1
|
Solyga M, Majumdar A, Besse F. Regulating translation in aging: from global to gene-specific mechanisms. EMBO Rep 2024; 25:5265-5276. [PMID: 39562712 PMCID: PMC11624266 DOI: 10.1038/s44319-024-00315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Aging is characterized by a decline in various biological functions that is associated with changes in gene expression programs. Recent transcriptome-wide integrative studies in diverse organisms and tissues have revealed a gradual uncoupling between RNA and protein levels with aging, which highlights the importance of post-transcriptional regulatory processes. Here, we provide an overview of multi-omics analyses that show the progressive uncorrelation of transcriptomes and proteomes during the course of healthy aging. We then describe the molecular changes leading to global downregulation of protein synthesis with age and review recent work dissecting the mechanisms involved in gene-specific translational regulation in complementary model organisms. These mechanisms include the recognition of regulated mRNAs by trans-acting factors such as miRNA and RNA-binding proteins, the condensation of mRNAs into repressive cytoplasmic RNP granules, and the pausing of ribosomes at specific residues. Lastly, we mention future challenges of this emerging field, possible buffering functions as well as potential links with disease.
Collapse
Affiliation(s)
- Mathilde Solyga
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Amitabha Majumdar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, Maharashtra, India
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
2
|
Cardona AH, Ecsedi S, Khier M, Yi Z, Bahri A, Ouertani A, Valero F, Labrosse M, Rouquet S, Robert S, Loubat A, Adekunle D, Hubstenberger A. Self-demixing of mRNA copies buffers mRNA:mRNA and mRNA:regulator stoichiometries. Cell 2023; 186:4310-4324.e23. [PMID: 37703874 DOI: 10.1016/j.cell.2023.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/08/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
Cellular homeostasis requires the robust control of biomolecule concentrations, but how do millions of mRNAs coordinate their stoichiometries in the face of dynamic translational changes? Here, we identified a two-tiered mechanism controlling mRNA:mRNA and mRNA:protein stoichiometries where mRNAs super-assemble into condensates with buffering capacity and sorting selectivity through phase-transition mechanisms. Using C. elegans oogenesis arrest as a model, we investigated the transcriptome cytosolic reorganization through the sequencing of RNA super-assemblies coupled with single mRNA imaging. Tightly repressed mRNAs self-assembled into same-sequence nanoclusters that further co-assembled into multiphase condensates. mRNA self-sorting was concentration dependent, providing a self-buffering mechanism that is selective to sequence identity and controls mRNA:mRNA stoichiometries. The cooperative sharing of limiting translation repressors between clustered mRNAs prevented the disruption of mRNA:repressor stoichiometries in the cytosol. Robust control of mRNA:mRNA and mRNA:protein stoichiometries emerges from mRNA self-demixing and cooperative super-assembly into multiphase multiscale condensates with dynamic storage capacity.
Collapse
Affiliation(s)
| | - Szilvia Ecsedi
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Mokrane Khier
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Zhou Yi
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Alia Bahri
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Amira Ouertani
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Florian Valero
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | | | - Sami Rouquet
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Stéphane Robert
- Université Aix Marseille, Inserm, INRAE, C2VN, 13005 Marseille, France
| | - Agnès Loubat
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | | | | |
Collapse
|
3
|
Biddle A. In vitro cancer models as an approach to identify targetable developmental phenotypes in cancer stem cells. IN VITRO MODELS 2023; 2:83-88. [PMID: 37808201 PMCID: PMC10550853 DOI: 10.1007/s44164-023-00051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 10/10/2023]
Abstract
Cancer therapeutics are often highly toxic to the patient, and they often elicit rapid resistance in the tumour. Recent advances have suggested a potential new way in which we may improve on this, through two important concepts: (1) that multitudinous pathway alterations converge on a limited number of cancer cellular phenotypes, and (2) that these cancer cellular phenotypes depend on reactivation of developmental processes that are only minimally active in adult tissues. This provides a rationale for pursuing an approach of 'drugging the phenotype' focussed on targeting reactivated cellular processes from embryonic development. In this concepts paper, we cover these recent developments and their implications for the development of new cancer therapeutics that can avoid patient toxicity and acquired resistance. We then propose that in vitro tumour and developmental models can provide an experimental approach to identify and target the specific developmental processes at play, with a focus on the reactivation of developmental processes in the cancer stem cells that drive tumour progression and spread. Ultimately, the aim is to identify cellular processes that are specific to developmental phenotypes, are reactivated in cancer stem cells, and are essential to tumour progression. Therapeutically targeting these cellular processes could represent a new approach of 'drugging the phenotype' that treats the tumour whilst avoiding patient toxicity or the acquisition of therapeutic resistance.
Collapse
Affiliation(s)
- Adrian Biddle
- Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Zwicker D, Laan L. Evolved interactions stabilize many coexisting phases in multicomponent liquids. Proc Natl Acad Sci U S A 2022; 119:e2201250119. [PMID: 35867744 PMCID: PMC9282444 DOI: 10.1073/pnas.2201250119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Phase separation has emerged as an essential concept for the spatial organization inside biological cells. However, despite the clear relevance to virtually all physiological functions, we understand surprisingly little about what phases form in a system of many interacting components, like in cells. Here we introduce a numerical method based on physical relaxation dynamics to study the coexisting phases in such systems. We use our approach to optimize interactions between components, similar to how evolution might have optimized the interactions of proteins. These evolved interactions robustly lead to a defined number of phases, despite substantial uncertainties in the initial composition, while random or designed interactions perform much worse. Moreover, the optimized interactions are robust to perturbations, and they allow fast adaption to new target phase counts. We thus show that genetically encoded interactions of proteins provide versatile control of phase behavior. The phases forming in our system are also a concrete example of a robust emergent property that does not rely on fine-tuning the parameters of individual constituents.
Collapse
Affiliation(s)
- David Zwicker
- Max Planck Institute for Dynamics and Self-Organisation, 37077 Göttingen, Germany
| | - Liedewij Laan
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
5
|
Cochard A, Garcia-Jove Navarro M, Piroska L, Kashida S, Kress M, Weil D, Gueroui Z. RNA at the surface of phase-separated condensates impacts their size and number. Biophys J 2022; 121:1675-1690. [PMID: 35364105 PMCID: PMC9117936 DOI: 10.1016/j.bpj.2022.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
While it is now recognized that specific RNAs and protein families are critical for the biogenesis of ribonucleoprotein (RNP) condensates, how these molecular constituents determine condensate size and morphology is unknown. To circumvent the biochemical complexity of endogenous RNP condensates, the use of programmable tools to reconstitute condensate formation with minimal constituents can be instrumental. Here we report a methodology to form RNA-containing condensates in living cells programmed to specifically recruit a single RNA species. Our bioengineered condensates are made of ArtiGranule scaffolds composed of an orthogonal protein that can bind to a specific heterologously expressed RNA. These scaffolds undergo liquid-liquid phase separation in cells and can be chemically controlled to prevent condensation or to trigger condensate dissolution. We found that the targeted RNAs localize at the condensate surface, either as isolated RNA molecules or as a homogenous corona of RNA molecules around the condensate. The recruitment of RNA changes the material properties of condensates by hardening the condensate body. Moreover, the condensate size scales with RNA surface density; the higher the RNA density, the smaller and more frequent the condensates. These results suggest a mechanism based on physical constraints, provided by RNAs at the condensate surface, that limit condensate growth and coalescence.
Collapse
Affiliation(s)
- Audrey Cochard
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France; Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005 Paris, France
| | - Marina Garcia-Jove Navarro
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Leonard Piroska
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Shunnichi Kashida
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Michel Kress
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005 Paris, France
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005 Paris, France.
| | - Zoher Gueroui
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
6
|
Nedelsky NB, Taylor JP. Pathological phase transitions in ALS-FTD impair dynamic RNA-protein granules. RNA (NEW YORK, N.Y.) 2022; 28:97-113. [PMID: 34706979 PMCID: PMC8675280 DOI: 10.1261/rna.079001.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The genetics of human disease serves as a robust and unbiased source of insight into human biology, both revealing fundamental cellular processes and exposing the vulnerabilities associated with their dysfunction. Over the last decade, the genetics of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have epitomized this concept, as studies of ALS-FTD-causing mutations have yielded fundamental discoveries regarding the role of biomolecular condensation in organizing cellular contents while implicating disturbances in condensate dynamics as central drivers of neurodegeneration. Here we review this genetic evidence, highlight its intersection with patient pathology, and discuss how studies in model systems have revealed a role for aberrant condensation in neuronal dysfunction and death. We detail how multiple, distinct types of disease-causing mutations promote pathological phase transitions that disturb the dynamics and function of ribonucleoprotein (RNP) granules. Dysfunction of RNP granules causes pleiotropic defects in RNA metabolism and can drive the evolution of these structures to end-stage pathological inclusions characteristic of ALS-FTD. We propose that aberrant phase transitions of these complex condensates in cells provide a parsimonious explanation for the widespread cellular abnormalities observed in ALS as well as certain histopathological features that characterize late-stage disease.
Collapse
Affiliation(s)
- Natalia B Nedelsky
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
7
|
Razin SV, Gavrilov AA. Non-coding RNAs in chromatin folding and nuclear organization. Cell Mol Life Sci 2021; 78:5489-5504. [PMID: 34117518 PMCID: PMC11072467 DOI: 10.1007/s00018-021-03876-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 06/05/2021] [Indexed: 12/19/2022]
Abstract
One of the most intriguing questions facing modern biology concerns how the genome directs the construction of cells, tissues, and whole organisms. It is tempting to suggest that the part of the genome that does not encode proteins contains architectural plans. We are still far from understanding how these plans work at the level of building tissues and the body as a whole. However, the results of recent studies demonstrate that at the cellular level, special non-coding RNAs serve as scaffolds for the construction of various intracellular structures. The term "architectural RNAs" was proposed to designate this subset of non-coding RNAs. In this review, we discuss the role of architectural RNAs in the construction of the cell nucleus and maintenance of the three-dimensional organization of the genome.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| |
Collapse
|
8
|
Formicola N, Heim M, Dufourt J, Lancelot AS, Nakamura A, Lagha M, Besse F. Tyramine induces dynamic RNP granule remodeling and translation activation in the Drosophila brain. eLife 2021; 10:65742. [PMID: 33890854 PMCID: PMC8064753 DOI: 10.7554/elife.65742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/04/2021] [Indexed: 02/06/2023] Open
Abstract
Ribonucleoprotein (RNP) granules are dynamic condensates enriched in regulatory RNA binding proteins (RBPs) and RNAs under tight spatiotemporal control. Extensive recent work has investigated the molecular principles underlying RNP granule assembly, unraveling that they form through the self-association of RNP components into dynamic networks of interactions. How endogenous RNP granules respond to external stimuli to regulate RNA fate is still largely unknown. Here, we demonstrate through high-resolution imaging of intact Drosophila brains that Tyramine induces a reversible remodeling of somatic RNP granules characterized by the decondensation of granule-enriched RBPs (e.g. Imp/ZBP1/IGF2BP) and helicases (e.g. Me31B/DDX-6/Rck). Furthermore, our functional analysis reveals that Tyramine signals both through its receptor TyrR and through the calcium-activated kinase CamkII to trigger RNP component decondensation. Finally, we uncover that RNP granule remodeling is accompanied by the rapid and specific translational activation of associated mRNAs. Thus, this work sheds new light on the mechanisms controlling cue-induced rearrangement of physiological RNP condensates.
Collapse
Affiliation(s)
- Nadia Formicola
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Marjorie Heim
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Jérémy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Anne-Sophie Lancelot
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
9
|
Carter GC, Hsiung CH, Simpson L, Yang H, Zhang X. N-terminal Domain of TDP43 Enhances Liquid-Liquid Phase Separation of Globular Proteins. J Mol Biol 2021; 433:166948. [PMID: 33744316 DOI: 10.1016/j.jmb.2021.166948] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Liquid-liquid phase separation (LLPS) of proteins is involved in a growing number of cellular processes. Most proteins with LLPS harbor intrinsically disordered regions (IDR), which serve as a guideline to search for cellular proteins that potentially phase separate. Herein, we reveal that oligomerization lowers the barriers for LLPS and could act as a general mechanism to enhance LLPS of proteins domains independent of IDR. Using TDP43 as a model system, we found that deleting its IDR resulted in LLPS that was dependent on the oligomerization of the N-terminal domain (NTD). Replacing TDP43's NTD with other oligomerization domains enhanced the LLPS proportionately to the state of oligomerization. In addition to TDP43, fusing NTD to other globular proteins without known LLPS behavior also drove their phase separation in a manner dependent on oligomerization. Finally, we demonstrate that heterooligomers composed of NTD-fused proteins can be driven into droplets through NTD interactions. Our results potentiate a new paradigm for using oligomerization domains as a signature to systematically identify cellular proteins with LLPS behavior, thus broadening the scope of this exciting research field.
Collapse
Affiliation(s)
- G Campbell Carter
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Chia-Heng Hsiung
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Leman Simpson
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Haopeng Yang
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Xin Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|