1
|
Sanchez‐Lucas R, Bosanquet JL, Henderson J, Catoni M, Pastor V, Luna E. Elicitor Specific Mechanisms of Defence Priming in Oak Seedlings Against Powdery Mildew. PLANT, CELL & ENVIRONMENT 2025; 48:4455-4474. [PMID: 40001308 PMCID: PMC12050401 DOI: 10.1111/pce.15419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Defence priming sensitises plant defences to enable a faster and/or stronger response to subsequent stress. Various chemicals can trigger priming; however, the response remains unexplored in oak. Here, we characterise salicylic acid (SA)-, jasmonic acid (JA)-, and β-aminobutyric acid (BABA)-induced priming of oak seedlings against the causal agent of powdery mildew (Erysiphe alphitoides, PM). Whilst JA had no effects, BABA and SA enhanced resistance by priming callose deposition and SA-dependent gene expression, respectively. Untargeted transcriptome and metabolome analyses revealed genes and metabolites uniquely primed by BABA, SA, and JA. Enrichment analyses demonstrated a limited number of pathways differentiating the three treatments or the resistance-inducing elicitors BABA and SA. However, a similar mode of action between BABA and JA was identified. Moreover, our analyses revealed a lack of crosstalk between SA and JA. Interestingly, priming by BABA was linked to alkaloid, lignan, phenylpropanoid, and indolitic compounds biosynthesis. Moreover, integration of the omics analyses revealed the role of ubiquitination and protein degradation in priming by BABA. Our results confirm the existence of chemical-induced priming in oak and has identified specific molecular markers associated with well-characterised elicitors.
Collapse
Affiliation(s)
- Rosa Sanchez‐Lucas
- Birmingham Institute of Forest Research, School of BiosciencesUniversity of BirminghamBirminghamWest MidlandsUK
| | - Jack L. Bosanquet
- Birmingham Institute of Forest Research, School of BiosciencesUniversity of BirminghamBirminghamWest MidlandsUK
| | - James Henderson
- Birmingham Institute of Forest Research, School of BiosciencesUniversity of BirminghamBirminghamWest MidlandsUK
| | - Marco Catoni
- Birmingham Institute of Forest Research, School of BiosciencesUniversity of BirminghamBirminghamWest MidlandsUK
| | - Victoria Pastor
- Metabolic Integration and Cell Signalling GroupUniversity Jaume ICastellonValencian RegionSpain
| | - Estrella Luna
- Birmingham Institute of Forest Research, School of BiosciencesUniversity of BirminghamBirminghamWest MidlandsUK
| |
Collapse
|
2
|
Laureano G, Matos AR, Figueiredo A. Exploring the potential of lipid elicitors to enhance plant immunity. Prog Lipid Res 2025; 98:101332. [PMID: 40139324 DOI: 10.1016/j.plipres.2025.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/07/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Lipids besides being components of membranes and storage molecules are also involved in signalling processes and have proven to be vital components in plant defence mechanisms. Over the past decades, the intricate lipid-signalling pathways that underlie the establishment of defence responses have been extensively studied. These molecules can act directly as signalling agents in plant defence or serve as precursors in a plethora of biosynthetic pathways, leading to the production of phytohormones and other signalling agents. Lipids have proven to be promising elicitors by not only trigger a robust and appropriate defence response, across various plant species, but also induce resistance against a wide range of pathogens. Allied to this, lipids are widespread molecules in nature, which makes them an accessible resource and highlights their potential use as a sustainable approach to crop protection. This comprehensive review emphasizes the potential of lipids and lipid-derived molecules as elicitors in developing sustainable agricultural practices. By leveraging the natural defence mechanisms of plants, lipid elicitors offer a viable and eco-friendly alternative to conventional pest management strategies, contributing to the overall goal of sustainable agriculture.
Collapse
Affiliation(s)
- Gonçalo Laureano
- Grapevine Pathogen Systems lab, BioISI, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal; BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| | - Ana Rita Matos
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Andreia Figueiredo
- Grapevine Pathogen Systems lab, BioISI, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal; BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
3
|
Spanou VM, Andriopoulou TP, Giamarellos-Bourboulis EJ, Netea MG. Improving the odds of survival: transgenerational effects of infections. EMBO Mol Med 2025; 17:609-624. [PMID: 39843630 PMCID: PMC11982362 DOI: 10.1038/s44321-025-00192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Recent studies argue for a novel concept of the role of chromatin as a carrier of epigenetic memory through cellular and organismal generations, defining and coordinating gene activity states and physiological functions. Environmental insults, such as exposures to unhealthy diets, smoking, toxic compounds, and infections, can epigenetically reprogram germ-line cells and influence offspring phenotypes. This review focuses on intergenerational and transgenerational epigenetic inheritance in different plants, animal species and humans, presenting the up-to-date evidence and arguments for such effects in light of Darwinian and Lamarckian evolutionary theories. An overview of the epigenetic changes induced by infection or other immune challenges is presented, and how these changes, known as epimutations, contribute to shaping offspring phenotypes. The mechanisms that mediate the transmission of epigenetic alterations via the germline are also discussed. Understanding the relationship between environmental fluctuations, epigenetic changes, resistance, and susceptibility to diseases is critical for unraveling disease etiology and adaptive evolution.
Collapse
Affiliation(s)
- Victoria M Spanou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece.
| | - Theano P Andriopoulou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, 6500HB, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Chhillar H, Nguyen HH, Yeh PM, Jones JDG, Ding P. Modular mechanisms of immune priming and growth inhibition mediated by plant effector-triggered immunity. Cell Rep 2025; 44:115394. [PMID: 40056417 DOI: 10.1016/j.celrep.2025.115394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/05/2024] [Accepted: 02/13/2025] [Indexed: 03/10/2025] Open
Abstract
Excessive activation of effector-triggered immunity (ETI) in plants inhibits plant growth and activates cell death. ETI mediated by intracellular Toll/interleukin-1 receptor/resistance protein (TIR) nucleotide-binding, leucine-rich repeat receptors (NLRs) involves two partially redundant signaling nodes in Arabidopsis, ENHANCED DISEASE SUSCEPTIBILITY 1-PHYTOALEXIN DEFICIENT 4-ACTIVATED DISEASE RESISTANCE 1 (EDS1-PAD4-ADR1) and EDS1-SENESCENCE-ASSOCIATED GENE 101-N REQUIREMENT GENE 1 (EDS1-SAG101-NRG1). Genetic and transcriptomic analyses show that EDS1-PAD4-ADR1 primarily enhances immune component abundance and is critical for limiting pathogen growth, whereas EDS1-SAG101-NRG1 mainly activates the hypersensitive response (HR) cell death but is dispensable for immune priming. This study enhances our understanding of the distinct contributions of these two signaling modules to ETI and suggests molecular principles and potential strategies for improving disease resistance in crops without compromising yield.
Collapse
Affiliation(s)
- Himanshu Chhillar
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, the Netherlands
| | - Hoang Hung Nguyen
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, the Netherlands
| | - Pei-Min Yeh
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, the Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333 BE, the Netherlands.
| |
Collapse
|
5
|
Poursakhi S, Asadi-Gharneh HA, Nasr-Esfahani M, Abbasi Z, Hassanzadeh Khankahdani H. Defense-related enzymes associated with resistance to onion Fusarium basal rot. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109326. [PMID: 39615189 DOI: 10.1016/j.plaphy.2024.109326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 02/05/2025]
Abstract
This study was carried out to quantify changes in the activities of antioxidative enzymes such as catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD) in two resistant onion cultivars 'Saba - HS' and 'Saba' and two susceptible cultivars 'Golden Eye' and 'Savannah Sweet' following an inoculation with Fusarium oxysporum f. sp. cepae (FOC) at seedling stage. Further, we assessed the expression of transcription factors (TFs), R1, PR5 and RGA29-genes that are involved in conferring resistance post-inoculation using qRT-PCR. The results revealed that the least disease severity occurred with the resistant 'Saba - HS' (4.7%) and 'Saba' (6.7%) cultivars, whereas the highest disease severity occurred with the susceptible 'Golden Eye' (89.6%) and 'Savannah Sweet' (88.9%) cultivars, respectively. Both resistant genotypes 'Saba' and 'Saba-HS' showed a significant increase in CAT, POX, and SOD activities at a transcriptional level. CAT activity was upregulated 4.81-fold in 'Saba' and 4.22-fold in 'Saba-HS' followed by POX where 'Saba' showed an increase by 3.53-fold and 'Saba-HS' by 2.35-fold, and SOD 'Saba' 17.46-fold and 'Saba-HS' 22.95-fold, relatively. Marker genes, RGA29, R1 and PR5, were also upregulated in the resistant-genotypes by 3.83, 4.78 and 5.01-fold, in comparison to their-controls, respectively. Similar trends were recorded for the biomass growth parameters (BGPs).
Collapse
Affiliation(s)
- SaeidReza Poursakhi
- Department of Horticulture, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Hossein Ali Asadi-Gharneh
- Department of Horticulture, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Mehdi Nasr-Esfahani
- Esfahan Agriculture and Natural Resource Research and Education Center, Esfahan, AREEO, Iran.
| | - Zahra Abbasi
- Esfahan Agriculture and Natural Resource Research and Education Center, Esfahan, AREEO, Iran
| | - Hamed Hassanzadeh Khankahdani
- Horticulture Crops Research Department, Hormozgan Agricultural and Natural Resources Research and Education Center, AREEO, Bandar Abbas, Iran
| |
Collapse
|
6
|
Farkas D, Dobránszki J. Vegetal memory through the lens of transcriptomic changes - recent progress and future practical prospects for exploiting plant transcriptional memory. PLANT SIGNALING & BEHAVIOR 2024; 19:2383515. [PMID: 39077764 PMCID: PMC11290777 DOI: 10.1080/15592324.2024.2383515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Plant memory plays an important role in the efficient and rapid acclimation to a swiftly changing environment. In addition, since plant memory can be inherited, it is also of adaptive and evolutionary importance. The ability of a plant to store, retain, retrieve and delete information on acquired experience is based on cellular, biochemical and molecular networks in the plants. This review offers an up-to-date overview on the formation, types, checkpoints of plant memory based on our current knowledge and focusing on its transcriptional aspects, the transcriptional memory. Roles of long and small non-coding RNAs are summarized in the regulation, formation and the cooperation between the different layers of the plant memory, i.e. in the establishment of epigenetic changes associated with memory formation in plants. The RNA interference mechanisms at the RNA and DNA level and the interplays between them are also presented. Furthermore, this review gives an insight of how exploitation of plant transcriptional memory may provide new opportunities for elaborating promising cost-efficient, and effective strategies to cope with the ever-changing environmental perturbations, caused by climate change. The potentials of plant memory-based methods, such as crop priming, cross acclimatization, memory modification by miRNAs and associative use of plant memory, in the future's agriculture are also discussed.
Collapse
Affiliation(s)
- Dóra Farkas
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
7
|
Duan Y, Han M, Schikora A. The coordinated responses of host plants to diverse N-acyl homoserine lactones. PLANT SIGNALING & BEHAVIOR 2024; 19:2356406. [PMID: 38785260 PMCID: PMC11135860 DOI: 10.1080/15592324.2024.2356406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
In nature, co-evolution shaped balanced entities of host plants and their associated microorganism. Plants maintain this balance by detecting their associated microorganism and coordinating responses to them. Quorum sensing (QS) is a widespread bacterial cell-to-cell communication mechanism to modulate the collective behavior of bacteria. As a well-characterized QS signal, N-acyl homoserine lactones (AHL) also influence plant fitness. Plants need to coordinate their responses to diverse AHL molecules since they might host bacteria producing various AHL. This opinion paper discusses plants response to a mixture of multiple AHL molecules. The function of various phytohormones and WRKY transcription factors seems to be characteristic for plants' response to multiple AHL. Additionally, the perspectives and possible approaches to facilitate further research and the application of AHL-producing bacteria are discussed.
Collapse
Affiliation(s)
- Yongming Duan
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Min Han
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
8
|
Fuertes-Rabanal M, Largo-Gosens A, Fischer A, Munzert KS, Carrasco-López C, Sánchez-Vallet A, Engelsdorf T, Mélida H. Linear β-1,2-glucans trigger immune hallmarks and enhance disease resistance in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7337-7350. [PMID: 39225413 PMCID: PMC11630039 DOI: 10.1093/jxb/erae368] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Immune responses in plants are triggered by molecular patterns or elicitors, recognized by plant pattern recognition receptors. Such molecular patterns are the consequence of host-pathogen interactions, and the response cascade activated after their perception is known as pattern-triggered immunity (PTI). Glucans have emerged as key players in PTI, but the ability of certain glucans to stimulate defensive responses in plants remains understudied. This work focused on identifying novel glucan oligosaccharides as molecular patterns. The ability of various microorganism-derived glucans to trigger PTI responses was tested, revealing that specific microbial-derived molecules, such as short linear β-1,2-glucans, trigger this response in plants by increasing the production of reactive oxygen species (ROS), mitogen-activated protein kinase phosphorylation, and differential expression of defence-related genes in Arabidopsis thaliana. Pre-treatments with β-1,2-glucan trisaccharide (B2G3) improved Arabidopsis defence against bacterial and fungal infections in a hypersusceptible genotype. The knowledge generated was then transferred to the monocotyledonous model species maize and wheat, demonstrating that these plants also respond to β-1,2-glucans, with increased ROS production and improved protection against fungal infections following B2G3 pre-treatments. In summary, as with other β-glucans, plants perceive β-1,2-glucans as warning signals which stimulate defence responses against phytopathogens.
Collapse
Affiliation(s)
- María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Alicia Fischer
- Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Kristina S Munzert
- Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Cristian Carrasco-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón(Madrid), Spain
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón(Madrid), Spain
| | - Timo Engelsdorf
- Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
9
|
Yadav N, Bora S, Devi B, Upadhyay C, Singh P. Nanoparticle-mediated defense priming: A review of strategies for enhancing plant resilience against biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108796. [PMID: 38901229 DOI: 10.1016/j.plaphy.2024.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Nanotechnology has emerged as a promising field with the potential to revolutionize agriculture, particularly in enhancing plant defense mechanisms. Nanoparticles (NPs) are instrumental in plant defense priming, where plants are pre-exposed to controlled levels of stress to heighten their alertness and responsiveness to subsequent stressors. This process improves overall plant performance by enabling quicker and more effective responses to secondary stimuli. This review explores the application of NPs as priming agents, utilizing their unique physicochemical properties to bolster plants' innate defense mechanisms. It discusses key findings in NP-based plant defense priming, including various NP types such as metallic, metal oxide, and carbon-based NPs. The review also investigates the intricate mechanisms by which NPs interact with plants, including uptake, translocation, and their effects on plant physiology, morphology, and molecular processes. Additionally, the review examines how NPs can enhance plant responses to a range of stressors, from pathogen attacks and herbivore infestations to environmental stresses. It also discusses NPs' ability to improve plants' tolerance to abiotic stresses like drought, salinity, and heavy metals. Safety and regulatory aspects of NP use in agriculture are thoroughly addressed, emphasizing responsible and ethical deployment for environmental and human health safety. By harnessing the potential of NPs, this approach shows promise in reducing crop losses, increasing yields, and enhancing global food security while minimizing the environmental impact of traditional agricultural practices. The review concludes by emphasizing the importance of ongoing research to optimize NP formulations, dosages, and delivery methods for practical application in diverse agricultural settings.
Collapse
Affiliation(s)
- Nidhi Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Sunayana Bora
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Bandana Devi
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Chandan Upadhyay
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Prashant Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
10
|
Tao CN, Ton J. Role of PMR4 and PDLP1 in priming of early acting penetration defense by resistance-inducing β-amino acids. iScience 2024; 27:109299. [PMID: 38482498 PMCID: PMC10933464 DOI: 10.1016/j.isci.2024.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/28/2023] [Accepted: 02/16/2024] [Indexed: 11/02/2024] Open
Abstract
R-β-homoserine (RBH) and β-aminobutyric acid (BABA) induce resistance against the oomycete Hyaloperonospora arabidopsidis (Hpa) in Arabidopsis, which is based on priming of multiple defense layers, including early acting penetration resistance at the cell wall. Here, we have examined the molecular basis of RBH- and BABA-primed defense by cell wall papillae against Hpa. Three-dimensional reconstruction of Hpa-induced papillae by confocal microscopy revealed no structural differences between control-, RBH-, and BABA-treated plants after Hpa challenge. However, mutations affecting POWDERY MILDEW RESISTANCE 4 or PLASMODESMATA LOCATED PROTEINs (PDLPs) only impaired BABA-induced penetration resistance and not RBH-induced penetration resistance. Furthermore, PDLP1 over-expression mimicked primed penetration resistance, while the intensity of GFP-tagged PDLP1 at germinating Hpa conidiospores was increased in BABA-primed plants but not RBH-primed plants. Our study reveals new regulatory layers of immune priming by β-amino acids and supports the notion that penetration resistance is a multifaceted defense layer that can be achieved through seperate pathways.
Collapse
Affiliation(s)
- Chia-Nan Tao
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield S10 2TN, UK
| | - Jurriaan Ton
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
11
|
Smith F, Luna E. Elevated atmospheric carbon dioxide and plant immunity to fungal pathogens: do the risks outweigh the benefits? Biochem J 2023; 480:1791-1804. [PMID: 37975605 PMCID: PMC10657175 DOI: 10.1042/bcj20230152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Anthropogenic emissions have caused atmospheric carbon dioxide (CO2) concentrations to double since the industrial revolution. Although this could benefit plant growth from the 'CO2 fertilisation' effect, recent studies report conflicting impacts of elevated CO2 (eCO2) on plant-pathogen interactions. Fungal pathogens are the leading cause of plant disease. Since climate change has been shown to affect the distribution and virulence of these pathogens, it is important to understand how their plant hosts may also respond. This review assesses existing reports of positive, negative, and neutral effects of eCO2 on plant immune responses to fungal pathogen infection. The interaction between eCO2 and immunity appears specific to individual pathosystems, dependent on environmental context and driven by the interactions between plant defence mechanisms, suggesting no universal effect can be predicted for the future. This research is vital for assessing how plants may become more at risk under climate change and could help to guide biotechnological efforts to enhance resistance in vulnerable species. Despite the importance of understanding the effects of eCO2 on plant immunity for protecting global food security, biodiversity, and forests in a changing climate, many plant-pathogen interactions are yet to be investigated. In addition, further research into the effects of eCO2 in combination with other environmental factors associated with climate change is needed. In this review, we highlight the risks of eCO2 to plants and point to the research required to address current unknowns.
Collapse
Affiliation(s)
- Freya Smith
- Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, U.K
| | - Estrella Luna
- Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, U.K
| |
Collapse
|
12
|
Ruiz-Galea M, Kremer C, Friero E, Hernández I. Tolerant Epitypes of Elicited Holm Oak Somatic Embryos Could Be Revealed by Challenges in Dual Culture with Phytophthora cinnamomi Rands. PLANTS (BASEL, SWITZERLAND) 2023; 12:3056. [PMID: 37687303 PMCID: PMC10489650 DOI: 10.3390/plants12173056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Holm oaks (Quercus ilex L.) can suffer severe infection by the oomycete Phytophthora cinnamomi Rands; the production of more tolerant plants is, therefore, required. Embryo formation is a key period in the establishment of epigenetic memory. Somatic embryos from three holm oak genotypes were elicited, either over 3 days or 60 days, with methyl-jasmonate, salicylic acid (SA), β-aminobutyric acid (BABA), or benzothiadiazole (all at 50 μM and 100 μM), or 10% and 30% of a filtered oomycete extract (FILT10 and FILT30) to activate plant immune responses. The number of embryos produced and conversion rate under all conditions were recorded. Some elicited embryos were then exposed to P. cinnamomi in dual culture, and differential mycelial growth and the progression of necrosis were measured. The same was performed with the roots of germinated embryos. Within genotypes, significant differences were seen among the elicitation treatments in terms of both variables. Embryos and roots of 60-day BABA, SA, or FILT10 treatments inhibited mycelium growth. The 3-day BABA (either concentration) and 60-day FILT10 induced the greatest inhibition of necrosis. Mycelium and necrosis inhibition were compared with those of tolerant trees. Both inhibitions might be a defense response maintained after primed embryo germination, thus increasing the likelihood of tolerance to infection.
Collapse
Affiliation(s)
- Mar Ruiz-Galea
- Department of Agroenvironmental Research, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Alcalá de Henares, 28805 Madrid, Spain; (C.K.); (E.F.); (I.H.)
| | | | | | | |
Collapse
|
13
|
Furci L, Pascual‐Pardo D, Tirot L, Zhang P, Hannan Parker A, Ton J. Heritable induced resistance in Arabidopsis thaliana: Tips and tools to improve effect size and reproducibility. PLANT DIRECT 2023; 7:e523. [PMID: 37638230 PMCID: PMC10457550 DOI: 10.1002/pld3.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Over a decade ago, three independent studies reported that pathogen- and herbivore-exposed Arabidopsis thaliana produces primed progeny with increased resistance. Since then, heritable induced resistance (h-IR) has been reported across numerous plant-biotic interactions, revealing a regulatory function of DNA (de)methylation dynamics. However, the identity of the epi-alleles controlling h-IR and the mechanisms by which they prime defense genes remain unknown, while the evolutionary significance of the response requires confirmation. Progress has been hampered by the relatively high variability, low effect size, and sometimes poor reproducibility of h-IR, as is exemplified by a recent study that failed to reproduce h-IR in A. thaliana by Pseudomonas syringae pv. tomato (Pst). This study aimed to improve h-IR effect size and reproducibility in the A. thaliana-Pst interaction. We show that recurrent Pst inoculations of seedlings result in stronger h-IR than repeated inoculations of older plants and that disease-related growth repression in the parents is a reliable marker for h-IR effect size in F1 progeny. Furthermore, RT-qPCR-based expression profiling of genes controlling DNA methylation maintenance revealed that the elicitation of strong h-IR upon seedling inoculations is marked by reduced expression of the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) gene, which is maintained in the apical meristem and transmitted to F1 progeny. Two additional genes, MET1 and CHROMOMETHYLASE3 (CMT3), displayed similar transcriptional repression in progeny from seedling-inoculated plants. Thus, reduced expression of DDM1, MET1, and CMT3 can serve as a marker of robust h-IR in F1 progeny. Our report offers valuable information and markers to improve the effect size and reproducibility of h-IR in the A. thaliana-Pst model interaction.
Collapse
Affiliation(s)
- L. Furci
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
- Plant Epigenetics UnitOkinawa Institute of Science and TechnologyOnnaOkinawaJapan
| | - D. Pascual‐Pardo
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - L. Tirot
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - P. Zhang
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - A. Hannan Parker
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - J. Ton
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| |
Collapse
|
14
|
Krokene P, Kohmann K, Huynh NB, Mageroy MH. Methyl jasmonate, salicylic acid, and oxalic acid affects growth, inducible defenses, and pine weevil resistance in Norway spruce. FRONTIERS IN PLANT SCIENCE 2023; 14:1155170. [PMID: 37484458 PMCID: PMC10357964 DOI: 10.3389/fpls.2023.1155170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
The large pine weevil (Hylobius abietis) is a major regeneration pest in commercial forestry. Pesticide application has historically been the preferred control method, but pesticides are now being phased out in several countries for environmental reasons. There is, thus, a need for alternative plant protection strategies. We applied methyl jasmonate (MeJA), salicylic acid (SA) or oxalic acid (OxA) on the stem of 2-year-old Norway spruce (Picea abies) plants to determine effects on inducible defenses and plant growth. Anatomical examination of stem cross-sections 9 weeks after application of 100 mM MeJA revealed massive formation of traumatic resin ducts and greatly reduced sapwood growth. Application of high concentrations of SA or OxA (500 and 200 mM, respectively) induced much weaker physiological responses than 100 mM MeJA. All three treatments reduced plant height growth significantly, but the reduction was larger for MeJA (~55%) than for SA and OxA (34-35%). Lower MeJA concentrations (5-50 mM) induced comparable traumatic resin duct formation as the high MeJA concentration but caused moderate (and non-significant) reductions in plant growth. Two-year-old spruce plants treated with 100 mM MeJA showed reduced mortality after exposure to pine weevils in the field, and this enhanced resistance-effect was statistically significant for three years after treatment.
Collapse
Affiliation(s)
- Paal Krokene
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Ketil Kohmann
- Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Ngan Bao Huynh
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Melissa H. Mageroy
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
15
|
Hönig M, Roeber VM, Schmülling T, Cortleven A. Chemical priming of plant defense responses to pathogen attacks. FRONTIERS IN PLANT SCIENCE 2023; 14:1146577. [PMID: 37223806 PMCID: PMC10200928 DOI: 10.3389/fpls.2023.1146577] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Plants can acquire an improved resistance against pathogen attacks by exogenous application of natural or artificial compounds. In a process called chemical priming, application of these compounds causes earlier, faster and/or stronger responses to pathogen attacks. The primed defense may persist over a stress-free time (lag phase) and may be expressed also in plant organs that have not been directly treated with the compound. This review summarizes the current knowledge on the signaling pathways involved in chemical priming of plant defense responses to pathogen attacks. Chemical priming in induced systemic resistance (ISR) and systemic acquired resistance (SAR) is highlighted. The roles of the transcriptional coactivator NONEXPRESSOR OF PR1 (NPR1), a key regulator of plant immunity, induced resistance (IR) and salicylic acid signaling during chemical priming are underlined. Finally, we consider the potential usage of chemical priming to enhance plant resistance to pathogens in agriculture.
Collapse
Affiliation(s)
- Martin Hönig
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Venja M. Roeber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
16
|
Hayashi K, Alseekh S, Fernie AR. Genetic and epigenetic control of the plant metabolome. Proteomics 2023:e2200104. [PMID: 36781168 DOI: 10.1002/pmic.202200104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Plant metabolites are mainly produced through chemical reactions catalysed by enzymes encoded in the genome. Mutations in enzyme-encoding or transcription factor-encoding genes can alter the metabolome by changing the enzyme's catalytic activity or abundance, respectively. Insertion of transposable elements into non-coding regions has also been reported to affect transcription and ultimately metabolite content. In addition to genetic mutations, transgenerational epigenetic variations have also been found to affect metabolic content by controlling the transcription of metabolism-related genes. However, the majority of cases reported so far, in which epigenetic mechanisms are associated with metabolism, are non-transgenerational, and are triggered by developmental signals or environmental stress. Although, accumulating research has provided evidence of strong genetic control of the metabolome, epigenetic control has been largely untouched. Here, we provide a review of the genetic and epigenetic control of metabolism with a focus on epigenetics. We discuss both transgenerational and non-transgenerational epigenetic marks regulating metabolism as well as prospects of the field of metabolic control where intricate interactions between genetics and epigenetics are involved.
Collapse
Affiliation(s)
- Koki Hayashi
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center for Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center for Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
17
|
Perazzolli M, Ton J, Luna E, Mauch-Mani B, Pappas ML, Roberts MR, Vlot AC, Flors V. Editorial: Induced resistance and priming against pests and pathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:1075783. [PMID: 36466272 PMCID: PMC9710379 DOI: 10.3389/fpls.2022.1075783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Michele Perazzolli
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all’Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Jurriaan Ton
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Estrella Luna
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Brigitte Mauch-Mani
- Laboratoire de Biologie Moléculaire et Cellulaire, Institute of Biology, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Maria L. Pappas
- Department of Agricultural Development, Faculty of Agricultural and Forestry Sciences, Democritus University of Thrace, Orestiada, Greece
| | - Michael R. Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - A. Corina Vlot
- University of Bayreuth, Faculty of Life Sciences: Food, Nutrition and Health, Chair of Crop Plant Genetics, Kulmbach, Germany
| | - Víctor Flors
- Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón, Spain
| |
Collapse
|