1
|
Li Y, Liu H, Li J, Fu C, Jiang B, Chen B, Zou Y, Yu B, Song B. MLLT3 Regulates Melanoma Stemness and Progression by Inhibiting HMGB1 Nuclear Entry and MAGEA1 M 5C Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408529. [PMID: 39716999 PMCID: PMC11904942 DOI: 10.1002/advs.202408529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/03/2024] [Indexed: 12/25/2024]
Abstract
Melanoma stem cells are a kind of cells with self-renewal and multi-directional differentiation potential. They are one of the key factors in the occurrence, development and metastasis of melanoma. This study demonstrates that MLLT3 is a transcription factor that regulates the stemness and progression of melanoma. MLLT3 interacted with HMGB1 to inhibit its entry into the nucleus, MLLT3 interacted with YBX1 to inhibit its reading of m5C of MAGEA1, thereby inhibiting the mRNA stability of MAGEA1, and directly transcribed P53 to inhibit the stemness, proliferation and metastasis of melanoma cells. This study further explored the potential mechanism of the interaction between miR-542-3p/miR-3922-3p and MLLT3. Furthermore, the scRNA-seq of melanoma cells with MLLT3 knock-out resulted in important changes in cell subsets, activating the TP53 and MAPK pathways and transforming into stem cells. The results indicate that the transcription factor MLLT3 is a suppressor gene that regulates the stemness and progression of melanoma, and is expected to become a target for melanoma therapy.
Collapse
Affiliation(s)
- Yaling Li
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
- Department of Dermatology, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Hong Liu
- Department of Otorhinolaryngology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Jingyi Li
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
- Department of Dermatology, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Chang Fu
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
- Department of Dermatology, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Bin Jiang
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Bancheng Chen
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Yanfen Zou
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Bo Yu
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
- Department of Dermatology, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| |
Collapse
|
2
|
Pan Y, Yuan C, Zeng C, Sun C, Xia L, Wang G, Chen X, Zhang B, Liu J, Ding ZY. Cancer stem cells and niches: challenges in immunotherapy resistance. Mol Cancer 2025; 24:52. [PMID: 39994696 PMCID: PMC11852583 DOI: 10.1186/s12943-025-02265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Cancer stem cells (CSCs) are central to tumor progression, metastasis, immune evasion, and therapeutic resistance. Characterized by remarkable self-renewal and adaptability, CSCs can transition dynamically between stem-like and differentiated states in response to external stimuli, a process termed "CSC plasticity." This adaptability underpins their resilience to therapies, including immune checkpoint inhibitors and adoptive cell therapies (ACT). Beyond intrinsic properties, CSCs reside in a specialized microenvironment-the CSC niche-which provides immune-privileged protection, sustains their stemness, and fosters immune suppression. This review highlights the critical role of CSCs and their niche in driving immunotherapy resistance, emphasizing the need for integrative approaches to overcome these challenges.
Collapse
Affiliation(s)
- Yonglong Pan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chaoyi Yuan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenglong Zeng
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaoyang Sun
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the MOE, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Limin Xia
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guihua Wang
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Tongji Hospital, GI Cancer Research Institute, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jianfeng Liu
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ze-Yang Ding
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Xu J, Gong W, Mo C, Hou X, Ou M. Global Knowledge Map and Emerging Research Trends in Induced Pluripotent Stem Cells and Hereditary Diseases: A CiteSpace-based Visualization and Analysis. Stem Cell Rev Rep 2025; 21:126-146. [PMID: 39377988 DOI: 10.1007/s12015-024-10799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 01/26/2025]
Abstract
The rise of induced pluripotent stem cells (iPSCs) technology has ushered in a landmark shift in the study of hereditary diseases. However, there is a scarcity of reports that offer a comprehensive and objective overview of the current state of research at the intersection of iPSCs and hereditary diseases. Therefore, this study endeavors to categorize and synthesize the publications in this field over the past decade through bibliometric methods and visual knowledge mapping, aiming to visually analyze their research focus and clinical trends. The English language literature on iPSCs and hereditary diseases, published from 2014 to 2023 in the Web of Science Core Collection (WoSCC), was examined. The CiteSpace (version 6.3.R1) software was utilized to visualize and analyze country/region, institution, scholar, co-cited authors, and co-cited journals. Additionally, the co-occurrence, clustering, and bursting of co-cited references were displayed. Analysis of 347 articles that met the inclusion criteria revealed a steady increase in the number of published articles and citation frequency in the field over the past decade. With regard to the countries/regions, institutions, scholars, and journals where the articles were published, the highest numbers were found in the USA, the University of California System, Suren M. Zakian, and Stem Cell Research, respectively. The current research is focused on the construction of disease models, both before and after correction, as well as drug target testing for single-gene hereditary diseases. Chromosome transplantation genomic therapy for hereditary diseases with abnormal chromosome structures may emerge as a future research hotspot in this field.
Collapse
Affiliation(s)
- Jiajun Xu
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and In- telligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Weiwei Gong
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and In- telligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Chune Mo
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and In- telligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Xianliang Hou
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and In- telligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Minglin Ou
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and In- telligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
4
|
Trautmann T, Yakobian N, Nguyen R. CAR T-cells for pediatric solid tumors: where to go from here? Cancer Metastasis Rev 2024; 43:1445-1461. [PMID: 39317919 PMCID: PMC11554711 DOI: 10.1007/s10555-024-10214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Despite the great success that chimeric antigen receptor (CAR) T-cells have had in patients with B-cell malignancies and multiple myeloma, they continue to have limited efficacy against most solid tumors. Especially in the pediatric population, pre- and post-treatment biopsies are rarely performed due to ethical reasons, and thus, our understanding is still very limited regarding the mechanisms in the tumor microenvironment by which tumor cells exclude effectors and attract immune-suppressive cells. Nevertheless, based on the principles that are known, current T-cell engineering has leveraged some of these processes and created more potent CAR T-cells. The recent discovery of new oncofetal antigens and progress made in CAR design have expanded the potential pool of candidate antigens for therapeutic development. The most promising approaches to enhance CAR T-cells are novel CAR gating strategies, creative ways of cytokine delivery to the TME without enhancing systemic toxicity, and hijacking the chemokine axis of tumors for migratory purposes. With these new modifications, the next step in the era of CAR T-cell development will be the clinical validation of these promising preclinical findings.
Collapse
Affiliation(s)
- Tina Trautmann
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Natalia Yakobian
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Rosa Nguyen
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Xiao Y, Gao L, Zhao X, Zhao W, Mai L, Ma C, Han Y, Li X. Novel prognostic alternative splicing events in colorectal Cancer: Impact on immune infiltration and therapy response. Int Immunopharmacol 2024; 139:112603. [PMID: 39043103 DOI: 10.1016/j.intimp.2024.112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE This study aims to comprehensively analyze alternative splicing (AS) features in colorectal cancer (CRC) using integrative multi-omics and to elucidate their relationship with the CRC immune microenvironment. METHODS Transcriptomic data, clinical information, and Percent Spliced In (PSI) values of AS events for CRC patients were obtained from The Cancer Genome Atlas (TCGA) and TCGA SpliceSeq databases. Differentially expressed AS events were identified. Univariate Cox analysis was used to pinpoint prognosis-related AS events. A prognostic risk model was developed and validated using multivariate Cox analysis, patient survival analysis, and the area under the receiver operating characteristic (ROC) curve (AUC). Gene Set Enrichment Analysis (GSEA), immune infiltration, immunotherapy, chemotherapy sensitivity analyses, and regulatory relationships between AS events and splicing factors (SFs) were conducted. Single-cell sequencing was used to study the distribution of key factors. siRNA and overexpression vectors were utilized to silence/overexpress BCAS1 in CRC cells and evaluate their effects on cell growth, migration, and invasion. Furthermore, the interaction between BCAS1 and ANO7 pre-mRNA was investigated using RIP-PCR. RESULTS 82 prognosis-related AS events were identified in CRC patients. A 15-AS prognostic model was constructed, which correlated with immune cell infiltration and showed differences in immunotherapy and chemotherapy sensitivity. BCAS1 was identified as a potential regulator of the ANO7|58341|AT splicing event in CRC. Single-cell sequencing analysis revealed the distribution of BCAS1 and ANO7 in cancer stem cells. In vitro experiments demonstrated that overexpression of BCAS1 and silencing of ANO7 inhibit the proliferation, migration, and invasion of CRC cells. Moreover, BCAS1 suppresses the progression of CRC by modulating ANO7 alternative splicing. CONCLUSION This study provides new insights into the role of alternative splicing in colorectal cancer, particularly the potential regulatory action of BCAS1 on the ANO7|58341|AT splicing event. It also identifies the impact of alternative splicing on the tumor microenvironment and potential implications for immunotherapy, highlighting its relevance for the in-depth study and treatment of CRC.
Collapse
Affiliation(s)
- Yizhi Xiao
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Liangqing Gao
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Xiaojuan Zhao
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Wang Zhao
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Lei Mai
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Chengmin Ma
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China
| | - Yanzhi Han
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China.
| | - Xiaofeng Li
- Department of Gastroenterology, Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, Meihua East Road, Xiangzhou District, Zhuhai 519000, Guangdong Province, China.
| |
Collapse
|
6
|
Li Q, Wang T, Wang X, Ge X, Yang T, Wang W. DDX56 promotes EMT and cancer stemness via MELK-FOXM1 axis in hepatocellular carcinoma. iScience 2024; 27:109827. [PMID: 38827395 PMCID: PMC11141150 DOI: 10.1016/j.isci.2024.109827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/06/2024] [Accepted: 04/24/2024] [Indexed: 06/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global cause of death, with epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC)-like properties contributing to its metastasis. DEAD box helicase 56 (DDX56) is involved in carcinogenesis, but its role in EMT induction and stem phenotype maintenance is unclear. This study assessed the impact of DDX56 absence on HCC cell stemness and EMT. DDX56 was found to be overexpressed in HCC tissues, correlating with disease stage and prognosis. In vitro, DDX56 stimulated tumor cell proliferation, migration, invasion, EMT, and stemness. It also enhanced maternal embryonic leucine-zipper kinase (MELK)-mediated forkhead box protein M1 (FOXM1) expression, regulating cancer stemness and malignant traits. In vivo, DDX56 knockdown in tumor-bearing mice reduced tumorigenicity and lung metastasis by modulating the MELK-FOXM1 signaling pathway. Collectively, DDX56 initiates stem cell-like traits in HCC and promotes EMT via MELK-FOXM1 activation, shedding light on HCC pathogenesis and suggesting a potential anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Qing Li
- Department of Internal Medicine, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China
| | - Tianyi Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Ximin Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - XinYu Ge
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Tao Yang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Wei Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|
7
|
Lou L, Deng T, Yuan Q, Wang L, Wang Z, Li X. Targeted silencing of SOCS1 by DNMT1 promotes stemness of human liver cancer stem-like cells. Cancer Cell Int 2024; 24:206. [PMID: 38867242 PMCID: PMC11170857 DOI: 10.1186/s12935-024-03322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Human liver cancer stem-like cells (HLCSLCs) are widely acknowledged as significant factors in the recurrence and eradication of hepatocellular carcinoma (HCC). The sustenance of HLCSLCs' stemness is hypothesized to be intricately linked to the epigenetic process of DNA methylation modification of genes associated with anticancer properties. The present study aimed to elucidate the stemness-maintaining mechanism of HLCSLCs and provide a novel idea for the clearance of HLCSLCs. METHODS The clinical relevance of DNMT1 and SOCS1 in hepatocellular carcinoma (HCC) patients was evaluated through the GEO and TCGA databases. Cellular immunofluorescence assay, methylation-specific PCR, chromatin immunoprecipitation were conducted to explore the expression of DNMT1 and SOCS1 and the regulatory relationship between them in HLCSLCs. Spheroid formation, soft agar colony formation, expression of stemness-associated molecules, and tumorigenicity of xenograft in nude mice were used to evaluate the stemness of HLCSLCs. RESULTS The current analysis revealed a significant upregulation of DNMT1 and downregulation of SOCS1 in HCC tumor tissues compared to adjacent normal liver tissues. Furthermore, patients exhibiting an elevated DNMT1 expression or a reduced SOCS1 expression had low survival. This study illustrated the pronounced expression and activity of DNMT1 in HLCSLCs, which effectively targeted the promoter region of SOCS1 and induced hypermethylation, consequently suppressing the expression of SOCS1. Notably, the stemness of HLCSLCs was reduced upon treatment with DNMT1 inhibitors in a concentration-dependent manner. Additionally, the overexpression of SOCS1 in HLCSLCs significantly mitigated their stemness. The knockdown of SOCS1 expression reversed the effect of DNMT1 inhibitor on the stemness of HLCSLCs. DNMT1 directly binds to the SOCS1 promoter. In vivo, DNMT1 inhibitors suppressed SOCS1 expression and inhibited the growth of xenograft. CONCLUSION DNMT1 targets the promoter region of SOCS1, induces hypermethylation of its CpG islands, and silences its expression, thereby promoting the stemness of HLCSLCs.
Collapse
Affiliation(s)
- Lei Lou
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Tingyun Deng
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Qing Yuan
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Lianghou Wang
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Zhi Wang
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Xiang Li
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China.
| |
Collapse
|
8
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
9
|
Yan Q, Fang X, Liu X, Guo S, Chen S, Luo M, Lan P, Guan X. Loss of ESRP2 Activates TAK1-MAPK Signaling through the Fetal RNA-Splicing Program to Promote Hepatocellular Carcinoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305653. [PMID: 37985644 PMCID: PMC10767434 DOI: 10.1002/advs.202305653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Indexed: 11/22/2023]
Abstract
Tumors usually display fetal-like characteristics, and many oncofetal proteins have been identified. However, fetal-like reprogramming of RNA splicing in hepatocellular carcinoma (HCC) is poorly understood. Here, it is demonstrated that the expression of epithelial splicing regulatory protein 2 (ESRP2), an RNA splicing factor, is suppressed in fetal hepatocytes and HCC, in parallel with tumor progression. By combining RNA-Seq with splicing analysis, it is identified that ESRP2 controls the fetal-to-adult switch of multiple splice isoforms in HCC. Functionally, ESRP2 suppressed cell proliferation and migration by specifically switching the alternative splicing (AS) of the TAK1 gene and restraining the expression of the fetal and oncogenic isoform, TAK1_ΔE12. Notably, aberrant TAK1 splicing led to the activation of p38MAPK signaling and predicted poor prognosis in HCC patients. Further investigation revealed that TAK1_ΔE12 protein interacted closely with TAB3 and formed liquid condensation in HCC cells, resulting in p38MAPK activation, enhanced cell migration, and accelerated tumorigenesis. Loss of ESRP2 sensitized HCC cells to TAK1 kinase inhibitor (TAK1i), promoting pyroptotic cell death and CD8+ T cell infiltration. Combining TAK1i with immune checkpoint therapy achieved potent tumor regression in mice. Overall, the findings reveal a previously unexplored onco-fetal reprogramming of RNA splicing and provide novel therapeutic avenues for HCC.
Collapse
Affiliation(s)
- Qian Yan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of General Surgery (Colorectal Surgery)The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Xiaona Fang
- Sun Yat‐sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer MedicineGuangzhou510060China
- Department of Pediatric Oncology, Sun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiaoxia Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of General Surgery (Colorectal Surgery)The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Sai Guo
- Shenzhen Traditional Chinese Medicine HospitalShenzhenChina
| | - Siqi Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of General Surgery (Colorectal Surgery)The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Min Luo
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Ping Lan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of General Surgery (Colorectal Surgery)The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
| | - Xin‐Yuan Guan
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyState Key Laboratory for Liver ResearchThe University of Hong KongHong KongChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
- MOE Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangzhouChina
| |
Collapse
|
10
|
Chen Y, Yang Z, He X, Zhu W, Wang Y, Li J, Han Z, Wen J, Liu W, Yang Y, Zhang K. Proanthocyanidins inhibited colorectal cancer stem cell characteristics through Wnt/β-catenin signaling. ENVIRONMENTAL TOXICOLOGY 2023; 38:2894-2903. [PMID: 37551626 DOI: 10.1002/tox.23924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) play a key role in tumor cell growth, drug resistance, recurrence, and metastasis. Proanthocyanidins (PC) is widely existed in plants and endowed with powerful antioxidant and anti-aging effects. Interestingly, recent studies have found that PC exhibits the inhibitory effect on tumor growth. However, the role of PC in CSCs of colorectal cancer (CRC) and molecular mechanism remain unclear. METHODS CCK-8, colony, and tumorsphere formation assay were used to evaluate cancer cell viability and stemness, respectively. Western blotting was used to detect the protein expression. Tumor xenograft experiments were employed to examine the tumorigenicity of CRC cells in nude mice. RESULTS PC decreased the proliferation of CRC cells (HT29 and HCT-116), and improved the sensitivity of CRC cells to oxaliplatin (L-OHP), as well as inhibited tumor growth in nude mice. Further studies showed that PC also down-regulated CSCs surface molecular and stemness transcriptional factors, while suppressed the formations of tumorspheres and cell colony in CRC. In addition, PC-impaired proteins expressions of p-GSK3β, β-catenin and DVL1-3. LiCl, an activator of the Wnt/β-catenin signaling, rescued PC-induced downregulation of CSCs markers, and reduction of tumorspheres and cell colony formation abilities in CRC cells. Furthermore, the effects of PC on inhibiting cell proliferation and enhancing L-OHP sensitivity were impaired by LiCl. CONCLUSIONS PC exerted an inhibitory effect on CSCs via Wnt/β-catenin in CRC, and may be a potential new class of natural drug for CRC treatment.
Collapse
Affiliation(s)
- Yuzhuo Chen
- School of Pharmacy, Chengdu Medical College, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Zhirong Yang
- Pathology Department of Deyang People's Hospital, Deyang, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Xingqiang He
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Wanglong Zhu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Yujun Wang
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Jiaofeng Li
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Zhengyu Han
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Jie Wen
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Wei Liu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Yuhan Yang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Kun Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
11
|
Song F, Zhang Q, Lu X, Xu T, Hu Q, Hu X, Fan W, Zhang Y, Huang P. Rab11-FIP4 interacts with ARF5 to promote cancer stemness in hepatocellular carcinoma. J Physiol Biochem 2023; 79:757-770. [PMID: 37458957 DOI: 10.1007/s13105-023-00972-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/03/2023] [Indexed: 11/10/2023]
Abstract
Recent studies suggest that Rab11-family interacting proteins (Rab11-FIPs) play an important role in tumorigenesis and progression. Among the Rab11-FIPs, Rab11-FIP4 has been reported to be significantly upregulated in various cancers, including hepatocellular carcinoma (HCC). However, the possible effect on HCC stemness and the underlying mechanism has never been characterized. Here, we found that Rab11-FIP4 was dramatically increased in HCC cell lines and tissues, and had a positive correlation with cancer stemness. Functional studies revealed that elevated expression of Rab11-FIP4 in HCC cells significantly promoted sphere formation, and enhanced the mRNA and protein levels of stemness-associated markers, ALDH1A1, CD133, NANOG, and OCT4. Conversely, the knockdown of Rab11-FIP4 suppressed the cancer stem cell (CSC)-like characteristics of HCC cells. Moreover, silencing of Rab11-FIP4 obviously increased the sensitivity of HCC cells to sorafenib. Mechanistically, Rab11-FIP4 was shown to interact with ADP-ribosylation factor 5 (ARF5) to influence cell cycle-related proteins, CDK1/cyclin B, thereby promoting HCC stemness. Taken together, our results uncovered an essential role for Rab11-FIP4 in regulating CSC-like features of HCC cells and identified Rab11-FIP4 as a potential target for HCC therapy.
Collapse
Affiliation(s)
- Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Qi Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xixuan Lu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qing Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Weijiao Fan
- Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
12
|
Zhu Y, Xiao B, Liu M, Chen M, Xia N, Guo H, Huang J, Liu Z, Wang F. N6-methyladenosine-modified oncofetal lncRNA MIR4435-2HG contributed to stemness features of hepatocellular carcinoma cells by regulating rRNA 2'-O methylation. Cell Mol Biol Lett 2023; 28:89. [PMID: 37891494 PMCID: PMC10612268 DOI: 10.1186/s11658-023-00493-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The unique expression pattern endows oncofetal genes with great value in cancer diagnosis and treatment. However, only a few oncofetal genes are available for clinical use and the underlying mechanisms that drives the fetal-like reprogramming of cancer cells remain largely unknown. METHODS Microarray assays and bioinformatic analyses were employed to screen for potential oncofetal long non-coding RNAs (lncRNAs) in hepatocellular carcinoma (HCC). The expression levels of MIR4435-2HG, NOP58 ribonucleoprotein (NOP58), insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) and stem markers were detected by quantitative polymerase chain reaction. The 2'-O-methylation (2'-O-Me) status of rRNA were detected through reverse transcription at low dNTP concentrations followed by PCR. The regulation of MIR4435-2HG by IGF2BP1 was explored by RNA immunoprecipitation (RIP), methylated RIP (MeRIP) and dual-luciferase assays. The interaction between MIR4435-2HG and NOP58 was investigated by RNA Pulldown, RIP and protein stability assays. In vitro and in vivo function assays were performed to detect the roles of MIR4435-2HG/NOP58 in HCC. RESULTS MIR4435-2HG was an oncofetal lncRNA associated with poor prognosis in HCC. Functional experiments showed that overexpression of MIR4435-2HG remarkably enhanced the stem-cell properties of HCC cells, promoting tumorigenesis in vitro and in vivo. Mechanically, MIR4435-2HG directly bound NOP58 and IGF2BP1. IGF2BP1 upregulated MIR4435-2HG expression in HCC through N6-methyladenosine (m6A) modification. Moreover, MIR4435-2HG protected NOP58 from degradation, which raised rRNA 2'-O-Me levels and promoted internal ribosome entry site (IRES)-dependent translation of oncogenes. CONCLUSIONS This study identified an oncofetal lncRNA MIR4435-2HG, characterized the role of MIR4435-2HG/NOP58 in stemness maintenance and proliferation of HCC cells, and confirmed m6A as a 'driver' that reactivated MR4435-2HG expression in HCC.
Collapse
Affiliation(s)
- Yiqing Zhu
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Bang Xiao
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Meng Liu
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Meiting Chen
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Ningqi Xia
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Haiyan Guo
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, 200011, China
| | - Jinfeng Huang
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
| | - Zhiyong Liu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Fang Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
13
|
Lambis-Anaya L, Fernández-Ruiz M, Liscano Y, Suarez-Causado A. High OCT4 Expression Might Be Associated with an Aggressive Phenotype in Rectal Cancer. Cancers (Basel) 2023; 15:3740. [PMID: 37509401 PMCID: PMC10378144 DOI: 10.3390/cancers15143740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Rectal cancer (RC) is one of the most common malignant neoplasms, and cancer stem cells (CSCs) of the intestinal tract have been implicated in its origin. The oncofetal protein OCT4 has been linked to neoplastic processes, but its role and clinical significance in RC are unknown. This study investigates the expression of the stem cell marker OCT4 related to clinical-pathological characteristics and its clinical significance in RC patients. The expression level of stem cell marker OCT4 was analyzed in 22 primary rectal tumors by western blot. The association between OCT4 protein expression and the clinical-pathological features of tumors was evaluated by χ2 test and Fisher's exact test. We demonstrated that the expression of the stem cell marker OCT4 was observed in tumor tissue but not adjacent non-tumor tissue. High expression of the stem cell marker OCT4 was significantly associated with histological differentiation grade (p = 0.039), tumor invasion level (p = 0.004), lymph node involvement (p = 0.044), tumor-node-metastasis (TNM) stage (p = 0.002), and clinical stage (p = 0.021). These findings suggest that high OCT4 expression is associated with a more aggressive RC phenotype, with a greater likelihood of progression and metastasis. These results shed light on the importance of targeting this CSC marker to attenuate RC progression.
Collapse
Affiliation(s)
- Lina Lambis-Anaya
- Grupo Prometeus & Biomedicina Aplicada a las Ciencias Clínicas, Facultad de Medicina, Universidad de Cartagena, Cartagena 130014, Colombia
| | - Mashiel Fernández-Ruiz
- Grupo Prometeus & Biomedicina Aplicada a las Ciencias Clínicas, Facultad de Medicina, Universidad de Cartagena, Cartagena 130014, Colombia
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Amileth Suarez-Causado
- Grupo Prometeus & Biomedicina Aplicada a las Ciencias Clínicas, Facultad de Medicina, Universidad de Cartagena, Cartagena 130014, Colombia
| |
Collapse
|
14
|
Moore XTR, Gheghiani L, Fu Z. The Role of Polo-Like Kinase 1 in Regulating the Forkhead Box Family Transcription Factors. Cells 2023; 12:cells12091344. [PMID: 37174744 PMCID: PMC10177174 DOI: 10.3390/cells12091344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase with more than 600 phosphorylation substrates through which it regulates many biological processes, including mitosis, apoptosis, metabolism, RNA processing, vesicle transport, and G2 DNA-damage checkpoint recovery, among others. Among the many PLK1 targets are members of the FOX family of transcription factors (FOX TFs), including FOXM1, FOXO1, FOXO3, and FOXK1. FOXM1 and FOXK1 have critical oncogenic roles in cancer through their antagonism of apoptotic signals and their promotion of cell proliferation, metastasis, angiogenesis, and therapeutic resistance. In contrast, FOXO1 and FOXO3 have been identified to have broad functions in maintaining cellular homeostasis. In this review, we discuss PLK1-mediated regulation of FOX TFs, highlighting the effects of PLK1 on the activity and stability of these proteins. In addition, we review the prognostic and clinical significance of these proteins in human cancers and, more importantly, the different approaches that have been used to disrupt PLK1 and FOX TF-mediated signaling networks. Furthermore, we discuss the therapeutic potential of targeting PLK1-regulated FOX TFs in human cancers.
Collapse
Affiliation(s)
- Xavier T R Moore
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lilia Gheghiani
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zheng Fu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
15
|
Inflammation-Related Signature Profile Expression as a Poor Prognosis Marker after Oxaliplatin Treatment in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24043821. [PMID: 36835258 PMCID: PMC9965239 DOI: 10.3390/ijms24043821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Oxaliplatin is successfully used to eradicate micro-metastasis and improve survival, whereas the benefit of adjuvant chemotherapy in the early stages of colorectal cancer remains controversial. Inflammation plays a crucial role in colorectal cancer tumorigenesis. Inflammatory mechanisms are mediated by different immune cells through different cytokines, chemokines, and other proinflammatory molecules that trigger cell progression, an increase of cancer stem cell population, hyperplasia, and metastasis. This study focuses on the analysis of the oxaliplatin effect on tumourspheres formation efficiency, cell viability, cancer stem cells and stemness marker mRNA expression, as well as inflammation-related signature profile expression and its prognosis in primary- and metastatic-derived colorectal tumourspheres derived from colorectal cell lines isolated from the same patient 1 year apart. The results indicate that primary-derived colorectal tumourspheres respond to oxaliplatin, adapting to the adverse conditions through the modulation of CSCs and the stemness properties of tumourspheres. However, metastatic-derived colorectal tumourspheres response led to the release of cytokines and chemokines, promoting an inflammatory process. In addition, the expression of inflammatory markers showing greater difference between primary and metastatic tumours after oxaliplatin treatment correlates with poor prognosis in KM survival studies and is associated with a metastatic phenotype. Our data demonstrated that oxaliplatin triggers an inflammation-related signature profile expression in primary-derived colorectal tumourspheres, related with poor prognosis and a metastatic phenotype, which allow the tumour cells to adapt to the adverse condition. These data highlight the need for of drug testing and personalized medicine in the early stages of colorectal cancer.
Collapse
|
16
|
A special issue of Essays in Biochemistry on cancer stem cells. Essays Biochem 2022; 66:287-289. [PMID: 36073728 DOI: 10.1042/ebc20220049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
Cancer stem cells (CSCs) are subpopulation of cells within the tumor bulk, which leads to tumor recurrence and therapeutic resistance. Identification of specific CSC targets for detection and efficient cancer therapy are the major hurdles in this research field. In this decade, basic researchers and clinicians made every effort to overcome these challenges to target CSCs using different approaches. This special issue includes a varied collection of review articles with comprehensive discussion on the complexity of CSC heterogeneity, signaling pathways regulating the behaviors of CSCs, the therapeutic resistance mechanism of CSCs, and therapeutic targets against CSCs. These review articles shed light on current advances in understanding of CSC biology.
Collapse
|