1
|
Movahedi A, Hwarari D, Dzinyela R, Ni S, Yang L. A close-up of regulatory networks and signaling pathways of MKK5 in biotic and abiotic stresses. Crit Rev Biotechnol 2025; 45:473-490. [PMID: 38797669 DOI: 10.1080/07388551.2024.2344584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024]
Abstract
Mitogen-activated protein Kinase Kinase 5 (MKK5) is a central hub in the complex phosphorylation chain reaction of the Mitogen-activated protein kinases (MAPK) cascade, regulating plant responses to biotic and abiotic stresses. This review manuscript aims to provide a comprehensive analysis of the regulatory mechanism of the MKK5 involved in stress adaptation. This review will delve into the intricate post-transcriptional and post-translational modifications of the MKK5, discussing how they affect its expression, activity, and subcellular localization in response to stress signals. We also discuss the integration of the MKK5 into complex signaling pathways, orchestrating plant immunity against pathogens and its modulating role in regulating abiotic stresses, such as: drought, cold, heat, and salinity, through the phytohormonal signaling pathways. Furthermore, we highlight potential applications of the MKK5 for engineering stress-resilient crops and provide future perspectives that may pave the way for future studies. This review manuscript aims to provide valuable insights into the mechanisms underlying MKK5 regulation, bridge the gap from numerous previous findings, and offer a firm base in the knowledge of MKK5, its regulating roles, and its involvement in environmental stress regulation.
Collapse
Affiliation(s)
- Ali Movahedi
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
- College of Arts and Sciences, Arlington International University, Wilmington, DE, USA
| | - Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Raphael Dzinyela
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Siyi Ni
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Castroverde CDM, Kuan C, Kim JH. Plant immune resilience to a changing climate: molecular insights and biotechnological roadmaps. Genome 2025; 68:1-13. [PMID: 39499908 DOI: 10.1139/gen-2024-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Successful resistance to disease-causing pathogens is underpinned by properly regulated immune signalling and defence responses in plants. The plant immune system is controlled at multiple levels of gene and protein regulation-from chromatin-associated epigenetic processes to protein post-translational modifications. Optimal fine-tuning of plant immune signalling and responses is important to prevent plant disease development, which is being exacerbated by a globally changing climate. In this review, we focus on how changing climatic factors mechanistically intercept plant immunity at different levels of regulation (chromatin, transcriptional, post-transcriptional, translational, and post-translational). We specifically highlight recent studies that have provided molecular insights into critically important climate-sensitive nodes and mechanisms of the plant immune system. We then propose several potential future directions to build climate-resilient plant disease resistance using cutting-edge biotechnology. Overall, this conceptual understanding and promising biotechnological advances provide a foundational platform towards novel approaches to engineer plant immune resilience.
Collapse
Affiliation(s)
| | - Chi Kuan
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jong Hum Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
3
|
Yan Y, Wang H, Bi Y, Song F. Rice E3 ubiquitin ligases: From key modulators of host immunity to potential breeding applications. PLANT COMMUNICATIONS 2024; 5:101128. [PMID: 39245936 PMCID: PMC11671762 DOI: 10.1016/j.xplc.2024.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/17/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
To combat pathogen attacks, plants have developed a highly advanced immune system, which requires tight regulation to initiate robust defense responses while simultaneously preventing autoimmunity. The ubiquitin-proteasome system (UPS), which is responsible for degrading excess or misfolded proteins, has vital roles in ensuring strong and effective immune responses. E3 ligases, as key UPS components, play extensively documented roles in rice immunity by modulating the ubiquitination and degradation of downstream substrates involved in various immune signaling pathways. Here, we summarize the crucial roles of rice E3 ligases in both pathogen/microbe/damage-associated molecular pattern-triggered immunity and effector-triggered immunity, highlight the molecular mechanisms by which E3 ligases function in rice immune signaling, and emphasize the functions of E3 ligases as targets of pathogen effectors for pathogenesis. We also discuss potential strategies for application of immunity-associated E3 ligases in breeding of disease-resistant rice varieties without growth penalty. This review provides a comprehensive and updated understanding of the sophisticated and interconnected regulatory functions of E3 ligases in rice immunity and in balancing immunity with growth and development.
Collapse
Affiliation(s)
- Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Alotiby A. Immunology of Stress: A Review Article. J Clin Med 2024; 13:6394. [PMID: 39518533 PMCID: PMC11546738 DOI: 10.3390/jcm13216394] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Stress significantly impacts the immune system, affecting susceptibility to illness and overall health. This review examines the intricate relationship between stress and the immune system, offering insights having practical implications for health and disease prevention. Stress can significantly trigger molecular and immune modulation, affecting the distribution and trafficking of immune cells in various organs and altering their composition in the blood. The review delves into two key pathways connecting stress and immunity: the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Stress activates the neuroendocrine system and triggers microglia in the brain, releasing stress hormones and neurotransmitters that modulate the function and movement of immune cells. Acute stress can temporarily strengthen immunity and promote protection during infection; in contrast, chronic stress dysregulates or inhibits immune functions. Chronic stress causes an increase in cortisol levels through the HPA axis, ultimately suppressing the immune response. Recognizing stress triggers and implementing effective stress management techniques can significantly impact individuals' well-being. This review indicates that immune cells express genes differentially in response to stress, suggesting individual variabilities in the immune response against stress. This underscores the need for a personalized approach to stress management. This review also highlights the potential link between chronic stress and autoimmune disorders and warrants further investigation.
Collapse
Affiliation(s)
- Amna Alotiby
- Department of Hematology and Immunology, Faculty of Medicine, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| |
Collapse
|
5
|
Yang K, Zhou G, Chen C, Liu X, Wei L, Zhu F, Liang Z, Chen H. Joint metabolomic and transcriptomic analysis identify unique phenolic acid and flavonoid compounds associated with resistance to fusarium wilt in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1447860. [PMID: 39170788 PMCID: PMC11335689 DOI: 10.3389/fpls.2024.1447860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Introduction Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. cucumerinum (Foc) is a destructive soil-borne disease in cucumber (Cucumis sativus. L). However, there remains limited knowledge on the molecular mechanisms underlying FW resistance-mediated defense responses in cucumber. Methods In this study, metabolome and transcriptome profiling were carried out for two FW resistant (NR) and susceptible (NS), near isogenic lines (NILs) before and after Foc inoculation. NILs have shown consistent and stable resistance in multiple resistance tests conducted in the greenhouse and in the laboratory. A widely targeted metabolomic analysis identified differentially accumulated metabolites (DAMs) with significantly greater NR accumulation in response to Foc infection, including many phenolic acid and flavonoid compounds from the flavonoid biosynthesis pathway. Results Transcriptome analysis identified differentially expressed genes (DEGs) between the NILs upon Foc inoculation including genes for secondary metabolite biosynthesis and transcription factor genes regulating the flavonoid biosynthesis pathway. Joint analysis of the metabolomic and transcriptomic data identified DAMs and DEGs closely associated with the biosynthesis of phenolic acid and flavonoid DAMs. The association of these compounds with NR-conferred FW resistance was exemplified by in vivo assays. These assays found two phenolic acid compounds, bis (2-ethylhexyl) phthalate and diisooctyl phthalate, as well as the flavonoid compound gallocatechin 3-O-gallate to have significant inhibitory effects on Foc growth. The antifungal effects of these three compounds represent a novel finding. Discussion Therefore, phenolic acids and flavonoids play important roles in NR mediated FW resistance breeding in cucumber.
Collapse
Affiliation(s)
- Kankan Yang
- Longping Branch, Graduated School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Geng Zhou
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chen Chen
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiaohong Liu
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lin Wei
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Feiying Zhu
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhihuai Liang
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Huiming Chen
- Longping Branch, Graduated School of Hunan University, Changsha, China
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
6
|
Zhang C, Fang H, Wang J, Tao H, Wang D, Qin M, He F, Wang R, Wang GL, Ning Y. The rice E3 ubiquitin ligase-transcription factor module targets two trypsin inhibitors to enhance broad-spectrum disease resistance. Dev Cell 2024; 59:2017-2033.e5. [PMID: 38781974 DOI: 10.1016/j.devcel.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/09/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Broad-spectrum disease resistance (BSR) is crucial for controlling plant diseases and relies on immune signals that are subject to transcriptional and post-translational regulation. How plants integrate and coordinate these signals remains unclear. We show here that the rice really interesting new gene (RING)-type E3 ubiquitin ligase OsRING113 targets APIP5, a negative regulator of plant immunity and programmed cell death (PCD), for 26S proteasomal degradation. The osring113 mutants in Nipponbare exhibited decreased BSR, while the overexpressing OsRING113 plants showed enhanced BSR against Magnaporthe oryzae (M. oryzae) and Xanthomonas oryzae pv. oryzae (Xoo). Furthermore, APIP5 directly suppressed the transcription of the Bowman-Birk trypsin inhibitor genes OsBBTI5 and AvrPiz-t-interacting protein 4 (APIP4). Overexpression of these two genes, which are partially required for APIP5-mediated PCD and disease resistance, conferred BSR. OsBBTI5 and APIP4 associated with and stabilized the pathogenesis-related protein OsPR1aL, which promotes M. oryzae resistance. Our results identify an immune module with integrated and coordinated hierarchical regulations that confer BSR in plants.
Collapse
Affiliation(s)
- Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jisong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Tao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Debao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengchao Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
7
|
Zhao Y, Zhu X, Shi CM, Xu G, Zuo S, Shi Y, Cao W, Kang H, Liu W, Wang R, Ning Y, Wang GL, Wang X. OsEIL2 balances rice immune responses against (hemi)biotrophic and necrotrophic pathogens via the salicylic acid and jasmonic acid synergism. THE NEW PHYTOLOGIST 2024; 243:362-380. [PMID: 38730437 DOI: 10.1111/nph.19809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Plants typically activate distinct defense pathways against various pathogens. Heightened resistance to one pathogen often coincides with increased susceptibility to another pathogen. However, the underlying molecular basis of this antagonistic response remains unclear. Here, we demonstrate that mutants defective in the transcription factor ETHYLENE-INSENSITIVE 3-LIKE 2 (OsEIL2) exhibited enhanced resistance to the biotrophic bacterial pathogen Xanthomonas oryzae pv oryzae and to the hemibiotrophic fungal pathogen Magnaporthe oryzae, but enhanced susceptibility to the necrotrophic fungal pathogen Rhizoctonia solani. Furthermore, necrotroph-induced OsEIL2 binds to the promoter of OsWRKY67 with high affinity, leading to the upregulation of salicylic acid (SA)/jasmonic acid (JA) pathway genes and increased SA/JA levels, ultimately resulting in enhanced resistance. However, biotroph- and hemibiotroph-induced OsEIL2 targets OsERF083, resulting in the inhibition of SA/JA pathway genes and decreased SA/JA levels, ultimately leading to reduced resistance. Our findings unveil a previously uncharacterized defense mechanism wherein two distinct transcriptional regulatory modules differentially mediate immunity against pathogens with different lifestyles through the transcriptional reprogramming of phytohormone pathway genes.
Collapse
Affiliation(s)
- Yudan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoying Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Cheng-Min Shi
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Guojuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yanlong Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenlei Cao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
8
|
Zhu X, Zhao Y, Shi CM, Xu G, Wang N, Zuo S, Ning Y, Kang H, Liu W, Wang R, Yan S, Wang GL, Wang X. Antagonistic control of rice immunity against distinct pathogens by the two transcription modules via salicylic acid and jasmonic acid pathways. Dev Cell 2024; 59:1609-1622.e4. [PMID: 38640925 DOI: 10.1016/j.devcel.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Accepted: 03/24/2024] [Indexed: 04/21/2024]
Abstract
Although the antagonistic effects of host resistance against biotrophic and necrotrophic pathogens have been documented in various plants, the underlying mechanisms are unknown. Here, we investigated the antagonistic resistance mediated by the transcription factor ETHYLENE-INSENSITIVE3-LIKE 3 (OsEIL3) in rice. The Oseil3 mutant confers enhanced resistance to the necrotroph Rhizoctonia solani but greater susceptibility to the hemibiotroph Magnaporthe oryzae and biotroph Xanthomonas oryzae pv. oryzae. OsEIL3 directly activates OsERF040 transcription while repressing OsWRKY28 transcription. The infection of R. solani and M. oryzae or Xoo influences the extent of binding of OsEIL3 to OsWRKY28 and OsERF040 promoters, resulting in the repression or activation of both salicylic acid (SA)- and jasmonic acid (JA)-dependent pathways and enhanced susceptibility or resistance, respectively. These results demonstrate that the distinct effects of plant immunity to different pathogen types are determined by two transcription factor modules that control transcriptional reprogramming and the SA and JA pathways.
Collapse
Affiliation(s)
- Xiaoying Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yudan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cheng-Min Shi
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Guojuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nana Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuangyong Yan
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA.
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Chen MK, Zhang TL, Sun MZ, Yu HW, Ye LD. Transcription Factor Pdr3p Promotes Carotenoid Biosynthesis by Activating GAL Promoters in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:590-597. [PMID: 38324606 DOI: 10.1021/acssynbio.3c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pleiotropic drug resistance (PDR) family proteins have been extensively studied for their roles in transporting hydrophobic substances, including carotenoids. Overexpression of the PDR family regulator Pdr3p was recently found to boost the biosynthesis of carotenoids, which could not be explained by enhanced product secretion due to the meager extracellular proportions. To provide insights into the possible mechanism, comparative transcriptomics, reverse metabolic engineering, and electrophoretic mobility shift assay (EMSA) were conducted. Transcriptomic data suggested an unexpected correlation between Pdr3p overexpression and the transcriptional levels of GAL promoter-driven genes. This assumption was verified using mCherry and the lycopene synthetic pathway as the reporters. qRT-PCR and EMSA provided further evidence for the activation of GAL promoters by Pdr3p binding to their upstream activation sequences (UASs). This work gives insight into the mechanism of Pdr3p-promoted carotenoid production and highlights the complicated metabolic networking between transcriptional factors and promoters in yeast.
Collapse
Affiliation(s)
- Ming-Kai Chen
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tang-Lei Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ming-Ze Sun
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hong-Wei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Li-Dan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Tang B, Feng L, Hulin MT, Ding P, Ma W. Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics. Cell Host Microbe 2023; 31:1732-1747.e5. [PMID: 37741284 DOI: 10.1016/j.chom.2023.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 09/25/2023]
Abstract
Pathogen infection is a dynamic process. Here, we employ single-cell transcriptomics to investigate plant response heterogeneity. By generating an Arabidopsis thaliana leaf atlas encompassing 95,040 cells during infection by a fungal pathogen, Colletotrichum higginsianum, we unveil cell-type-specific gene expression, notably an enrichment of intracellular immune receptors in vasculature cells. Trajectory inference identifies cells that had different interactions with the invading fungus. This analysis divulges transcriptional reprogramming of abscisic acid signaling specifically occurring in guard cells, which is consistent with a stomatal closure dependent on direct contact with the fungus. Furthermore, we investigate the transcriptional plasticity of genes involved in glucosinolate biosynthesis in cells at the fungal infection sites, emphasizing the contribution of the epidermis-expressed MYB122 to disease resistance. This work underscores spatially dynamic, cell-type-specific plant responses to a fungal pathogen and provides a valuable resource that supports in-depth investigations of plant-pathogen interactions.
Collapse
Affiliation(s)
- Bozeng Tang
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, NR4 7UH Norwich, UK
| | - Li Feng
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, NR4 7UH Norwich, UK
| | - Michelle T Hulin
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, NR4 7UH Norwich, UK
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, NR4 7UH Norwich, UK.
| |
Collapse
|
11
|
Qi J, Wang H, Wu X, Noman M, Wen Y, Li D, Song F. Genome-wide characterization of the PLATZ gene family in watermelon (Citrullus lanatus L.) with putative functions in biotic and abiotic stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107854. [PMID: 37356384 DOI: 10.1016/j.plaphy.2023.107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/19/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Plant AT-rich sequence and zinc-binding (PLATZ) proteins are plant-specific transcription factors involved in growth, development, and stress responses. Here, we conducted a genome-wide characterization of the watermelon ClPLATZ family and examined its expression responsiveness to defense hormones and pathogen infection along with putative functions in biotic and abiotic stress responses. The watermelon genome contains 12 putative ClPLATZ genes, encoding proteins with a characteristic PLATZ domain, and their promoters contain various cis-elements related to plant growth, development, phytohormones and stress response. The ClPLATZ genes, except ClPLATZ6, are differentially expressed in response to defense hormones (e.g., salicylic acid and methyl jasmonate) and fungal infections caused by Fusarium oxysporum f. sp. niveum and Stagonosporopsis cucurbitacearum. Most ClPLATZ proteins interact with other proteins (viz., ClDP, ClRPT2a, and ClRPC53). Among ClPLATZ proteins, ClPLATZ8, 9, 10, and 11 are predominately localized in the nucleus. ClPLATZ3 and 8 positively, but ClPLATZ11 negatively regulate resistance against Pseudomonas syringe pv. tomato DC3000 in transgenic Arabidopsis lines. ClPLATZ8 and 11 positively regulate stress tolerance to NaCl and mannitol during seed germination in transgenic Arabidopsis. In conclusion, the characterization of the ClPLATZ family provides insights into the biological functions of ClPLATZ genes in growth, development, and stress response in watermelon. Further, the involvement of certain ClPLATZ genes in biotic and abiotic stress response in transgenic Arabidopsis suggests their potential application in engineering stress-tolerant crops.
Collapse
Affiliation(s)
- Jiahui Qi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hui Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyi Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Muhammad Noman
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ya Wen
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Dayong Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Fengming Song
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
12
|
Li C, Binaghi M, Pichon V, Cannarozzi G, Brandão de Freitas L, Hanemian M, Kuhlemeier C. Tight genetic linkage of genes causing hybrid necrosis and pollinator isolation between young species. NATURE PLANTS 2023; 9:420-432. [PMID: 36805038 PMCID: PMC10027609 DOI: 10.1038/s41477-023-01354-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/19/2023] [Indexed: 05/18/2023]
Abstract
The mechanisms of reproductive isolation that cause phenotypic diversification and eventually speciation are a major topic of evolutionary research. Hybrid necrosis is a post-zygotic isolation mechanism in which cell death develops in the absence of pathogens. It is often due to the incompatibility between proteins from two parents. Here we describe a unique case of hybrid necrosis due to an incompatibility between loci on chromosomes 2 and 7 between two pollinator-isolated Petunia species. Typical immune responses as well as endoplasmic reticulum stress responses are induced in the necrotic line. The locus on chromosome 2 encodes ChiA1, a bifunctional GH18 chitinase/lysozyme. The enzymatic activity of ChiA1 is dispensable for the development of necrosis. We propose that the extremely high expression of ChiA1 involves a positive feedback loop between the loci on chromosomes 2 and 7. ChiA1 is tightly linked to major genes involved in the adaptation to different pollinators, a form of pre-zygotic isolation. This linkage of pre- and post-zygotic barriers strengthens reproductive isolation and probably contributes to rapid diversification and speciation.
Collapse
Affiliation(s)
- Chaobin Li
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Marta Binaghi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Vivien Pichon
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Gina Cannarozzi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Chemistry/Biology/Pharmacy Information Center, ETH Zürich, Zürich, Switzerland
| | - Loreta Brandão de Freitas
- Department of Genetics, Laboratory of Molecular Evolution, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mathieu Hanemian
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
13
|
Breen S, McLellan H, Birch PRJ, Gilroy EM. Tuning the Wavelength: Manipulation of Light Signaling to Control Plant Defense. Int J Mol Sci 2023; 24:ijms24043803. [PMID: 36835216 PMCID: PMC9958957 DOI: 10.3390/ijms24043803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The growth-defense trade-off in plants is a phenomenon whereby plants must balance the allocation of their resources between developmental growth and defense against attack by pests and pathogens. Consequently, there are a series of points where growth signaling can negatively regulate defenses and where defense signaling can inhibit growth. Light perception by various photoreceptors has a major role in the control of growth and thus many points where it can influence defense. Plant pathogens secrete effector proteins to manipulate defense signaling in their hosts. Evidence is emerging that some of these effectors target light signaling pathways. Several effectors from different kingdoms of life have converged on key chloroplast processes to take advantage of regulatory crosstalk. Moreover, plant pathogens also perceive and react to light in complex ways to regulate their own growth, development, and virulence. Recent work has shown that varying light wavelengths may provide a novel way of controlling or preventing disease outbreaks in plants.
Collapse
Affiliation(s)
- Susan Breen
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Paul R. J. Birch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Eleanor M. Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Correspondence: ; Tel.: +44-1382568827
| |
Collapse
|
14
|
Tan J, Wang Y, Dymerski R, Wu Z, Weng Y. Sigma factor binding protein 1 (CsSIB1) is a putative candidate of the major-effect QTL dm5.3 for downy mildew resistance in cucumber (Cucumis sativus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4197-4215. [PMID: 36094614 DOI: 10.1007/s00122-022-04212-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The dm5.3 major-effect QTL in cucumber encodes a homolog of Arabidopsis sigma factor binding protein 1 (CsSIB1). CsSIB1 positively regulates defense responses against downy mildew in cucumber through the salicylic acid (SA) biosynthesis/signaling pathway. Downy mildew (DM) caused by the oomycete pathogen Pseudoperonospora cubensis is an important disease of cucumber and other cucurbits. Our knowledge on molecular mechanisms of DM resistance is still limited. In this study, we reported identification and functional characterization of the candidate gene for the major-effect QTL, dm5.3 for DM resistance originated from PI 197088. The dm5.3 QTL was Modelized through marker-assisted development of near isogenic lines (NILs). NIL-derived segregating populations were used for fine mapping which narrowed the dm5.3 locus down to a 144 kb region. Based on multiple lines of evidence, we show that CsSIB1 (CsGy5G027140) that encodes the VQ motif-containing sigma factor binding protein 1 as the most likely candidate for dm5.3. Local association analysis identified a haplotype consisting of 7 SNPs inside the coding and promoter region of CsSIB1 that was associated with DM resistance. Expression of CsSIB1 was up-regulated with P. cubensis infection. Transcriptome profiling of NILs in response to P. cubensis inoculation revealed key players and associated gene networks in which increased expression of CsSIB1 antagonistically promoted salicylic acid (SA) but suppressed jasmonic acid (JA) biosynthesis/signaling pathways. Our work provides novel insights into the function of CsSIB1/dm5.3 as a disease resistance (R) gene. The roles of sigma factor binding protein genes in pathogen defense in cucumber were also discussed.
Collapse
Affiliation(s)
- Junyi Tan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Yuhui Wang
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Ronald Dymerski
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Zhiming Wu
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Institute of Cash Crops, Hebei Academy of Agriculture & Forestry Sciences, Shijiazhuang, 050051, Hebei, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53706, USA.
| |
Collapse
|
15
|
Falconieri GS, Bertini L, Bizzarri E, Proietti S, Caruso C. Plant defense: ARR11 response regulator as a potential player in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:995178. [PMID: 36212312 PMCID: PMC9533103 DOI: 10.3389/fpls.2022.995178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Plant growth and response to environmental cues are largely driven by hormones. Salicylic acid (SA)- and jasmonic acid (JA)-mediated defenses have been shown to be effective against different types of attackers. SA-mediated defense is mainly effective against biotrophic pathogens and phloem-feeding insects, whereas JA-mediated defense is effective against necrotrophic pathogens and tissue-damaging insects. Cytokinins (CKs) are classic growth hormones that have also emerged as plant immunity modulators. Evidence pointed out that CKs contribute to the defense responses mediated by SA and JA, acting as hormone modulators of the SA/JA signaling backbone. Recently, we identified in Arabidopsis a type-B response regulator 11 (ARR 11) involved in cytokinin-mediated responses as a novel regulator of the SA/JA cross-talk. Here we investigated plant fitness and resistance against the fungal necrotrophic pathogen Botrytis cinerea in Arabidopsis wild-type Col-8 and defective arr11 mutant following SA, JA, CK single or combined treatment. Our results demonstrated that the CK and SA/JA/CK combination has a positive outcome on plant fitness in both Arabidopsis Col-8 and arr11 mutant,. The triple hormone treatment is efficient in increasing resistance to B. cinerea in Col-8 and this effect is stronger in arr11 mutant. The results will provide not only new background knowledge, corroborating the role of ARR11 in plant-defense related processes, but also new potential opportunities for alternative ways of protecting plants from fungal diseases.
Collapse
Affiliation(s)
| | | | | | | | - Carla Caruso
- *Correspondence: Silvia Proietti, ; Carla Caruso,
| |
Collapse
|