensitive and -resistant isolates of C. albicans, here, we show how C. albicans uses modulations in mRNA splicing to overcome antifungal drug stress.
Collapse
|
17
|
Antifungal effects of statins. Pharmacol Ther 2020; 208:107483. [PMID: 31953128 DOI: 10.1016/j.pharmthera.2020.107483] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
Abstract
Fungal infections are estimated to be responsible for 1.5 million deaths annually. Global anti-microbial resistance is also observed for fungal pathogens, and scientists are looking for new antifungal agents to address this challenge. One potential strategy is to evaluate currently available drugs for their possible antifungal activity. One of the suggested drug classes are statins, which are commonly used to decrease plasma cholesterol and reduce cardiovascular risk associated with low density lipoprotein cholesterol (LDL-c). Statins are postulated to possess pleiotropic effects beyond cholesterol lowering; improving endothelial function, modulating inflammation, and potentially exerting anti-microbial effects. In this study, we reviewed in-vitro and in-vivo studies, as well as clinical reports pertaining to the antifungal efficacy of statins. In addition, we have addressed various modulators of statin anti-fungal activity and the potential mechanisms responsible for their anti-fungal effects. In general, statins do possess anti-fungal activity, targeting a broad spectrum of fungal organisms including human opportunistic pathogens such as Candida spp. and Zygomycetes, Dermatophytes, alimentary toxigenic species such as Aspergillus spp., and fungi found in device implants such as Saccharomyces cerevisiae. Statins have been shown to augment a number of antifungal drug classes, for example, the azoles and polyenes. Synthetic statins are generally considered more potent than the first generation of fungal metabolites. Fluvastatin is considered the most effective statin with the broadest and most potent fungal inhibitory activity, including fungicidal and/or fungistatic properties. This has been demonstrated with plasma concentrations that can easily be achieved in a clinical setting. Additionally, statins can potentiate the efficacy of available antifungal drugs in a synergistic fashion. Although only a limited number of animal and human studies have been reported to date, observational cohort studies have confirmed that patients using statins have a reduced risk of candidemia-related complications. Further studies are warranted to confirm our findings and expand current knowledge of the anti-fungal effects of statins.
Collapse
|
18
|
Prasad R, Nair R, Banerjee A. Multidrug transporters of Candida species in clinical azole resistance. Fungal Genet Biol 2019; 132:103252. [PMID: 31302289 DOI: 10.1016/j.fgb.2019.103252] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 11/30/2022]
Abstract
Over-expression of the human P-glycoprotein (P-gp) in tumor cells is a classic example of an ABC protein serving as a hindrance to effective chemotherapy. The existence of proteins homologous to P-gp in organisms encompassing the entire living kingdom highlights extrusion of drugs as a general mechanism of multidrug resistance. Infections caused by opportunistic human fungal pathogens such as Candida species are very common and has intensified in recent years. The typical hosts, who possess suppressed immune systems due to conditions such as HIV and transplantation surgery etc., are prone to fungal infections. Prolonged chemotherapy induces fungal cells to eventually develop tolerance to most of the antifungals currently in clinical use. Amongst other prominent mechanisms of antifungal resistance such as manipulation of the drug target, rapid efflux achieved through overexpression of multidrug transporters has emerged as a major resistance mechanism for azoles. Herein, the azole-resistant clinical isolates of Candida species utilize a few select efflux pump proteins belonging to the ABC and MFS superfamilies, to deter the toxic accumulation of therapeutic azoles and thus, facilitating cell survival. In this article, we summarize and discuss the clinically relevant mechanisms of azole resistance in Candida albicans and non-albicans Candida (NAC) species, specifically highlighting the role of multidrug efflux proteins in the phenomenon.
Collapse
Affiliation(s)
- Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana, India.
| | - Remya Nair
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana, India
| | - Atanu Banerjee
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana, India.
| |
Collapse
|
19
|
Banerjee A, Vishwakarma P, Kumar A, Lynn AM, Prasad R. Information theoretic measures and mutagenesis identify a novel linchpin residue involved in substrate selection within the nucleotide-binding domain of an ABCG family exporter Cdr1p. Arch Biochem Biophys 2019; 663:143-150. [DOI: 10.1016/j.abb.2019.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2018] [Accepted: 01/12/2019] [Indexed: 10/27/2022]
|
20
|
Vacuolar Sequestration of Azoles, a Novel Strategy of Azole Antifungal Resistance Conserved across Pathogenic and Nonpathogenic Yeast. Antimicrob Agents Chemother 2019; 63:AAC.01347-18. [PMID: 30642932 DOI: 10.1128/aac.01347-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/29/2018] [Indexed: 11/20/2022] Open
Abstract
Target alteration and overproduction and drug efflux through overexpression of multidrug transporters localized in the plasma membrane represent the conventional mechanisms of azole antifungal resistance. Here, we identify a novel conserved mechanism of azole resistance not only in the budding yeast Saccharomyces cerevisiae but also in the pathogenic yeast Candida albicans We observed that the vacuolar-membrane-localized, multidrug resistance protein (MRP) subfamily, ATP-binding cassette (ABC) transporter of S. cerevisiae, Ybt1, could import azoles into vacuoles. Interestingly, the Ybt1 homologue in C. albicans, Mlt1p, could also fulfill this function. Evidence that the process is energy dependent comes from the finding that a Mlt1p mutant version made by converting a critical lysine residue in the Walker A motif of nucleotide-binding domain 1 (required for ATP hydrolysis) to alanine (K710A) was not able to transport azoles. Additionally, we have shown that, as for other eukaryotic MRP subfamily members, deletion of the conserved phenylalanine amino acid at position 765 (F765Δ) results in mislocalization of the Mlt1 protein; this mislocalized protein was devoid of the azole-resistant attribute. This finding suggests that the presence of this protein on vacuolar membranes is an important factor in azole resistance. Further, we report the importance of conserved residues, because conversion of two serines (positions 973 and 976, in the regulatory domain and in the casein kinase I [CKI] consensus sequence, respectively) to alanine severely affected the drug resistance. Hence, the present study reveals vacuolar sequestration of azoles by the ABC transporter Ybt1 and its homologue Mlt1 as an alternative strategy to circumvent drug toxicity among pathogenic and nonpathogenic yeasts.
Collapse
|
21
|
Emerging Mechanisms of Drug Resistance in Candida albicans. YEASTS IN BIOTECHNOLOGY AND HUMAN HEALTH 2019; 58:135-153. [DOI: 10.1007/978-3-030-13035-0_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Prasad R, Balzi E, Banerjee A, Khandelwal NK. All about CDR transporters: Past, present, and future. Yeast 2018; 36:223-233. [DOI: 10.1002/yea.3356] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/20/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Rajendra Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and HealthAmity University Haryana Gurgaon India
| | - Elisabetta Balzi
- Unité de Biochimie PhysiologiqueUniversité Catholique de Louvain Ottignies‐Louvain‐la‐Neuve Belgium
| | - Atanu Banerjee
- School of Life SciencesJawaharlal Nehru University New Delhi India
- School of Computational and Integrative SciencesJawaharlal Nehru University New Delhi India
| | | |
Collapse
|
23
|
Padder SA, Prasad R, Shah AH. Quorum sensing: A less known mode of communication among fungi. Microbiol Res 2018; 210:51-58. [PMID: 29625658 DOI: 10.1016/j.micres.2018.03.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/21/2018] [Accepted: 03/17/2018] [Indexed: 02/08/2023]
Abstract
Quorum sensing (QS), a density-dependent signaling mechanism of microbial cells, involves an exchange and sense of low molecular weight signaling compounds called autoinducers. With the increase in population density, the autoinducers accumulate in the extracellular environment and once their concentration reaches a threshold, many genes are either expressed or repressed. This cell density-dependent signaling mechanism enables single cells to behave as multicellular organisms and regulates different microbial behaviors like morphogenesis, pathogenesis, competence, biofilm formation, bioluminescence, etc guided by environmental cues. Initially, QS was regarded to be a specialized system of certain bacteria. The discovery of filamentation control in pathogenic polymorphic fungus Candida albicans by farnesol revealed the phenomenon of QS in fungi as well. Pathogenic microorganisms primarily regulate the expression of virulence genes using QS systems. The indirect role of QS in the emergence of multiple drug resistance (MDR) in microbial pathogens necessitates the finding of alternative antimicrobial therapies that target QS and inhibit the same. A related phenomenon of quorum sensing inhibition (QSI) performed by small inhibitor molecules called quorum sensing inhibitors (QSIs) has an ability for efficient reduction of gene expression regulated by quorum sensing. In the present review, recent advancements in the study of different fungal quorum sensing molecules (QSMs) and quorum sensing inhibitors (QSIs) of fungal origin along with their mechanism of action and/or role/s are discussed.
Collapse
Affiliation(s)
- Sajad Ahmad Padder
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health and Amity Institute of Biotechnology, Amity University Haryana, Amity Education Valley, Gurgaon 122413, HR, India
| | - Abdul Haseeb Shah
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India.
| |
Collapse
|
24
|
Roger C, Sasso M, Lefrant JY, Muller L. Antifungal Dosing Considerations in Patients Undergoing Continuous Renal Replacement Therapy. CURRENT FUNGAL INFECTION REPORTS 2018. [DOI: 10.1007/s12281-018-0305-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Park SC, Kim YM, Lee JK, Kim NH, Kim EJ, Heo H, Lee MY, Lee JR, Jang MK. Targeting and synergistic action of an antifungal peptide in an antibiotic drug-delivery system. J Control Release 2017; 256:46-55. [DOI: 10.1016/j.jconrel.2017.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/29/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
|