1
|
Dean CD, Chiarenza AA, Doser JW, Farnsworth A, Jones LA, Lyster SJ, Outhwaite CL, Valdes PJ, Butler RJ, Mannion PD. The structure of the end-Cretaceous dinosaur fossil record in North America. Curr Biol 2025:S0960-9822(25)00310-0. [PMID: 40203829 DOI: 10.1016/j.cub.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/11/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025]
Abstract
Whether non-avian dinosaurs were in decline prior to their extinction 66 million years ago remains a contentious topic. This uncertainty arises from spatiotemporal sampling inconsistency and data absence, which cause challenges in distinguishing between genuine biological trends and sampling artifacts. Consequently, there is an inherent interest in better quantifying the quality of the data and concomitant biases of the dinosaur fossil record. To elucidate the structure of this record and the nature of the biases impacting it, we integrate paleoclimatic, geographic, and fossil data within a Bayesian occupancy modeling framework to simultaneously estimate the probability of dinosaurs occupying and being detected in sites across North America throughout the latest Cretaceous for the first time. We find that apparent declines in occupancy generated from the raw fossil record do not match modeled occupancy probability, which generally remained stable throughout the latest Cretaceous. Instead, they coincide with decreased probability of detecting dinosaur occurrences, despite high overall sampling during this interval. By incorporating model covariates, we additionally reveal that detection probability is directly and significantly influenced by the available area of geological outcrop and modern land cover. Our findings offer evidence that traditional comparisons of diversity estimates between time intervals are likely inaccurate due to underlying structural issues in the geological record operating at both local and regional scales. This study underscores the utility of occupancy modeling as a novel approach in paleobiology for quantifying the impact of heterogeneous sampling on the available fossil record.
Collapse
Affiliation(s)
- Christopher D Dean
- Department of Earth Sciences, University College London, 5 Gower Place, London WC1E 6BS, UK.
| | | | - Jeffrey W Doser
- Department of Forestry and Environmental Resources, North Carolina State University, 2800 Faucette Dr., Raleigh, NC 27607, USA
| | - Alexander Farnsworth
- School of Geographical Sciences, University of Bristol, University Rd., Bristol BS8 1SS, UK; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Lewis A Jones
- Department of Earth Sciences, University College London, 5 Gower Place, London WC1E 6BS, UK
| | - Sinéad J Lyster
- Department of Geosciences, The Pennsylvania State University, Deike Building, University Park, PA 16802, USA
| | - Charlotte L Outhwaite
- Centre for Biodiversity & Environment Research, University College London, Gower Street, London WC1E 6BT, UK; Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Paul J Valdes
- School of Geographical Sciences, University of Bristol, University Rd., Bristol BS8 1SS, UK; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Philip D Mannion
- Department of Earth Sciences, University College London, 5 Gower Place, London WC1E 6BS, UK
| |
Collapse
|
2
|
Bowyer FT, Wood RA, Yilales M. Sea level controls on Ediacaran-Cambrian animal radiations. SCIENCE ADVANCES 2024; 10:eado6462. [PMID: 39083611 PMCID: PMC11290527 DOI: 10.1126/sciadv.ado6462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The drivers of Ediacaran-Cambrian metazoan radiations remain unclear, as does the fidelity of the record. We use a global age framework [580-510 million years (Ma) ago] to estimate changes in marine sedimentary rock volume and area, reconstructed biodiversity (mean genus richness), and sampling intensity, integrated with carbonate carbon isotopes (δ13Ccarb) and global redox data [carbonate Uranium isotopes (δ238Ucarb)]. Sampling intensity correlates with overall mean reconstructed biodiversity >535 Ma ago, while second-order (~10-80 Ma) global transgressive-regressive cycles controlled the distribution of different marine sedimentary rocks. The temporal distribution of the Avalon assemblage is partly controlled by the temporally and spatially limited record of deep-marine siliciclastic rocks. Each successive rise of metazoan morphogroups that define the Avalon, White Sea, and Cambrian assemblages appears to coincide with global shallow marine oxygenation events at δ13Ccarb maxima, which precede major sea level transgressions. While the record of biodiversity is biased, early metazoan radiations and oxygenation events are linked to major sea level cycles.
Collapse
|
3
|
Anderson RP, Mughal S, Wedlake GO. Proterozoic microfossils continue to provide new insights into the rise of complex eukaryotic life. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240154. [PMID: 39170929 PMCID: PMC11336685 DOI: 10.1098/rsos.240154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Eukaryotes have evolved to dominate the biosphere today, accounting for most documented living species and the vast majority of the Earth's biomass. Consequently, understanding how these biologically complex organisms initially diversified in the Proterozoic Eon over 539 million years ago is a foundational question in evolutionary biology. Over the last 70 years, palaeontologists have sought to document the rise of eukaryotes with fossil evidence. However, the delicate and microscopic nature of their sub-cellular features affords early eukaryotes diminished preservation potential. Chemical biomarker signatures of eukaryotes and the genetics of living eukaryotes have emerged as complementary tools for reconstructing eukaryote ancestry. In this review, we argue that exceptionally preserved Proterozoic microfossils are critical to interpreting these complementary tools, providing crucial calibrations to molecular clocks and testing hypotheses of palaeoecology. We highlight recent research on their preservation and biomolecular composition that offers new ways to enhance their utility.
Collapse
Affiliation(s)
- Ross P. Anderson
- Museum of Natural History, University of Oxford, OxfordOX1 3PW, UK
- All Souls College, University of Oxford, OxfordOX1 4AL, UK
| | - Sanaa Mughal
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AlbertaT6G 2E3, Canada
| | - George O. Wedlake
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
| |
Collapse
|
4
|
Walton CR, Hao J, Huang F, Jenner FE, Williams H, Zerkle AL, Lipp A, Hazen RM, Peters SE, Shorttle O. Evolution of the crustal phosphorus reservoir. SCIENCE ADVANCES 2023; 9:eade6923. [PMID: 37146138 PMCID: PMC10162663 DOI: 10.1126/sciadv.ade6923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The release of phosphorus (P) from crustal rocks during weathering plays a key role in determining the size of Earth's biosphere, yet the concentration of P in crustal rocks over time remains controversial. Here, we combine spatial, temporal, and chemical measurements of preserved rocks to reconstruct the lithological and chemical evolution of Earth's continental crust. We identify a threefold increase in average crustal P concentrations across the Neoproterozoic-Phanerozoic boundary (600 to 400 million years), showing that preferential biomass burial on shelves acted to progressively concentrate P within continental crust. Rapid compositional change was made possible by massive removal of ancient P-poor rock and deposition of young P-rich sediment during an episode of enhanced global erosion. Subsequent weathering of newly P-rich crust led to increased riverine P fluxes to the ocean. Our results suggest that global erosion coupled to sedimentary P-enrichment forged a markedly nutrient-rich crust at the dawn of the Phanerozoic.
Collapse
Affiliation(s)
- Craig R Walton
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Jihua Hao
- Deep Space Exploration Lab/CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, 96 Jinzhai Rd., Hefei 230026, China
- CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, 96 Jinzhai Rd., Hefei, 230026, China
| | - Fang Huang
- CSIRO Mineral Resources, Kensington WA 6151, Australia
| | - Frances E Jenner
- School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Helen Williams
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Aubrey L Zerkle
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Alex Lipp
- Department of Earth Sciences and Engineering, Imperial College London, London, UK
| | - Robert M Hazen
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, DC 20015, USA
| | - Shanan E Peters
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Oliver Shorttle
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
- Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA, UK
| |
Collapse
|
5
|
Boyce CK, Ibarra DE, Nelsen MP, D'Antonio MP. Nitrogen-based symbioses, phosphorus availability, and accounting for a modern world more productive than the Paleozoic. GEOBIOLOGY 2023; 21:86-101. [PMID: 35949039 DOI: 10.1111/gbi.12519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Evolution of high-productivity angiosperms has been regarded as a driver of Mesozoic ecosystem restructuring. However, terrestrial productivity is limited by availability of rock-derived nutrients such as phosphorus for which permanent increases in weathering would violate mass balance requirements of the long-term carbon cycle. The potential reality of productivity increases sustained since the Mesozoic is supported here with documentation of a dramatic increase in the evolution of nitrogen-fixing or nitrogen-scavenging symbioses, including more than 100 lineages of ectomycorrhizal and lichen-forming fungi and plants with specialized microbial associations. Given this evidence of broadly increased nitrogen availability, we explore via carbon cycle modeling how enhanced phosphorus availability might be sustained without violating mass balance requirements. Volcanism is the dominant carbon input, dictating peaks in weathering outputs up to twice modern values. However, times of weathering rate suppression may be more important for setting system behavior, and the late Paleozoic was the only extended period over which rates are expected to have remained lower than modern. Modeling results are consistent with terrestrial organic matter deposition that accompanied Paleozoic vascular plant evolution having suppressed weathering fluxes by providing an alternative sink of atmospheric CO2 . Suppression would have then been progressively lifted as the crustal reservoir's holding capacity for terrestrial organic matter saturated back toward steady state with deposition of new organic matter balanced by erosion of older organic deposits. Although not an absolute increase, weathering fluxes returning to early Paleozoic conditions would represent a novel regime for the complex land biota that evolved in the interim. Volcanism-based peaks in Mesozoic weathering far surpass the modern rates that sustain a complex diversity of nitrogen-based symbioses; only in the late Paleozoic might these ecologies have been suppressed by significantly lower rates. Thus, angiosperms are posited to be another effect rather than proximal cause of Mesozoic upheaval.
Collapse
Affiliation(s)
- C Kevin Boyce
- Department of Geological Sciences, Stanford University, Stanford, California, USA
| | - Daniel E Ibarra
- Department of Geological Sciences, Stanford University, Stanford, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
- Institute at Brown for Environment and Society and the Department of Earth, Environmental and Planetary Science, Brown University, Providence, Rhode Island, USA
| | - Matthew P Nelsen
- Negaunee Integrative Research Center, The Field Museum, Chicago, Illinois, USA
| | - Michael P D'Antonio
- Department of Geological Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
6
|
Eukaryogenesis and oxygen in Earth history. Nat Ecol Evol 2022; 6:520-532. [PMID: 35449457 DOI: 10.1038/s41559-022-01733-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
Abstract
The endosymbiotic origin of mitochondria during eukaryogenesis has long been viewed as an adaptive response to the oxygenation of Earth's surface environment, presuming a fundamentally aerobic lifestyle for the free-living bacterial ancestors of mitochondria. This oxygen-centric view has been robustly challenged by recent advances in the Earth and life sciences. While the permanent oxygenation of the atmosphere above trace concentrations is now thought to have occurred 2.2 billion years ago, large parts of the deep ocean remained anoxic until less than 0.5 billion years ago. Neither fossils nor molecular clocks correlate the origin of mitochondria, or eukaryogenesis more broadly, to either of these planetary redox transitions. Instead, mitochondria-bearing eukaryotes are consistently dated to between these two oxygenation events, during an interval of pervasive deep-sea anoxia and variable surface-water oxygenation. The discovery and cultivation of the Asgard archaea has reinforced metabolic evidence that eukaryogenesis was initially mediated by syntrophic H2 exchange between an archaeal host and an α-proteobacterial symbiont living under anoxia. Together, these results temporally, spatially and metabolically decouple the earliest stages of eukaryogenesis from the oxygen content of the surface ocean and atmosphere. Rather than reflecting the ancestral metabolic state, obligate aerobiosis in eukaryotes is most probably derived, having only become globally widespread over the past 1 billion years as atmospheric oxygen approached modern levels.
Collapse
|
7
|
Cohen PA, Kodner RB. The earliest history of eukaryotic life: uncovering an evolutionary story through the integration of biological and geological data. Trends Ecol Evol 2021; 37:246-256. [PMID: 34949483 DOI: 10.1016/j.tree.2021.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022]
Abstract
While there is significant data on eukaryogenesis and the early development of the eukaryotic lineage, major uncertainties regarding their origins and evolution remain, including questions of taxonomy, timing, and paleoecology. Here we examine the origin and diversification of the eukaryotes in the Proterozoic Eon as viewed through fossils, organic biomarkers, molecular clocks, phylogenies, and redox proxies. Our interpretation of the integration of these data suggest that eukaryotes were likely aerobic and established in Proterozoic ecosystems. We argue that we must closely examine and integrate both biological and geological evidence and examine points of agreement and contention to gain new insights into the true origin and early evolutionary history of this vastly important group.
Collapse
Affiliation(s)
- Phoebe A Cohen
- Williams College Department of Geosciences, Williamstown, MA, USA.
| | - Robin B Kodner
- Western Washington University Department of Environmental Sciences, Bellingham, WA, USA.
| |
Collapse
|
8
|
Wang C, Hazen RM, Cheng Q, Stephenson MH, Zhou C, Fox P, Shen SZ, Oberhänsli R, Hou Z, Ma X, Feng Z, Fan J, Ma C, Hu X, Luo B, Wang J, Schiffries CM. The Deep-Time Digital Earth program: data-driven discovery in geosciences. Natl Sci Rev 2021; 8:nwab027. [PMID: 34691735 PMCID: PMC8433093 DOI: 10.1093/nsr/nwab027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022] Open
Abstract
Current barriers hindering data-driven discoveries in deep-time Earth (DE) include: substantial volumes of DE data are not digitized; many DE databases do not adhere to FAIR (findable, accessible, interoperable and reusable) principles; we lack a systematic knowledge graph for DE; existing DE databases are geographically heterogeneous; a significant fraction of DE data is not in open-access formats; tailored tools are needed. These challenges motivate the Deep-Time Digital Earth (DDE) program initiated by the International Union of Geological Sciences and developed in cooperation with national geological surveys, professional associations, academic institutions and scientists around the world. DDE’s mission is to build on previous research to develop a systematic DE knowledge graph, a FAIR data infrastructure that links existing databases and makes dark data visible, and tailored tools for DE data, which are universally accessible. DDE aims to harmonize DE data, share global geoscience knowledge and facilitate data-driven discovery in the understanding of Earth's evolution.
Collapse
Affiliation(s)
- Chengshan Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Robert M Hazen
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - Qiuming Cheng
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
| | | | - Chenghu Zhou
- State Key Laboratory of Resources and Environment Information System, Institute of Geographical Science and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
| | - Peter Fox
- Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shu-Zhong Shen
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Roland Oberhänsli
- Institute of Earth and Environmental Sciences, University of Potsdam, Potsdam 14476, Germany
| | - Zengqian Hou
- Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
| | - Xiaogang Ma
- Department of Computer Science, University of Idaho, Moscow, ID 83844, USA
| | - Zhiqiang Feng
- Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China
| | - Junxuan Fan
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Chao Ma
- Department of Computer Science, University of Idaho, Moscow, ID 83844, USA
| | - Xiumian Hu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Luo
- State Key Laboratory of Resources and Environment Information System, Institute of Geographical Science and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
| | - Juanle Wang
- State Key Laboratory of Resources and Environment Information System, Institute of Geographical Science and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
9
|
Keller CB, Husson JM, Mitchell RN, Bottke WF, Gernon TM, Boehnke P, Bell EA, Swanson-Hysell NL, Peters SE. Neoproterozoic glacial origin of the Great Unconformity. Proc Natl Acad Sci U S A 2019; 116:1136-1145. [PMID: 30598437 PMCID: PMC6347685 DOI: 10.1073/pnas.1804350116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Great Unconformity, a profound gap in Earth's stratigraphic record often evident below the base of the Cambrian system, has remained among the most enigmatic field observations in Earth science for over a century. While long associated directly or indirectly with the occurrence of the earliest complex animal fossils, a conclusive explanation for the formation and global extent of the Great Unconformity has remained elusive. Here we show that the Great Unconformity is associated with a set of large global oxygen and hafnium isotope excursions in magmatic zircon that suggest a late Neoproterozoic crustal erosion and sediment subduction event of unprecedented scale. These excursions, the Great Unconformity, preservational irregularities in the terrestrial bolide impact record, and the first-order pattern of Phanerozoic sedimentation can together be explained by spatially heterogeneous Neoproterozoic glacial erosion totaling a global average of 3-5 vertical kilometers, along with the subsequent thermal and isostatic consequences of this erosion for global continental freeboard.
Collapse
Affiliation(s)
- C Brenhin Keller
- Berkeley Geochronology Center, Berkeley, CA 94709;
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720
| | - Jon M Husson
- School of Earth and Ocean Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Ross N Mitchell
- Department of Applied Geology, Curtin University, Perth, WA 6845, Australia
| | | | - Thomas M Gernon
- Ocean and Earth Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Patrick Boehnke
- Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637
- Chicago Center for Cosmochemistry, Chicago, IL 60637
| | - Elizabeth A Bell
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA 90095
| | | | - Shanan E Peters
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
10
|
Early Earth and the rise of complex life. Emerg Top Life Sci 2018; 2:121-124. [PMID: 32412610 DOI: 10.1042/etls20180093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022]
Abstract
The history of life on Earth progressed in parallel with the evolving oxygen state of the atmosphere and oceans, but the details of that relationship remain poorly known and debated. There is, however, general agreement that the first appreciable and persistent accumulation of oxygen in the oceans and atmosphere occurred around 2.3 to 2.4 billion years ago. Following this Great Oxidation Event, biospheric oxygen remained at relatively stable intermediate levels for more than a billion years. Much current research focuses on the transition from the intermediate conditions of this middle chapter in Earth history to the more oxygenated periods that followed - often emphasizing whether increasing and perhaps episodic oxygenation drove fundamental steps in the evolution of complex life and, if so, when. These relationships among early organisms and their environments are the thematic threads that stitch together the papers in this collection. Expert authors bring a mix of methods and opinions to their leading-edge reviews of the earliest proliferation and ecological impacts of eukaryotic life, the subsequent emergence and ecological divergence of animals, and the corresponding causes and consequences of environmental change.
Collapse
|