1
|
Morais L, Freitas BT, Fairchild TR, Clavijo Arcos RE, Guillong M, Vance D, de Campos MDR, Babinski M, Pereira LG, Leme JM, Boggiani PC, Osés GL, Rudnitzki ID, Galante D, Rodrigues F, Trindade RIF. Dawn of diverse shelled and carbonaceous animal microfossils at ~ 571 Ma. Sci Rep 2024; 14:14916. [PMID: 38942912 PMCID: PMC11213954 DOI: 10.1038/s41598-024-65671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/23/2024] [Indexed: 06/30/2024] Open
Abstract
The Ediacaran-Cambrian transition documents a critical stage in the diversification of animals. The global fossil record documents the appearance of cloudinomorphs and other shelled tubular organisms followed by non-biomineralized small carbonaceous fossils and by the highly diversified small shelly fossils between ~ 550 and 530 Ma. Here, we report diverse microfossils in thin sections and hand samples from the Ediacaran Bocaina Formation, Brazil, separated into five descriptive categories: elongate solid structures (ES); elongate filled structures (EF); two types of equidimensional structures (EQ 1 and 2) and elongate hollow structures with coiled ends (CE). These specimens, interpreted as diversified candidate metazoans, predate the latest Ediacaran biomineralized index macrofossils of the Cloudina-Corumbella-Namacalathus biozone in the overlying Tamengo Formation. Our new carbonate U-Pb ages for the Bocaina Formation, position this novel fossil record at 571 ± 9 Ma (weighted mean age). Thus, our data point to diversification of metazoans, including biomineralized specimens reminiscent of sections of cloudinids, protoconodonts, anabaritids, and hyolithids, in addition to organo-phosphatic surficial coverings of animals, demonstrably earlier than the record of the earliest known skeletonized metazoan fossils.
Collapse
Affiliation(s)
- Luana Morais
- Department of Geophysics, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
- Department of Geology, São Paulo State University (UNESP), Rio Claro, 13506-900, Brazil.
| | | | | | - Rolando Esteban Clavijo Arcos
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Clausiusstrasse 25, 8092, Zurich, Switzerland
| | - Marcel Guillong
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Clausiusstrasse 25, 8092, Zurich, Switzerland
| | - Derek Vance
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Clausiusstrasse 25, 8092, Zurich, Switzerland
| | | | - Marly Babinski
- Institute of Geosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Juliana M Leme
- Institute of Geosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Paulo C Boggiani
- Institute of Geosciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Gabriel L Osés
- Programa de Pós-Doutorado, Instituto de Física, Universidade de São Paulo (USP), Rua do Matão, 1371, São Paulo, 05508090, Brazil
- Laboratório de Arqueometria e Ciências Aplicadas ao Patrimônio Cultural, Instituto de Física, Universidade de São Paulo (USP), Rua do Matão, 1371, São Paulo, 05508090, Brazil
| | - Isaac D Rudnitzki
- Departament of Geology, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Douglas Galante
- Institute of Geosciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratório Nacional de Luz Síncrotron, Campinas, SP, Brazil
| | - Fabio Rodrigues
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Ricardo I F Trindade
- Department of Geophysics, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
2
|
Li L, Topper TP, Betts MJ, Altanshagai G, Enkhbaatar B, Li G, Li S, Skovsted CB, Cui L, Zhang X. Tubule system of earliest shells as a defense against increasing microbial attacks. iScience 2024; 27:109112. [PMID: 38380247 PMCID: PMC10877964 DOI: 10.1016/j.isci.2024.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/14/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The evolutionary mechanism behind the early Cambrian animal skeletonization was a complex and multifaceted process involving environmental, ecological, and biological factors. Predation pressure, oxygenation, and seawater chemistry change have frequently been proposed as the main drivers of this biological innovation, yet the selection pressures from microorganisms have been largely overlooked. Here we present evidence that calcareous shells of the earliest mollusks from the basal Cambrian (Fortunian Age, ca. 539-529 million years ago) of Mongolia developed advanced tubule systems that evolved primarily as a defensive strategy against extensive microbial attacks within a microbe-dominated marine ecosystem. These high-density tubules, comprising approximately 35% of shell volume, enable nascent mineralized mollusks to cope with increasing microbial bioerosion caused by boring endolithic cyanobacteria, and hence represent an innovation in shell calcification. Our finding demonstrates that enhanced microboring pressures played a significant role in shaping the calcification of the earliest mineralized mollusks during the Cambrian Explosion.
Collapse
Affiliation(s)
- Luoyang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education and College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Mineral Resources, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Timothy P. Topper
- Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden
| | - Marissa J. Betts
- Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China
- Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Gundsambuu Altanshagai
- Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Batktuyag Enkhbaatar
- Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia
| | - Guoxiang Li
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Sanzhong Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education and College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Mineral Resources, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Christian B. Skovsted
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden
| | - Linhao Cui
- Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China
| | - Xingliang Zhang
- Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
3
|
Sleight VA. Cell type and gene regulatory network approaches in the evolution of spiralian biomineralisation. Brief Funct Genomics 2023; 22:509-516. [PMID: 37592885 PMCID: PMC10658180 DOI: 10.1093/bfgp/elad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Biomineralisation is the process by which living organisms produce hard structures such as shells and bone. There are multiple independent origins of biomineralised skeletons across the tree of life. This review gives a glimpse into the diversity of spiralian biominerals and what they can teach us about the evolution of novelty. It discusses different levels of biological organisation that may be informative to understand the evolution of biomineralisation and considers the relationship between skeletal and non-skeletal biominerals. More specifically, this review explores if cell type and gene regulatory network approaches could enhance our understanding of the evolutionary origins of biomineralisation.
Collapse
Affiliation(s)
- Victoria A Sleight
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
4
|
Ye F, Bitner MA, Shi GR. Variation of shell ornamentation with latitude and water depth-A case study using living brachiopods. Ecol Evol 2023; 13:e10006. [PMID: 37091558 PMCID: PMC10121232 DOI: 10.1002/ece3.10006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
As a potential anti-predatory defensive structure, the shell ornamentation of marine calcifiers is usually used to understand the macro coevolution of the interactions between predators and preys. Marine calcifiers' shell ornamentation complexity is generally believed to vary negatively with latitude and water depth. In this paper, we explored the association between shell ornamentation and latitude/bathymetry using the latest global database of living brachiopods. We found that (1) ~59% of living brachiopods species are characterized by smooth shells and that (2) there is no statistically significant linear trend, either positive or negative, between the ornamentation index and latitudes nor with water depths. Both findings are puzzling for living brachiopods as they are sharply contrasted to the patterns of fossil brachiopods whereby the latter, especially Paleozoic brachiopods, are known to exhibit (1) a much greater ornamentation diversity and (2) (at least for the geological periods that have been studied) a linear latitudinal gradient of ornamentation complexity existed. The reasons why living brachiopods have such a high proportion of smooth or weakly ornamented shells and fail to demonstrate an unequivocal linear latitudinal ornamentation gradient were explored and are linked to a multitude of potential factors rather than uniquely only to the predation pressure. Among these, the most plausible factor seems to be the cryptic (refuge-type) habitats (e.g., deep waters, cold polar regions, and submarine rock caves) that living brachiopods have been adapted to due to their low metabolism, where predation pressure is low, allowing brachiopods to enact the predator avoidance strategy rather than having to manufacture robust shell ornamentation to survive in an otherwise highly engaged predator-prey global marine ecosystem.
Collapse
Affiliation(s)
- Facheng Ye
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| | | | - Guang Rong Shi
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
5
|
Osés GL, Wood R, Romero GR, Evangelista Martins Prado GM, Bidola P, Herzen J, Pfeiffer F, Stampar SN, Alves Forancelli Pacheco ML. Ediacaran Corumbella has a cataphract calcareous skeleton with controlled biomineralization. iScience 2022; 25:105676. [PMID: 36561886 PMCID: PMC9763863 DOI: 10.1016/j.isci.2022.105676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/02/2021] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Corumbella is a terminal Ediacaran tubular, benthic fossil of debated morphology, composition, and biological affinity. Here, we show that Corumbella had a biomineralized skeleton, with a bilayered construction of imbricated calcareous plates and rings (sclerites) yielding a cataphract organization, that enhanced flexibility. Each sclerite likely possessed a laminar microfabric with consistent crystallographic orientation, within an organic matrix. Original aragonitic mineralogy is supported by relict aragonite and elevated Sr (mean = ca. 11,800 ppm in central parts of sclerites). In sum, the presence of a polarisation axis, sclerites with a laminar microfabric, and a cataphract skeletal organization reminiscent of early Cambrian taxa, are all consistent with, but not necessarily indicative of, a bilaterian affinity. A cataphract skeleton with an inferred complex microstructure confirms the presence of controlled biomineralization in metazoans by the terminal Ediacaran, and offers insights into the evolution of development and ecology at the root of the 'Cambrian radiation'.
Collapse
Affiliation(s)
- Gabriel Ladeira Osés
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos-SP 13565-905, Brazil,School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK,Laboratório de Paleobiologia e Astrobiologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos, Km 110, Sorocaba-SP 18052-780, Brazil,Programa de Pós-Doutorado, Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, São Paulo-SP 05508-090, Brazil
| | - Rachel Wood
- School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
| | - Guilherme Raffaeli Romero
- Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, São Paulo-SP 05508-080, Brazil
| | | | - Pidassa Bidola
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max Plank Straße 1, 21502 Geesthacht, Germany
| | - Julia Herzen
- Research Group of Physics of Biomedical Imaging, School of Natural Sciences, Technical University of Munich, James-Franck Straße 1, 85748 Garching b. München, Germany,Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching b. München, Germany
| | - Franz Pfeiffer
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching b. München, Germany,Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, James-Franck Straße 1, 85748 Garching b. München, Germany,Department of Diagnostic and Interventional Radiology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22D, 81675 Munich, Germany
| | - Sérgio Nascimento Stampar
- Laboratório de Evolução e Diversidade Aquática, Departamento de Ciências Biológicas, Faculdade de Ciências - Câmpus de Bauru, Universidade Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru-SP 17033-360, Brazil
| | - Mírian Liza Alves Forancelli Pacheco
- Laboratório de Paleobiologia e Astrobiologia, Universidade Federal de São Carlos, Rodovia João Leme dos Santos, Km 110, Sorocaba-SP 18052-780, Brazil,Programa de Pós-Doutorado, Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, São Paulo-SP 05508-090, Brazil,Corresponding author
| |
Collapse
|
6
|
Zamora S, Rahman IA, Sumrall CD, Gibson AP, Thompson JR. Cambrian edrioasteroid reveals new mechanism for secondary reduction of the skeleton in echinoderms. Proc Biol Sci 2022; 289:20212733. [PMID: 35232240 PMCID: PMC8889179 DOI: 10.1098/rspb.2021.2733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Echinoderms are characterized by a distinctive high-magnesium calcite endoskeleton as adults, but elements of this have been drastically reduced in some groups. Herein, we describe a new pentaradial echinoderm, Yorkicystis haefneri n. gen. n. sp., which provides, to our knowledge, the oldest evidence of secondary non-mineralization of the echinoderm skeleton. This material was collected from the Cambrian Kinzers Formation in York (Pennsylvania, USA) and is dated as ca 510 Ma. Detailed morphological observations demonstrate that the ambulacra (i.e. axial region) are composed of flooring and cover plates, but the rest of the body (i.e. extraxial region) is preserved as a dark film and lacks any evidence of skeletal plating. Moreover, X-ray fluorescence analysis reveals that the axial region is elevated in iron. Based on our morphological and chemical data and on taphonomic comparisons with other fossils from the Kinzers Formation, we infer that the axial region was originally calcified, while the extraxial region was non-mineralized. Phylogenetic analyses recover Yorkicystis as an edrioasteroid, indicating that this partial absence of skeleton resulted from a secondary reduction. We hypothesize that skeletal reduction resulted from lack of expression of the skeletogenic gene regulatory network in the extraxial body wall during development. Secondary reduction of the skeleton in Yorkicystis might have allowed for greater flexibility of the body wall.
Collapse
Affiliation(s)
- Samuel Zamora
- Instituto Geológico y Minero de España (IGME-CSIC), C/Manuel Lasala, 44, 9°B, 50006 Zaragoza, Spain.,Grupo Aragosaurus-IUCA, Área de Paleontología, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Imran A Rahman
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.,Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK
| | - Colin D Sumrall
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996-1526, USA
| | - Adam P Gibson
- Department of Medical Physics and Biomedical Engineering and Institute for Sustainable Heritage, University College London, Gower Street, London WC1E 6BT, UK
| | - Jeffrey R Thompson
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.,UCL Centre for Life's Origins and Evolution, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
7
|
Shuvalova JV, Nagovitsin KE, Duda JP, Parkhaev PY. Early Eukaryotes in the Lakhanda Biota (Mesoproterozoic, Southeastern Siberia)-Morphological and Geochemical Evidence. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2021; 500:127-132. [PMID: 34731376 DOI: 10.1134/s0012496621050100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
The Mesoproterozoic Lakhanda Group (~1030 Ma) preserves one of the most diverse communities of pre-Ediacaran eukaryotes. More precisely, the Lakhanda Biota includes more than twenty taxa that have been assigned to eukaryotes with different degrees of confidence. Eight of these taxa meet current criteria for the identification of eukaryotic fossils in ancient records. These include previously described fossils such as ornamented acritarchs (Valeria lophostriata, Trachyhystrichosphaera aimika), filamentous coenocytic organisms (Aimonema ramosa, Palaeovaucheria clavata), as well as fossils with smooth-walled envelopes and single outgrowth structures (Caudosphaera expansa, Germinosphaera bispinosa, and Jacutianema solubila). In addition to these, we found as yet undescribed fossils which share remarkable similarities with Ourasphaira giraldae, a possible higher fungi species known from the (?) Meso- to Neoproterozoic of Arctic Canada. Regardless of the exact systematic affinity, these fossils can confidently be assigned to eukaryotes because of the size and high morphological complexity. Intriguingly, the organic record of the Lakhanda Formation lacks biomarkers indicative of eukaryotes (that is, regular steranes). This finding would be in line with the idea that eukaryotes were present but not significant in Mesoproterozoic marine ecosystems. However, preliminary data from an ongoing study indicate an advanced thermal maturity of the organic matter, emphasizing that this conclusion might not be drawn with absolute confidence.
Collapse
Affiliation(s)
- J V Shuvalova
- Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russia. .,Swinburne University of Technology, Hawthorn, Australia.
| | - K E Nagovitsin
- Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - J-P Duda
- Sedimentology and Organic Geochemistry, University of Tübingen, Tübingen, Germany
| | - P Yu Parkhaev
- Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Ehrlich H, Bailey E, Wysokowski M, Jesionowski T. Forced Biomineralization: A Review. Biomimetics (Basel) 2021; 6:46. [PMID: 34287234 PMCID: PMC8293141 DOI: 10.3390/biomimetics6030046] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/29/2021] [Accepted: 07/02/2021] [Indexed: 12/31/2022] Open
Abstract
Biologically induced and controlled mineralization of metals promotes the development of protective structures to shield cells from thermal, chemical, and ultraviolet stresses. Metal biomineralization is widely considered to have been relevant for the survival of life in the environmental conditions of ancient terrestrial oceans. Similar behavior is seen among extremophilic biomineralizers today, which have evolved to inhabit a variety of industrial aqueous environments with elevated metal concentrations. As an example of extreme biomineralization, we introduce the category of "forced biomineralization", which we use to refer to the biologically mediated sequestration of dissolved metals and metalloids into minerals. We discuss forced mineralization as it is known to be carried out by a variety of organisms, including polyextremophiles in a range of psychrophilic, thermophilic, anaerobic, alkaliphilic, acidophilic, and halophilic conditions, as well as in environments with very high or toxic metal ion concentrations. While much additional work lies ahead to characterize the various pathways by which these biominerals form, forced biomineralization has been shown to provide insights for the progression of extreme biomimetics, allowing for promising new forays into creating the next generation of composites using organic-templating approaches under biologically extreme laboratory conditions relevant to a wide range of industrial conditions.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada
- ICUBE-University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Elizabeth Bailey
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA;
| | - Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|
9
|
Riedman LA, Porter SM, Czaja AD. Phosphatic scales in vase-shaped microfossil assemblages from Death Valley, Grand Canyon, Tasmania, and Svalbard. GEOBIOLOGY 2021; 19:364-375. [PMID: 33634584 DOI: 10.1111/gbi.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Although biomineralized skeletal elements dominate the Phanerozoic fossil record, they did not become common until ~550-520 Ma when independent acquisitions of biomineralization appeared in multiple lineages of animals and a few protists (single-celled eukaryotes). Evidence of biomineralization preceding the late Ediacaran is spotty aside from the apatitic scale microfossils of the ~811 Ma Fifteenmile Group, northwestern Canada. Here, we describe scale-shaped microfossils from four vase-shaped microfossil (VSM)-bearing units of later Tonian age: the Togari Group of Tasmania, Chuar and Pahrump groups of southwestern United States, and the Roaldtoppen Group of Svalbard. These scale-shaped microfossils consist of thin, ~13 micron-long plates typically surrounded by a 1-3 micron-thick colorless envelope; they are found singly and in heterotypic and monotypic clusters of a few to >20 specimens. Raman spectroscopy and confocal laser scanning microscopy indicate these microfossils are composed of apatite and kerogen, just as is seen in the Fifteenmile Group scale microfossils. Despite compositional similarity, however, these scales are probably not homologous, representing instead, an independent acquisition of apatite mineralization. We propose that these apatite-kerogen scale-shaped microfossils are skeletal elements of a protistan cell. In particular, their consistent co-occurrence with VSMs, and similarities with scales of arcellinid testate amoebae, a group to which the VSMs are thought to belong, suggest the possibility that these microfossils may be test-forming scales of ancient arcellinid testate amoebae. The apparent apatite biomineralization in both these microfossils and the Fifteenmile scales is unexpected given its exceedingly rare use in skeletons of modern protists. This modern absence is attributed to the extravagance of using a limiting nutrient in a structural element, but multiple occurrences of apatite biomineralization in the Tonian suggest that phosphorus was not a limiting nutrient for these organisms, a suggestion consistent with the idea that dissolved seawater phosphate concentrations may have been higher at this time.
Collapse
Affiliation(s)
- Leigh Anne Riedman
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Susannah M Porter
- Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Andrew D Czaja
- Department of Geology, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
10
|
Wysokowski M, Zaslansky P, Ehrlich H. Macrobiomineralogy: Insights and Enigmas in Giant Whale Bones and Perspectives for Bioinspired Materials Science. ACS Biomater Sci Eng 2020; 6:5357-5367. [PMID: 33320547 DOI: 10.1021/acsbiomaterials.0c00364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The giant bones of whales (Cetacea) are the largest extant biomineral-based constructs known. The fact that such mammalian bones can grow up to 7 m long raises questions about differences and similarities to other smaller bones. Size and exposure to environmental stress are good reasons to suppose that an unexplored level of hierarchical organization may be present that is not needed in smaller bones. The existence of such a macroscopic naturally grown structure with poorly described mechanisms for biomineralization is an example of the many yet unexplored phenomena in living organisms. In this article, we describe key observations in macrobiomineralization and suggest that the large scale of biomineralization taking place in selected whale bones implies they may teach us fundamental principles of the chemistry, biology, and biomaterials science governing bone formation, from atomistic to the macrolevel. They are also associated with a very lipid rich environment on those bones. This has implications for bone development and damage sensing that has not yet been fully addressed. We propose that whale bone construction poses extreme requirements for inorganic material storage, mediated by biomacromolecules. Unlike extinct large mammals, cetaceans still live deep in large terrestrial water bodies following eons of adaptation. The nanocomposites from which the bones are made, comprising biomacromolecules and apatite nanocrystals, must therefore be well adapted to create the macroporous hierarchically structured architectures of the bones, with mechanical properties that match the loads imposed in vivo. This massive skeleton directly contributes to the survival of these largest mammals in the aquatic environments of Earth, with structural refinements being the result of 60 million years of evolution. We also believe that the concepts presented in this article highlight the beneficial uses of multidisciplinary and multiscale approaches to study the structural peculiarities of both organic and inorganic phases as well as mechanisms of biomineralization in highly specialized and evolutionarily conserved hard tissues.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.,Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Strasse 3, Freiberg 09599, Germany
| | - Paul Zaslansky
- Department for Restorative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Strasse 3, Freiberg 09599, Germany
| |
Collapse
|
11
|
Yang B, Steiner M, Schiffbauer JD, Selly T, Wu X, Zhang C, Liu P. Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelids. Sci Rep 2020; 10:535. [PMID: 31953458 PMCID: PMC6968996 DOI: 10.1038/s41598-019-56317-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/26/2019] [Indexed: 11/09/2022] Open
Abstract
Cloudinids have long been considered the earliest biomineralizing metazoans, but their affinities have remained contentious and undetermined. Based on well-preserved ultrastructures of two taxa, we here propose new interpretations regarding both their extent of original biomineralization and their phylogenetic affinity. One of these taxa is a new cloudinid from Mongolia, Zuunia chimidtsereni gen. et sp. nov., which exhibits key characteristics of submicrometric kerogenous lamellae, plastic tube-wall deformation, and tube-wall delamination. Multiple carbonaceous lamellae are also discovered in Cloudina from Namibia and Paraguay, which we interpret to have originated from chitinous or collagenous fabrics. We deduce that these cloudinids were predominantly originally organic (chitinous or collagenous), and postmortem decay and taphonomic mineralization resulted in the formation of aragonite and/or calcite. Further, based on our ultrastructural characterization and other morphological similarities, we suggest that the cloudinids should most parsimoniously be assigned to annelids with originally organic tubes.
Collapse
Affiliation(s)
- Ben Yang
- Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China.
| | - Michael Steiner
- Department of Earth Sciences, Freie Universität Berlin, Berlin, 12249, Germany.
| | - James D Schiffbauer
- Department of Geological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
- X-ray Microanalysis Core Facility, University of Missouri, Columbia, Missouri, 65211, USA
| | - Tara Selly
- Department of Geological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
- X-ray Microanalysis Core Facility, University of Missouri, Columbia, Missouri, 65211, USA
| | - Xuwen Wu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Cong Zhang
- Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
- School of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Pengju Liu
- Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
| |
Collapse
|
12
|
|
13
|
Early Earth and the rise of complex life. Emerg Top Life Sci 2018; 2:121-124. [PMID: 32412610 DOI: 10.1042/etls20180093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022]
Abstract
The history of life on Earth progressed in parallel with the evolving oxygen state of the atmosphere and oceans, but the details of that relationship remain poorly known and debated. There is, however, general agreement that the first appreciable and persistent accumulation of oxygen in the oceans and atmosphere occurred around 2.3 to 2.4 billion years ago. Following this Great Oxidation Event, biospheric oxygen remained at relatively stable intermediate levels for more than a billion years. Much current research focuses on the transition from the intermediate conditions of this middle chapter in Earth history to the more oxygenated periods that followed - often emphasizing whether increasing and perhaps episodic oxygenation drove fundamental steps in the evolution of complex life and, if so, when. These relationships among early organisms and their environments are the thematic threads that stitch together the papers in this collection. Expert authors bring a mix of methods and opinions to their leading-edge reviews of the earliest proliferation and ecological impacts of eukaryotic life, the subsequent emergence and ecological divergence of animals, and the corresponding causes and consequences of environmental change.
Collapse
|