1
|
Smith KP, Chakravarthy S, Rahi A, Chakraborty M, Vosberg KM, Tonelli M, Plach MG, Grigorescu AA, Curtis JE, Varma D. SEC-SAXS/MC Ensemble Structural Studies of the Microtubule Binding Protein Cdt1 Show Monomeric, Folded-Over Conformations. Cytoskeleton (Hoboken) 2024:10.1002/cm.21954. [PMID: 39503309 PMCID: PMC12074537 DOI: 10.1002/cm.21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Cdt1 is a mixed folded protein critical for DNA replication licensing and it also has a "moonlighting" role at the kinetochore via direct binding to microtubules and the Ndc80 complex. However, it is unknown how the structure and conformations of Cdt1 could allow it to participate in these multiple, unique sets of protein complexes. While robust methods exist to study entirely folded or unfolded proteins, structure-function studies of combined, mixed folded/disordered proteins remain challenging. In this work, we employ orthogonal biophysical and computational techniques to provide structural characterization of mitosis-competent human Cdt1. Thermal stability analyses shows that both folded winged helix domains1 are unstable. CD and NMR show that the N-terminal and linker regions are intrinsically disordered. DLS shows that Cdt1 is monomeric and polydisperse, while SEC-MALS confirms that it is monomeric at high concentrations, but without any apparent inter-molecular self-association. SEC-SAXS enabled computational modeling of the protein structures. Using the program SASSIE, we performed rigid body Monte Carlo simulations to generate a conformational ensemble of structures. We observe that neither fully extended nor extremely compact Cdt1 conformations are consistent with SAXS. The best-fit models have the N-terminal and linker disordered regions extended into the solution and the two folded domains close to each other in apparent "folded over" conformations. We hypothesize the best-fit Cdt1 conformations could be consistent with a function as a scaffold protein that may be sterically blocked without binding partners. Our study also provides a template for combining experimental and computational techniques to study mixed-folded proteins.
Collapse
Affiliation(s)
- Kyle P. Smith
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois, USA
| | - Amit Rahi
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Manas Chakraborty
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kristen M. Vosberg
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Arabela A. Grigorescu
- Keck Biophysics Facility, Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Joseph E. Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Dileep Varma
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
McGory JM, Verma V, Barcelos DM, Maresca TJ. Multimerization of a disordered kinetochore protein promotes accurate chromosome segregation by localizing a core dynein module. J Cell Biol 2024; 223:e202211122. [PMID: 38180477 PMCID: PMC10770731 DOI: 10.1083/jcb.202211122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/06/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
Kinetochores connect chromosomes and spindle microtubules to maintain genomic integrity through cell division. Crosstalk between the minus-end directed motor dynein and kinetochore-microtubule attachment factors promotes accurate chromosome segregation by a poorly understood pathway. Here, we identify a linkage between the intrinsically disordered protein Spc105 (KNL1 orthologue) and dynein using an optogenetic oligomerization assay. Core pools of the checkpoint protein BubR1 and the adaptor complex RZZ contribute to the linkage. Furthermore, a minimal segment of Spc105 with a propensity to multimerize and which contains protein binding motifs is sufficient to link Spc105 to RZZ/dynein. Deletion of the minimal region from Spc105 compromises the recruitment of its binding partners to kinetochores and elevates chromosome missegregation due to merotelic attachments. Restoration of normal chromosome segregation and localization of BubR1 and RZZ requires both protein binding motifs and oligomerization of Spc105. Together, our results reveal that higher-order multimerization of Spc105 contributes to localizing a core pool of RZZ that promotes accurate chromosome segregation.
Collapse
Affiliation(s)
- Jessica M. McGory
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Vikash Verma
- Biology Department, University of Massachusetts, Amherst, MA, USA
| | | | - Thomas J. Maresca
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
3
|
Smith KP, Chakravarthy S, Rahi A, Chakraborty M, Vosberg KM, Tonelli M, Plach MG, Grigorescu AA, Curtis JE, Varma D. SAXS/MC studies of the mixed-folded protein Cdt1 reveal monomeric, folded over conformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573975. [PMID: 38260441 PMCID: PMC10802334 DOI: 10.1101/2024.01.03.573975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cdt1 is a protein critical for DNA replication licensing and is well-established to be a binding partner of the minichromosome maintenance (MCM) complex. Cdt1 has also been demonstrated to have an emerging, "moonlighting" role at the kinetochore via direct binding to microtubules and to the Ndc80 complex. However, it is not known how the structure and conformations of Cdt1 could allow for these multiple, completely unique sets of protein complexes. And while there exist multiple robust methods to study entirely folded or entirely unfolded proteins, structure-function studies of combined, mixed folded/disordered proteins remain challenging. It this work, we employ multiple orthogonal biophysical and computational techniques to provide a detailed structural characterization of human Cdt1 92-546. DSF and DSCD show both folded winged helix (WH) domains of Cdt1 are relatively unstable. CD and NMR show the N-terminal and the linker regions are intrinsically disordered. Using DLS and SEC-MALS, we show that Cdt1 is polydisperse, monomeric at high concentrations, and without any apparent inter-molecular self-association. SEC-SAXS of the monomer in solution enabled computational modeling of the protein in silico. Using the program SASSIE, we performed rigid body Monte Carlo simulations to generate a conformational ensemble. Using experimental SAXS data, we filtered for conformations which did and did not fit our data. We observe that neither fully extended nor extremely compact Cdt1 conformations are consistent with our SAXS data. The best fit models have the N-terminal and linker regions extended into solution and the two folded domains close to each other in apparent "folded over" conformations. The best fit Cdt1 conformations are consistent with a function as a scaffold protein which may be sterically blocked without the presence of binding partners. Our studies also provide a template for combining experimental and computational biophysical techniques to study mixed-folded proteins.
Collapse
Affiliation(s)
- Kyle P. Smith
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Present Address, Xylia Therapeutics, Waltham, MA, 02451, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Amit Rahi
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Manas Chakraborty
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kristen M. Vosberg
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Arabela A. Grigorescu
- Keck Biophysics Facility, Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60201, USA
| | - Joseph E. Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD, 20899, United States
| | - Dileep Varma
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
4
|
Bolanos-Garcia VM. On the Regulation of Mitosis by the Kinetochore, a Macromolecular Complex and Organising Hub of Eukaryotic Organisms. Subcell Biochem 2022; 99:235-267. [PMID: 36151378 DOI: 10.1007/978-3-031-00793-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The kinetochore is the multiprotein complex of eukaryotic organisms that is assembled on mitotic or meiotic centromeres to connect centromeric DNA with microtubules. Its function involves the coordinated action of more than 100 different proteins. The kinetochore acts as an organiser hub that establishes physical connections with microtubules and centromere-associated proteins and recruits central protein components of the spindle assembly checkpoint (SAC), an evolutionarily conserved surveillance mechanism of eukaryotic organisms that detects unattached kinetochores and destabilises incorrect kinetochore-microtubule attachments. The molecular communication between the kinetochore and the SAC is highly dynamic and tightly regulated to ensure that cells can progress towards anaphase until each chromosome is properly bi-oriented on the mitotic spindle. This is achieved through an interplay of highly cooperative interactions and concerted phosphorylation/dephosphorylation events that are organised in time and space.This contribution discusses our current understanding of the function, structure and regulation of the kinetochore, in particular, how its communication with the SAC results in the amplification of specific signals to exquisitely control the eukaryotic cell cycle. This contribution also addresses recent advances in machine learning approaches, cell imaging and proteomics techniques that have enhanced our understanding of the molecular mechanisms that ensure the high fidelity and timely segregation of the genetic material every time a cell divides as well as the current challenges in the study of this fascinating molecular machine.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
5
|
Audett MR, Johnson EL, McGory JM, Barcelos DM, Szalai EO, Przewloka MR, Maresca TJ. The microtubule- and PP1-binding activities of Drosophila melanogaster Spc105 control the kinetics of SAC satisfaction. Mol Biol Cell 2022; 33:ar1. [PMID: 34705493 PMCID: PMC8886820 DOI: 10.1091/mbc.e21-06-0307-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
KNL1 is a large intrinsically disordered kinetochore (KT) protein that recruits spindle assembly checkpoint (SAC) components to mediate SAC signaling. The N-terminal region (NTR) of KNL1 possesses two activities that have been implicated in SAC silencing: microtubule (MT) binding and protein phosphatase 1 (PP1) recruitment. The NTR of Drosophila melanogaster KNL1 (Spc105) has never been shown to bind MTs or to recruit PP1. Furthermore, the phosphoregulatory mechanisms known to control SAC protein binding to KNL1 orthologues is absent in D. melanogaster. Here, these apparent discrepancies are resolved using in vitro and cell-based assays. A phosphoregulatory circuit that utilizes Aurora B kinase promotes SAC protein binding to the central disordered region of Spc105 while the NTR binds directly to MTs in vitro and recruits PP1-87B to KTs in vivo. Live-cell assays employing an optogenetic oligomerization tag and deletion/chimera mutants are used to define the interplay of MT and PP1 binding by Spc105 and the relative contributions of both activities to the kinetics of SAC satisfaction.
Collapse
Affiliation(s)
- Margaux R. Audett
- Biology Department, University of Massachusetts, Amherst, Amherst MA 01003
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Amherst MA 01003
| | - Erin L. Johnson
- Biology Department, University of Massachusetts, Amherst, Amherst MA 01003
| | - Jessica M. McGory
- Biology Department, University of Massachusetts, Amherst, Amherst MA 01003
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Amherst MA 01003
| | - Dylan M. Barcelos
- Biology Department, University of Massachusetts, Amherst, Amherst MA 01003
| | - Evelin Oroszne Szalai
- Institute for Life Sciences, School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Marcin R. Przewloka
- Institute for Life Sciences, School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Thomas J. Maresca
- Biology Department, University of Massachusetts, Amherst, Amherst MA 01003
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Amherst MA 01003
| |
Collapse
|
6
|
McKim KS. Highway to hell-thy meiotic divisions: Chromosome passenger complex functions driven by microtubules: CPC interactions with both the chromosomes and microtubules are important for spindle assembly and function: CPC interactions with both the chromosomes and microtubules are important for spindle assembly and function. Bioessays 2022; 44:e2100202. [PMID: 34821405 PMCID: PMC8688318 DOI: 10.1002/bies.202100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
The chromosome passenger complex (CPC) localizes to chromosomes and microtubules, sometimes simultaneously. The CPC also has multiple domains for interacting with chromatin and microtubules. Interactions between the CPC and both the chromatin and microtubules is important for spindle assembly and error correction. Such dual chromatin-microtubule interactions may increase the concentration of the CPC necessary for efficient kinase activity while also making it responsive to specific conditions or structures in the cell. CPC-microtubule dependent functions are considered in the context of the first meiotic division. Acentrosomal spindle assembly is a process that depends on transfer of the CPC from the chromosomes to the microtubules. Furthermore, transfer to the microtubules is not only to position the CPC for a later role in cytokinesis; metaphase I error correction and subsequent bi-orientation of bivalents may depend on microtubule associated CPC interacting with the kinetochores.
Collapse
Affiliation(s)
- Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
7
|
Martin IM, Aponte-Santamaría C, Schmidt L, Hedtfeld M, Iusupov A, Musacchio A, Gräter F. Phosphorylation tunes elongation propensity and cohesiveness of INCENP's intrinsically disordered region. J Mol Biol 2021; 434:167387. [PMID: 34883116 DOI: 10.1016/j.jmb.2021.167387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
The inner centromere protein, INCENP, is crucial for correct chromosome segregation during mitosis. It connects the kinase Aurora B to the inner centromere allowing this kinase to dynamically access its kinetochore targets. However, the function of its central, 440-residue long intrinsically disordered region (IDR) and its multiple phosphorylation sites is unclear. Here, we determined the conformational ensemble of INCENP's IDR, systematically varying the level of phosphorylation, using all-atom and coarse-grain molecular dynamics simulations. Our simulations show that phosphorylation expands INCENP's IDR, both locally and globally, mainly by increasing its overall net charge. The disordered region undergoes critical globule-to-coil conformational transitions and the transition temperature non-monotonically depends on the degree of phosphorylation, with a mildly phosphorylated case of neutral net charge featuring the highest collapse propensity. The IDR transitions from a multitude of globular states, accompanied by several specific internal contacts that reduce INCENP length by loop formation, to weakly interacting and highly extended coiled conformations. Phosphorylation critically shifts the population between these two regimes. It thereby influences cohesiveness and phase behavior of INCENP IDR assemblies, a feature presumably relevant for INCENP's function in the chromosomal passenger complex. Overall, we propose the disordered region of INCENP to act as a phosphorylation-regulated and length-variable component, within the previously defined "dog-leash" model, that thereby regulates how Aurora B reaches its targets for proper chromosome segregation.
Collapse
Affiliation(s)
- Isabel M Martin
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany. https://twitter.com/@IsabelMMartin
| | - Camilo Aponte-Santamaría
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Cra. 1 #18a-12, 111711 Bogotá, Colombia. https://twitter.com/@camiloapontelab
| | - Lisa Schmidt
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Marius Hedtfeld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; International Max Planck Research School for Living Matter, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Adel Iusupov
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany; Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany. https://twitter.com/@AndreaMusacchi1
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120 Heidelberg, Germany.
| |
Collapse
|