1
|
Oghenemaro EF, Khaleel AQ, Rizaev JA, Roopashree R, Suliman M, Kazmi SW, Hjazi A, Rajput P, Mustafa YF, Abosaoda MK. Dysregulation of GAS5-miRNA-Mediated Signaling Pathways in Cancer Pathobiology: A Comprehensive Exploration of Pathways Influenced by this Axis. Biochem Genet 2025; 63:1149-1175. [PMID: 39718723 DOI: 10.1007/s10528-024-10997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024]
Abstract
The long non-coding RNA Growth Arrest-Specific 5 (GAS5) is pivotal in modulating key signaling pathways by functioning as a molecular sponge for microRNAs (miRNAs). GAS5 is notably recognized for its antitumor properties, primarily through its ability to sequester oncogenic miRNAs, thereby influencing critical pathways such as p53, Wnt/β-catenin, and PI3K/Akt, all of which are integral to cell proliferation, apoptosis, and metastasis. The disruption of GAS5-miRNA interactions has been implicated in various malignancies, reinforcing its potential as both a biomarker and a therapeutic target. This paper delves into the intricate signaling cascades affected by GAS5-miRNA interactions and thoroughly investigates the diagnosis and treatment prospects associated with GAS5. Moreover, it addresses both the challenges and opportunities for translational applicability of these findings in clinical environments. The study emphasizes GAS5's significance within the cancer molecular landscape and posits that precise modulation of GAS5-miRNA interactions could catalyze transformative developments in cancer diagnostics and therapeutic approaches. This comprehensive review not only highlights the critical role of non-coding RNAs in cancer biology but also aims to lay the groundwork for future investigations aimed at harnessing these insights for therapeutic interventions.
Collapse
Affiliation(s)
- Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria
| | - Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, College of Engineering, University of Al Maarif, Al Anbar, 31001, Iraq.
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia.
| | - Pranchal Rajput
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Di Leva F, Arnoldi M, Santarelli S, Massonot M, Lemée MV, Bon C, Pellegrini M, Castellini ME, Zarantonello G, Messina A, Bozzi Y, Bernier R, Zucchelli S, Casarosa S, Dassi E, Ronzitti G, Golzio C, Morandell J, Gustincich S, Espinoza S, Biagioli M. SINEUP RNA rescues molecular phenotypes associated with CHD8 suppression in autism spectrum disorder model systems. Mol Ther 2025; 33:1180-1196. [PMID: 39741407 PMCID: PMC11897779 DOI: 10.1016/j.ymthe.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/01/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Loss-of-function mutations in the chromodomain helicase DNA-binding 8 (CHD8) gene are strongly associated with autism spectrum disorders (ASDs). Indeed, the reduction of CHD8 causes transcriptional, epigenetic, and cellular phenotypic changes correlated to disease, which can be monitored in assessing new therapeutic approaches. SINEUPs are a functional class of natural and synthetic antisense long non-coding RNAs able to stimulate the translation of sense target mRNA, with no effect on transcription. Here, we employed synthetic SINEUP-CHD8 targeting the first and third AUG of the CHD8 coding sequence to efficiently stimulate endogenous CHD8 protein production. SINEUP-CHD8 were effective in cells with reduced levels of the target protein and in patient-derived fibroblasts with CHD8 mutations. Functionally, SINEUP-CHD8 were able to revert molecular phenotypes associated with CHD8 suppression, i.e., genome-wide transcriptional dysregulation, and the reduction of H3K36me3 levels. Strikingly, in chd8-morpholino-treated and ENU mutant zebrafish embryos, SINEUP-chd8 injection confirmed the ability of SINEUP RNA to rescue the chd8-suppression-induced macrocephaly phenotype and neuronal hyperproliferation. Thus, SINEUP-CHD8 molecule(s) represent a proof-of-concept toward the development of an RNA-based therapy for neurodevelopmental syndromes with implications for, and beyond ASD, and relevant to genetic disorders caused by protein haploinsufficiency.
Collapse
Affiliation(s)
- Francesca Di Leva
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Michele Arnoldi
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Stefania Santarelli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Mathieu Massonot
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104-UMR-S 1258, Department of Translational Medicine and Neurogenetics, 67404 Illkirch, France
| | - Marianne Victoria Lemée
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104-UMR-S 1258, Department of Translational Medicine and Neurogenetics, 67404 Illkirch, France
| | - Carlotta Bon
- Center for Human Technologies, Non-coding RNAs and RNA-based Therapeutics, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Miguel Pellegrini
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Maria Elena Castellini
- Neural Development and Regeneration Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Giulia Zarantonello
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Andrea Messina
- Neural Development and Regeneration Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Yuri Bozzi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, 38060 Trento, Italy
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Science, University of Washington School of Medicine, Seattle, WA 98195-6560, USA
| | - Silvia Zucchelli
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Simona Casarosa
- Neural Development and Regeneration Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Giuseppe Ronzitti
- Genethon, 91000 Evry, France; Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Christelle Golzio
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104-UMR-S 1258, Department of Translational Medicine and Neurogenetics, 67404 Illkirch, France
| | - Jasmin Morandell
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy.
| | - Stefano Gustincich
- Center for Human Technologies, Non-coding RNAs and RNA-based Therapeutics, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Stefano Espinoza
- Center for Human Technologies, Non-coding RNAs and RNA-based Therapeutics, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy; Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy.
| | - Marta Biagioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy.
| |
Collapse
|
3
|
Evans EF, Shyr ZA, Traynor BJ, Zheng W. Therapeutic development approaches to treat haploinsufficiency diseases: restoring protein levels. Drug Discov Today 2024; 29:104201. [PMID: 39384033 DOI: 10.1016/j.drudis.2024.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Rare diseases affect one in ten people but only a small fraction of these diseases have an FDA-approved treatment. Haploinsufficiency, caused by a dominant loss-of-function mutation, is a unique rare disease group because patients have one normal allele of the affected gene. This makes rare haploinsufficiency diseases promising candidates for drug development by increasing expression of the normal gene allele, decreasing the target protein degradation and enhancing the target protein function. This review summarizes recent progresses and approaches used in the translational research of therapeutics to treat haploinsufficiency diseases including gene therapy, nucleotide-based therapeutics and small-molecule drug development. We hope that these drug development strategies will accelerate therapeutic development to treat haploinsufficiency diseases.
Collapse
Affiliation(s)
- Elena F Evans
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Zeenat A Shyr
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Bryan J Traynor
- National Institute on Aging, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20814, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA.
| |
Collapse
|
4
|
Werner A, Kanhere A, Wahlestedt C, Mattick JS. Natural antisense transcripts as versatile regulators of gene expression. Nat Rev Genet 2024; 25:730-744. [PMID: 38632496 DOI: 10.1038/s41576-024-00723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as a major class of gene products that have central roles in cell and developmental biology. Natural antisense transcripts (NATs) are an important subset of lncRNAs that are expressed from the opposite strand of protein-coding and non-coding genes and are a genome-wide phenomenon in both eukaryotes and prokaryotes. In eukaryotes, a myriad of NATs participate in regulatory pathways that affect expression of their cognate sense genes. Recent developments in the study of NATs and lncRNAs and large-scale sequencing and bioinformatics projects suggest that whether NATs regulate expression, splicing, stability or translation of the sense transcript is influenced by the pattern and degrees of overlap between the sense-antisense pair. Moreover, epigenetic gene regulatory mechanisms prevail in somatic cells whereas mechanisms dependent on the formation of double-stranded RNA intermediates are prevalent in germ cells. The modulating effects of NATs on sense transcript expression make NATs rational targets for therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - John S Mattick
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
De Florian Fania R, Bellazzo A, Collavin L. An update on the tumor-suppressive functions of the RasGAP protein DAB2IP with focus on therapeutic implications. Cell Death Differ 2024; 31:844-854. [PMID: 38902547 PMCID: PMC11239834 DOI: 10.1038/s41418-024-01332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
The dynamic crosstalk between tumor and stromal cells is a major determinant of cancer aggressiveness. The tumor-suppressor DAB2IP (Disabled homolog 2 interacting protein) plays an important role in this context, since it modulates cell responses to multiple extracellular inputs, including inflammatory cytokines and growth factors. DAB2IP is a RasGAP and negatively controls Ras-dependent mitogenic signals. In addition, it modulates other major oncogenic pathways, including TNFα/NF-κB, WNT/β-catenin, PI3K/AKT, and androgen receptor signaling. In line with its tumor-suppressive role, DAB2IP is frequently inactivated in cancer by transcriptional and post-transcriptional mechanisms, including promoter methylation, microRNA-mediated downregulation, and protein-protein interactions. Intriguingly, some observations suggest that downregulation of DAB2IP in cells of the tumor stroma could foster establishment of a pro-metastatic microenvironment. This review summarizes recent insights into the tumor-suppressive functions of DAB2IP and the consequences of its inactivation in cancer. In particular, we explore potential approaches aimed at reactivating DAB2IP, or augmenting its expression levels, as a novel strategy in cancer treatment. We suggest that reactivation or upregulation of DAB2IP would concurrently attenuate multiple oncogenic pathways in both cancer cells and the tumor microenvironment, with implications for improved treatment of a broad spectrum of tumors.
Collapse
Affiliation(s)
| | - Arianna Bellazzo
- Unit of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini, 2, 33081, Aviano, Italy
| | - Licio Collavin
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.
| |
Collapse
|
6
|
Luo H, Jing H, Chen W. An extensive overview of the role of lncRNAs generated from immune cells in the etiology of cancer. Int Immunopharmacol 2024; 133:112063. [PMID: 38677091 DOI: 10.1016/j.intimp.2024.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Long non-coding RNAs (lncRNAs) are involved in the control of critical tumor-suppressor and oncogenic pathways in cancer. These types of non-coding RNAs could affect both immune and cancer cells. The thorough analysis of lncRNAs derived from immune cells and the incorporation of new findings significantly advance our understanding of the complex role of lncRNAs in the context of cancer. This work highlights the promise of lncRNAs for translational therapeutic approaches while also establishing a solid foundation for comprehending the complex link between lncRNAs and cancer through a coherent narrative. The main findings of this article are that types of lncRNAs derived from immune cells, such as MM2P and MALAT1, can affect the behaviors of cancer cells, like invasion, angiogenesis, and proliferation. As research in this area grows, the therapeutic potential of targeting these lncRNAs offers promising opportunities for expanding our understanding of cancer biology and developing cutting-edge, precision-based therapies for cancer therapy.
Collapse
Affiliation(s)
- Hong Luo
- Department of Oncology, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu Province, China.
| | - Hailiang Jing
- Department of Integrative Medicine, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu Province, China
| | - Wei Chen
- Department of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
7
|
Ali A, Khatoon A, Shao C, Murtaza B, Tanveer Q, Su Z. Therapeutic potential of natural antisense transcripts and various mechanisms involved for clinical applications and disease prevention. RNA Biol 2024; 21:1-18. [PMID: 38090817 PMCID: PMC10761088 DOI: 10.1080/15476286.2023.2293335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Antisense transcription, a prevalent occurrence in mammalian genomes, gives rise to natural antisense transcripts (NATs) as RNA molecules. These NATs serve as agents of diverse transcriptional and post-transcriptional regulatory mechanisms, playing crucial roles in various biological processes vital for cell function and immune response. However, when their normal functions are disrupted, they can contribute to human diseases. This comprehensive review aims to establish the molecular foundation linking NATs to the development of disorders like cancer, neurodegenerative conditions, and cardiovascular ailments. Additionally, we evaluate the potential of oligonucleotide-based therapies targeting NATs, presenting both their advantages and limitations, while also highlighting the latest advancements in this promising realm of clinical investigation.Abbreviations: NATs- Natural antisense transcripts, PRC1- Polycomb Repressive Complex 1, PRC2- Polycomb Repressive Complex 2, ADARs- Adenosine deaminases acting on RNA, BDNF-AS- Brain-derived neurotrophic factor antisense transcript, ASOs- Antisense oligonucleotides, SINEUPs- Inverted SINEB2 sequence-mediated upregulating molecules, PTBP1- Polypyrimidine tract binding protein-1, HNRNPK- heterogeneous nuclear ribonucleoprotein K, MAPT-AS1- microtubule-associated protein tau antisense 1, KCNQ1OT- (KCNQ1 opposite strand/antisense transcript 1, ERK- extracellular signal-regulated kinase 1, USP14- ubiquitin-specific protease 14, EGF- Epidermal growth factor, LSD1- Lysine Specific Demethylase 1, ANRIL- Antisense Noncoding RNA in the INK4 Locus, BWS- Beckwith-Wiedemann syndrome, VEGFA- Vascular Endothelial Growth component A.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Chenran Shao
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Qaisar Tanveer
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| |
Collapse
|
8
|
Cao Y, Liu H, Lu SS, Jones KA, Govind AP, Jeyifous O, Simmons CQ, Tabatabaei N, Green WN, Holder JL, Tahmasebi S, George AL, Dickinson BC. RNA-based translation activators for targeted gene upregulation. Nat Commun 2023; 14:6827. [PMID: 37884512 PMCID: PMC10603104 DOI: 10.1038/s41467-023-42252-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Technologies capable of programmable translation activation offer strategies to develop therapeutics for diseases caused by insufficient gene expression. Here, we present "translation-activating RNAs" (taRNAs), a bifunctional RNA-based molecular technology that binds to a specific mRNA of interest and directly upregulates its translation. taRNAs are constructed from a variety of viral or mammalian RNA internal ribosome entry sites (IRESs) and upregulate translation for a suite of target mRNAs. We minimize the taRNA scaffold to 94 nucleotides, identify two translation initiation factor proteins responsible for taRNA activity, and validate the technology by amplifying SYNGAP1 expression, a haploinsufficiency disease target, in patient-derived cells. Finally, taRNAs are suitable for delivery as RNA molecules by lipid nanoparticles (LNPs) to cell lines, primary neurons, and mouse liver in vivo. taRNAs provide a general and compact nucleic acid-based technology to upregulate protein production from endogenous mRNAs, and may open up possibilities for therapeutic RNA research.
Collapse
Affiliation(s)
- Yang Cao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Huachun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Shannon S Lu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Krysten A Jones
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Anitha P Govind
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Okunola Jeyifous
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Christine Q Simmons
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Negar Tabatabaei
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - William N Green
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Jimmy L Holder
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Brentari I, Zadorozhna M, Denti MA, Giorgio E. RNA therapeutics for neurological diseases. Br Med Bull 2023; 147:50-61. [PMID: 37210633 DOI: 10.1093/bmb/ldad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
INTRODUCTION Ribonucleic acid (RNA) therapeutics are a new class of drugs whose importance is highlighted by the growing number of molecules in the clinic. SOURCES OF DATA We focus on RNA therapeutics for neurogenetic disorders, which are broadly defined as diseases with a genetic background and with at least one clinical sign affecting the nervous system. A systematic search identified 14 RNA drugs approved by FDA and many others in development. AREAS OF AGREEMENT The field of RNA therapeutics is changing the therapeutic scenario across many disorders. AREAS OF CONTROVERSY Despite its recent successes, RNA therapeutics encountered several hurdles and some clinical failures. Delivery to the brain represents the biggest challenge. GROWING POINTS The many advantages of RNA drugs make the development of these technologies a worthwhile investment. AREAS TIMELY FOR DEVELOPING RESEARCH Clinical failures stress the importance of implementing clinical trial design and optimizing RNA molecules to hold the promise of revolutionizing the treatment of human diseases.
Collapse
Affiliation(s)
- Ilaria Brentari
- Dipartimento di Biologia Cellulare, Computazionale e Integrata (CIBIO), Università degli Studi di Trento, 38123 Trento, Italy
| | - Mariia Zadorozhna
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Michela Alessandra Denti
- Dipartimento di Biologia Cellulare, Computazionale e Integrata (CIBIO), Università degli Studi di Trento, 38123 Trento, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Medical Genetics Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
10
|
Al-Imam MJ, Hussein UAR, Sead FF, Faqri AMA, Mekkey SM, Khazel AJ, Almashhadani HA. The interactions between DNA methylation machinery and long non-coding RNAs in tumor progression and drug resistance. DNA Repair (Amst) 2023; 128:103526. [PMID: 37406581 DOI: 10.1016/j.dnarep.2023.103526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
DNA methylation is one of the main epigenetic mechanisms in cancer development and progression. Aberrant DNA methylation of CpG islands within promoter regions contributes to the dysregulation of various tumor suppressors and oncogenes; this leads to the appearance of malignant features, including rapid proliferation, metastasis, stemness, and drug resistance. The discovery of two important protein families, DNA methyltransferases (DNMTs) and Ten-eleven translocation (TET) dioxygenases, respectively, which are responsible for deregulated transcription of genes that play pivotal roles in tumorigenesis, led to further understanding of DNA methylation-related pathways. But how these enzymes can target specific genes in different malignancies; recent studies have highlighted the considerable role of Long Non-coding RNAs (LncRNAs). LncRNAs recruit these enzymes to promoter regions of genes and mediate their functions, showing great potential as therapeutic agents targeting the epigenetic regulation of various genes. Considering the importance of combining the current treatment methods, especially chemotherapies, with DNA methylation inhibitors in improving patients' outcomes, this review aimed to summarize the recent findings about the interaction between DNA methylation machinery and LncRNAs in regulating genes involved in tumorigenesis and drug resistance. So, these studies could provide insights toward developing novel strategies for cancer-targeted therapy.
Collapse
Affiliation(s)
- Mokhtar Jawad Al-Imam
- Department of Experimental Therapy, Iraqi Center for Cancer and Medical Genetics Research, Almustansiriyah University, Baghdad, Iraq
| | | | | | | | - Shereen M Mekkey
- Pharmacy Department, Al-Mustaqbal University College, 51001 Hilla, Babylon, Iraq
| | | | | |
Collapse
|
11
|
Pierattini B, D’Agostino S, Bon C, Peruzzo O, Alendar A, Codino A, Ros G, Persichetti F, Sanges R, Carninci P, Santoro C, Espinoza S, Valentini P, Pandolfini L, Gustincich S. SINEUP non-coding RNA activity depends on specific N6-methyladenosine nucleotides. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:402-414. [PMID: 37187707 PMCID: PMC10176434 DOI: 10.1016/j.omtn.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
SINEUPs are natural and synthetic antisense long non-coding RNAs (lncRNAs) selectively enhancing target mRNAs translation by increasing their association with polysomes. This activity requires two RNA domains: an embedded inverted SINEB2 element acting as effector domain, and an antisense region, the binding domain, conferring target selectivity. SINEUP technology presents several advantages to treat genetic (haploinsufficiencies) and complex diseases restoring the physiological activity of diseased genes and of compensatory pathways. To streamline these applications to the clinic, a better understanding of the mechanism of action is needed. Here we show that natural mouse SINEUP AS Uchl1 and synthetic human miniSINEUP-DJ-1 are N6-methyladenosine (m6A) modified by METTL3 enzyme. Then, we map m6A-modified sites along SINEUP sequence with Nanopore direct RNA sequencing and a reverse transcription assay. We report that m6A removal from SINEUP RNA causes the depletion of endogenous target mRNA from actively translating polysomes, without altering SINEUP enrichment in ribosomal subunit-associated fractions. These results prove that SINEUP activity requires an m6A-dependent step to enhance translation of target mRNAs, providing a new mechanism for m6A translation regulation and strengthening our knowledge of SINEUP-specific mode of action. Altogether these new findings pave the way to a more effective therapeutic application of this well-defined class of lncRNAs.
Collapse
Affiliation(s)
- Bianca Pierattini
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Sabrina D’Agostino
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Carlotta Bon
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Omar Peruzzo
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Andrej Alendar
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Azzurra Codino
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Gloria Ros
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Francesca Persichetti
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Remo Sanges
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama 230-0045, Japan
- Human Technopole, 20157 Milan, Italy
| | - Claudio Santoro
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Stefano Espinoza
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Paola Valentini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Corresponding author: Paola Valentini, Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), via Melen 83, 16152 Genova, Italy.
| | - Luca Pandolfini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Corresponding author: Luca Pandolfini, Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), via Melen 83, 16152 Genova, Italy.
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Corresponding author: Stefano Gustincich, Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), via Melen 83, 16152 Genova, Italy.
| |
Collapse
|
12
|
Srinivas T, Mathias C, Oliveira-Mateos C, Guil S. Roles of lncRNAs in brain development and pathogenesis: Emerging therapeutic opportunities. Mol Ther 2023; 31:1550-1561. [PMID: 36793211 PMCID: PMC10277896 DOI: 10.1016/j.ymthe.2023.02.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The human genome is pervasively transcribed, producing a majority of short and long noncoding RNAs (lncRNAs) that can influence cellular programs through a variety of transcriptional and post-transcriptional regulatory mechanisms. The brain houses the richest repertoire of long noncoding transcripts, which function at every stage during central nervous system development and homeostasis. An example of functionally relevant lncRNAs is species involved in spatiotemporal organization of gene expression in different brain regions, which play roles at the nuclear level and in transport, translation, and decay of other transcripts in specific neuronal sites. Research in the field has enabled identification of the contributions of specific lncRNAs to certain brain diseases, including Alzheimer's disease, Parkinson's disease, cancer, and neurodevelopmental disorders, resulting in notions of potential therapeutic strategies that target these RNAs to recover the normal phenotype. Here, we summarize the latest mechanistic findings associated with lncRNAs in the brain, focusing on their dysregulation in neurodevelopmental or neurodegenerative disorders, their use as biomarkers for central nervous system (CNS) diseases in vitro and in vivo, and their potential utility for therapeutic strategies.
Collapse
Affiliation(s)
- Tara Srinivas
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Catalonia, Spain
| | - Carolina Mathias
- Department of Genetics, Federal University of Parana, Post-graduation Program in Genetics, Curitiba, PR, Brazil; Laboratory of Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, PR, Brazil
| | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Catalonia, Spain; Germans Trias i Pujol Health Science Research Institute, Badalona, 08916 Barcelona, Catalonia, Spain.
| |
Collapse
|
13
|
Zhang W, Liu Y, Luo Y, Shu X, Pu C, Zhang B, Feng P, Xiong A, Kong Q. New insights into the role of long non-coding RNAs in osteoporosis. Eur J Pharmacol 2023; 950:175753. [PMID: 37119958 DOI: 10.1016/j.ejphar.2023.175753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Osteoporosis is a common disease in elderly individuals, and osteoporosis can easily lead to bone and hip fractures that seriously endanger the health of elderly individuals. At present, the treatment of osteoporosis is mainly anti-osteoporosis drugs, but there are side effects associated with anti-osteoporosis drugs. Therefore, it is very important to develop early diagnostic indicators and new therapeutic drugs for the prevention and treatment of osteoporosis. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 nucleotides, can be used as diagnostic markers for osteoporosis, and lncRNAs play an important role in the progression of osteoporosis. Many studies have shown that lncRNAs can be the target of osteoporosis. Therefore, herein, the role of lncRNAs in osteoporosis is summarized, aiming to provide some information for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuheng Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanrui Luo
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiang Shu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Congmin Pu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pin Feng
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Qingquan Kong
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Brancato V, Brentari I, Coscujuela Tarrero L, Furlan M, Nicassio F, Denti MA. News from around the RNA world: new avenues in RNA biology, biotechnology and therapeutics from the 2022 SIBBM meeting. Biol Open 2022; 11:bio059597. [PMID: 36239357 PMCID: PMC9581514 DOI: 10.1242/bio.059597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the formalization of the Central Dogma of molecular biology, the relevance of RNA in modulating the flow of information from DNA to proteins has been clear. More recently, the discovery of a vast set of non-coding transcripts involved in crucial aspects of cellular biology has renewed the enthusiasm of the RNA community. Moreover, the remarkable impact of RNA therapies in facing the COVID19 pandemics has bolstered interest in the translational opportunities provided by this incredible molecule. For all these reasons, the Italian Society of Biophysics and Molecular Biology (SIBBM) decided to dedicate its 17th yearly meeting, held in June 2022 in Rome, to the many fascinating aspects of RNA biology. More than thirty national and international speakers covered the properties, modes of action and applications of RNA, from its role in the control of development and cell differentiation to its involvement in disease. Here, we summarize the scientific content of the conference, highlighting the take-home message of each presentation, and we stress the directions the community is currently exploring to push forward our comprehension of the RNA World 3.0.
Collapse
Affiliation(s)
- Virginia Brancato
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan 20139, Italy
| | - Ilaria Brentari
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | | | - Mattia Furlan
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan 20139, Italy
| | - Francesco Nicassio
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan 20139, Italy
| | - Michela A. Denti
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| |
Collapse
|
15
|
Bezzecchi E, Pagani G, Forte B, Percio S, Zaffaroni N, Dolfini D, Gandellini P. MIR205HG/LEADR Long Noncoding RNA Binds to Primed Proximal Regulatory Regions in Prostate Basal Cells Through a Triplex- and Alu-Mediated Mechanism. Front Cell Dev Biol 2022; 10:909097. [PMID: 35784469 PMCID: PMC9247157 DOI: 10.3389/fcell.2022.909097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 01/11/2023] Open
Abstract
Aside serving as host gene for miR-205, MIR205HG transcribes for a chromatin-associated long noncoding RNA (lncRNA) able to restrain the differentiation of prostate basal cells, thus being reannotated as LEADR (Long Epithelial Alu-interacting Differentiation-related RNA). We previously showed the presence of Alu sequences in the promoters of genes modulated upon MIR205HG/LEADR manipulation. Notably, an Alu element also spans the first and second exons of MIR205HG/LEADR, suggesting its possible involvement in target selection/binding. Here, we performed ChIRP-seq to map MIR205HG/LEADR chromatin occupancy at genome-wide level in prostate basal cells. Our results confirmed preferential binding to regions proximal to gene transcription start site (TSS). Moreover, enrichment of triplex-forming sequences was found upstream of MIR205HG/LEADR-bound genes, peaking at −1,500/−500 bp from TSS. Triplexes formed with one or two putative DNA binding sites within MIR205HG/LEADR sequence, located just upstream of the Alu element. Notably, triplex-forming regions of bound genes were themselves enriched in Alu elements. These data suggest, from one side, that triplex formation may be the prevalent mechanism by which MIR205HG/LEADR selects and physically interacts with target DNA, from the other that direct or protein-mediated Alu (RNA)/Alu (DNA) interaction may represent a further functional requirement. We also found that triplex-forming regions were enriched in specific histone modifications, including H3K4me1 in the absence of H3K27ac, H3K4me3 and H3K27me3, indicating that in prostate basal cells MIR205HG/LEADR may preferentially bind to primed proximal regulatory elements. This may underscore the need for basal cells to keep MIR205HG/LEADR target genes repressed but, at the same time, responsive to differentiation cues.
Collapse
Affiliation(s)
- Eugenia Bezzecchi
- Department of Biosciences, University of Milan, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Pagani
- Department of Biosciences, University of Milan, Milan, Italy
| | - Barbara Forte
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Percio
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCSS Istituto Nazionale dei Tumori, Milan, Italy
| | - Diletta Dolfini
- Department of Biosciences, University of Milan, Milan, Italy
| | - Paolo Gandellini
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Paolo Gandellini,
| |
Collapse
|
16
|
Valentini P, Pierattini B, Zacco E, Mangoni D, Espinoza S, Webster NA, Andrews B, Carninci P, Tartaglia GG, Pandolfini L, Gustincich S. Towards SINEUP-based therapeutics: Design of an in vitro synthesized SINEUP RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1092-1102. [PMID: 35228902 PMCID: PMC8857549 DOI: 10.1016/j.omtn.2022.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/28/2022] [Indexed: 12/28/2022]
Abstract
SINEUPs are a novel class of natural and synthetic non-coding antisense RNA molecules able to increase the translation of a target mRNA. They present a modular organization comprising an unstructured antisense target-specific domain, which sets the specificity of each individual SINEUP, and a structured effector domain, which is responsible for the translation enhancement. In order to design a fully functional in vitro transcribed SINEUP for therapeutics applications, SINEUP RNAs were synthesized in vitro with a variety of chemical modifications and screened for their activity on endogenous target mRNA upon transfection. Three combinations of modified ribonucleotides-2'O methyl-ATP (Am), N6 methyl-ATP (m6A), and pseudo-UTP (ψ)-conferred SINEUP activity to naked RNA. The best combination tested in this study was fully modified with m6A and ψ. Aside from functionality, this combination conferred improved stability upon transfection and higher thermal stability. Common structural determinants of activity were identified by circular dichroisms, defining a core functional structure that is achieved with different combinations of modifications.
Collapse
Affiliation(s)
- Paola Valentini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Bianca Pierattini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Elsa Zacco
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Damiano Mangoni
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Stefano Espinoza
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Natalie A. Webster
- STORM Therapeutics, Babraham Research Campus, Moneta Building, Cambridge, CB22 3AT, UK
| | - Byron Andrews
- STORM Therapeutics, Babraham Research Campus, Moneta Building, Cambridge, CB22 3AT, UK
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | | | - Luca Pandolfini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| |
Collapse
|
17
|
Zambrano N, Froechlich G, Lazarevic D, Passariello M, Nicosia A, De Lorenzo C, Morelli MJ, Sasso E. High-Throughput Monoclonal Antibody Discovery from Phage Libraries: Challenging the Current Preclinical Pipeline to Keep the Pace with the Increasing mAb Demand. Cancers (Basel) 2022; 14:cancers14051325. [PMID: 35267633 PMCID: PMC8909429 DOI: 10.3390/cancers14051325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Monoclonal antibodies are increasingly used for a broad range of diseases. Rising demand must face with time time-consuming and laborious processes to isolate novel monoclonal antibodies. Next-generation sequencing coupled to phage display provides timely and sustainable high throughput selection strategy to rapidly access novel target. Here, we describe the current NGS-guided strategies to identify potential binders from enriched sub-libraires by applying a user-friendly informatic pipeline to identify and discard false positive clones. Rescue step and strategies to boost mAb yield are also discussed to improve the limiting selection and screening steps. Abstract Monoclonal antibodies are among the most powerful therapeutics in modern medicine. Since the approval of the first therapeutic antibody in 1986, monoclonal antibodies keep holding great expectations for application in a range of clinical indications, highlighting the need to provide timely and sustainable access to powerful screening options. However, their application in the past has been limited by time-consuming and expensive steps of discovery and production. The screening of antibody repertoires is a laborious step; however, the implementation of next-generation sequencing-guided screening of single-chain antibody fragments has now largely overcome this issue. This review provides a detailed overview of the current strategies for the identification of monoclonal antibodies from phage display-based libraries. We also discuss the challenges and the possible solutions to improve the limiting selection and screening steps, in order to keep pace with the increasing demand for monoclonal antibodies.
Collapse
Affiliation(s)
- Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
- Correspondence: (N.Z.); (E.S.)
| | - Guendalina Froechlich
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy; (D.L.); (M.J.M.)
| | - Margherita Passariello
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Alfredo Nicosia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Claudia De Lorenzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Marco J. Morelli
- Center for Omics Sciences Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy; (D.L.); (M.J.M.)
| | - Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (G.F.); (M.P.); (A.N.); (C.D.L.)
- CEINGE—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
- Correspondence: (N.Z.); (E.S.)
| |
Collapse
|